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On a correspondence between blocks of finite groups
induced from the Isaacs character correspondence
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Abstract. We show that the Isaacs character correspondence induces a block corre-
spondence of finite groups and that the corresponding blocks have common invariants.
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Let G be a finite group. Let (\mathcal{K}, \mathcal{O}, \mathcal{F}) be a p-modular system and sup-
pose \mathcal{K} is algebraically closed. Let A be a finite group which acts on G with
(|A|, |G|)=1 . We denote by Irr(G) the set of ordinary irreducible characters
of G and by Irr_{A}(G) the set of A-invariant ordinary irreducible characters
of G . If A is a solvable group, there exists the Glauberman correspondence
between IrrA(G) and Irr(C_{G}(A)) and Watanabe [Wa] showed that this cor-
respondence induces perfect isometries between A-invariant blocks of G and
blocks of C_{G}(A) under some conditions. On the other hand, if A is not solv-
able, then G is solvable with odd order by the Feit-Thompson Theorem and
there exists the Isaacs correspondence between Irr_{A}(G) and Irr(C_{G}(A)) . In
this paper we show the Isaacs correspondence also induces perfect isome-
tries between blocks. Thus we may assume that G is a solvable group with
odd order. The Isaacs correspondence are given by the following. Starting
from G_{0}=G , we define subgroups G_{i+1}=[G_{i}, A]’C_{G}(A) of G for any i\geqq 0

inductively. Since G is solvable, we have

G=G_{0}>G_{1}>G_{2}> >G_{k}=C_{G}(A)

for some k ( [II , p.633]) and there exists a unique \xi\in Irr_{A}(G_{i+1}) such
that 2 { [\chi c_{i+1}, \xi] for each \chi\in Irr_{A}(G_{i}) by [II , Corollary 10.7] for each
i , 0\leqq i\leqq k-1 . Then we have character correspondences \sigma(G_{i}, G_{i+1}) :
Irr_{A}(G_{i})arrow Irr_{A}(G_{i+1}) and the Isaacs correspondence

\sigma(G, C_{G}(A))

=\sigma(G_{k-1}, G_{k}) \cdot\sigma(G_{0}, G_{1}) : Irr (G)arrow Irr(CG(A))
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by their composition. The aim of this paper is to show the following the0-
rem.

Theorem 1 Let A act on G with (|A|, |G|)=1 and assume |G| is odd.
Let D be a p-subgroup of C_{G}(A) . We denote by B1A(G|D) the set of A-
invariant blocks of G with defect group D. Then the Isaacs correspondence
induces a correspondence between B1_{A}(G|D) and a set of B1(Cc(A)|D)
which satisfifies the following conditions. Let B\in B1_{A}(G|D) correspond to
b\in B1(C_{G}(A)|D) .
(a) There exists a perfect isometry \sigma between B and b induced from the

Isaacs correspondence \sigma(G, C_{G}(A)) .
(b) If \alpha\in IBr(B) , then \sigma(\alpha)\in IBr(b) where IBr(B) is the set of irre-

ducible Brauer characters of B. This correspondence is a bijection
from IBr(B) to IBr(6) .

(c) d_{\chi\alpha}=d_{\sigma(\chi)\sigma(\alpha)} and c_{\alpha\alpha’}=c_{\sigma(\alpha)\sigma(\alpha’)} for all \chi\in Irr(B) and \alpha , \alpha’\in

IBr(5) , where d_{\chi\alpha} are decomposition numbers and c_{\alpha\alpha’} are Cartan
invariants.

Let G and H be finite groups. Let \mathfrak{B} (resp. b) be a set of blocks
of G (resp. H) and \sigma an isometry between the \mathbb{Z}-linear space with bases
\bigcup_{B\in \mathfrak{B}} Irr(5) and \bigcup_{b\in b} Irr(6). Then we can see that \sigma is an isometry be-
tween the \mathcal{K}-linear spaces with bases \bigcup_{B\in \mathfrak{B}} Irr(5) and \bigcup_{b\in b} Irr(5) by the
extension of coefficients. We define the generalized character \mu of G\cross H

by \mu(g, h)=\sum_{B\in \mathfrak{B}}\sum_{\chi\in B}\chi(g)\sigma(\chi)(h) for all g\in G and h\in H . If \sigma is
bijective and satisfies the following conditions, then \sigma is called a perfect
isometry between \mathfrak{B} and b ( [B , Definition 1.1]).
(a) For all g\in G and h\in H , (\mu(g, h)/|C_{G}(g)|)\in \mathcal{O} and

(\mu(g, h)/|C_{H}(h)|)\in \mathcal{O} .
(b) If \mu(g, h)\neq 0 , then g is p-regular if and only if h is p-regular.
If there exists a perfect isometry \sigma between \mathfrak{B} and b , then we have the
cardinality of \mathfrak{B} is equal to that of b and there exists a perfect isometry
\sigma_{B} between B and s(B) for each B\in \mathfrak{B} such that \sigma=\sum_{B\in \mathfrak{B}}\sigma_{B} where s
is a bijection between \mathfrak{B} and b ( [B , Theorem 1.5]). We can see a Brauer
character as a function over G mapping all p-singular elements to 0. Then
\sigma_{B} induces a natural linear map between the \mathcal{K}-linear space with bases
IBr(B) and the \mathcal{K}-linear space with bases IBr(s(B)) for any B\in \mathfrak{B}([B ,
Proposition 4.1]).

We assume that the reader is familiar with the definitions and theorems
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from [12], [N] and [NT].

1. Fully ramified correspondence

In this section, we show that the fully ramified correspondence induces
perfect isometries. Let H\underline{\triangleleft}G and \theta\in Irr(H) . We denote by Irr(G|\theta) =
\{\chi\in Irr(G)|[\chi_{H}, \theta]\neq 0\} . If H is a p’-group, then we denote by B1(G|\theta)

the set of blocks of G which covers \theta . Let K and L be normal subgroups
of G with K\leq L and K/L abelian. Let \theta\in Irr(K) and \phi\in Irr(L) . If
\phi (and \theta ) is G-invariant and fully ramified with respect to K/L , that is,
( \phi is K-invariant and) \theta is the unique irreducible constituent of \phi^{K} , then
(G, K, L, \theta, \phi) is called a character fifive.
Theorem 2 ( [II , Theorem 9.1]) Let (G, K, L, \theta, \phi) be a character fifive.
Assume that either |G : K| or |K : L| is odd. Let \psi be the character of G
as in [II , Theorem 9.1]. Then there exists U\leq G such that
(a) UK=G and U\cap K=L ,
(b) U^{a} is G-conjugale to U for all a\in Aut(G) such that K^{a}=K , L^{a}=L

and \phi^{a}=\phi ,
(c) the equation, \chi_{U}=\psi_{U}\xi , for \chi\in Irr(G|\theta) and \xi\in Irr(U|\phi) defifines a

one-tO-One correspondence between these sets of characters,
(d) if g\in G is not G-conjugate to an element of U then \chi(g)=0 for all

\chi\in Irr(G|\theta) ,
(e) if |G:L| is odd, then \chi and \xi are corresponding each other as above,

if and only if 2 \{ [\chi_{U}, \xi] ,
(f) |\psi(g)|^{2}=|C_{K/L}(g)| for all g\in G . \square

The character correspondence in Theorem 2 (c) is called the fully ram-
ifified correspondence with respect to (G, K, L, \theta, \phi) .

Proposition 3 Assume the situation of Theorem 2 and that K is a p’-
group. Then the fully ramifified correspondence induces a correspondence
between B1(G|\theta) and B1(U|\phi) which satisfifies the following conditions. Let
B\in B1(G|\theta) correspond to b\in B1(U|\phi) .
(a) There exists a perfect isometry \sigma between B and b induced from the

fully ramifified correspondence.
(b) B and b have a common defect group.

Proof. Let B be a block of G which covers \theta and put Irr(B) =\{\chi_{1}, \ldots, \chi_{k}\} .
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Let \chi_{iU}=\psi_{U}\xi_{i} with \xi_{i}\in Irr(U|\theta) as in Theorem 2 (c) and set \mu=
\sum_{i=1}^{k}\chi_{i}\cross\xi_{i} . We suppose that \mu(g, u)\neq 0 for g\in G and u\in U . Since
\mu(g, u)=\psi(u)^{-1}\sum_{i=1}^{k}\chi_{i}(g)\chi_{i}(u) by Theorem 2 (c), we have g_{p}=cu_{p}^{-1} by
the second orthogonality relation for blocks. If g\in U , then \mu(g, u)/\psi(g)=

\sum_{i=1}^{k}\xi_{i}(g)\xi_{i}(u) . Thus if g\in U_{p’} and u\in U\backslash U_{p’} , \sum_{i=1}^{k}\xi_{i}(g)\xi_{i}(u)=0 . By
[O , Theorem 3] \{\xi_{1}, \ldots, \xi_{k}\} is the set of irreducible characters of blocks
\{b_{s}\}_{s} of U . We claim that \mu(g, u)/|C_{G}(g)|\in \mathcal{O} and \mu(g, u)/|C_{U}(u)|\in \mathcal{O}

for any g\in G and u\in U . By Theorem 2 (d) we may assume g\in U .
Since C_{K/L}(g) is a p’-group, \psi(u) and \psi(g) are invertible elements of \mathcal{O} by
Theorem 2 (f). Then we have

\frac{\mu(g,u)}{|C_{G}(g)|}=\frac{1}{\psi(u)}\frac{1}{|C_{G}(g)|}\sum_{i=1}^{k}\chi_{i}(g)\chi_{i}(u)\in \mathcal{O} ,

\frac{\mu(g,u)}{|C_{U}(u)|}=\psi(g)\frac{1}{|C_{U}(u)|}\sum_{i=1}^{k}\xi_{i}(g)\xi_{i}(u)\in \mathcal{O} .

Therefore \mu induces a perfect isometry between B and \{b_{s}\}_{s} . By [B , Then
rem 1.5 (1) ] Irr(6) =\{\xi_{1}, \ldots, \xi_{k}\} for some b\in B1(U) . Thus the fully ramified
correspondence induces a blockwise correspondence and there exists a per-
fect isometry between corresponding blocks.

We put simply \chi=\chi_{1} and \xi=\xi_{1} . Let C_{b} be a defect class of b and
C be the conjugacy class of G which contains C_{b} . Since K is a p’-group,
we have \psi(u) is an invertible element of \mathcal{O} for any u\in C_{b} by Theorem
2 (f). Since \omega_{\xi}(\overline{C_{b}}) is an invertible element of 0 and p { |K : L|=|G:U| ,
(\psi(u)/\psi(1))|G:U|\omega_{\xi}(\overline{C_{b}}) is an invertible element of \mathcal{O} . Since we have

\omega_{\chi}(\hat{C})=\frac{1}{|C_{G}(u).C_{U}(u)|}.(\frac{\psi(u)}{\psi(1)}|G : U|\omega_{\xi}(\overline{C_{b}})) ,

|C_{G}(u) : C_{U}(u)|^{-1} is an element of \mathcal{O} and |C_{G}(u) : C_{U}(u)| does not divide
by p where u\in C_{b} . Thus C and C_{b} have a common defect group. Since
\omega_{\chi}(\hat{C})\not\equiv 0 , a defect group of b contains some defect group of B . Since B
and b have a same defect by [B , Theorem 1.5 (2)], B and b have a common
defect group. \square

In the situation of Proposition 3, \alpha_{U_{p}},
=\sigma(\alpha)\psi_{U_{p}}, for any \alpha\in IBr(B) .

Then \sigma(\alpha) is also an irreducible Brauer character for each \alpha\in IBr(B) by
the following proposition.
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Proposition 4 Assume the situation of Proposition 3 and that G is a p-
solvable group. If B\in B1(G|\theta) corresponds to b\in B1(U|\phi) , then we have
the following.
(a) If \alpha\in IBr(B) , then \sigma(\alpha)\in IBr(b) . This correspondence is a bijection

between IBr(B) and IBr(b) .
(b) d_{\chi\alpha}=d_{\sigma(\chi)\sigma(\alpha)} and c_{\alpha\alpha’}=c_{\sigma(\alpha)\sigma(\alpha’)} for all \chi\in Irr(B) and \alpha , \alpha’\in

IBr(B) .

Proof. We use the notations in the proof of the above proposition. Let
IBr(b)=\{\beta_{1}, . , \beta_{l}\} . By the Fong-Swan Theorem we may assume that
\beta_{j}=\xi_{j_{U_{p}}} , for all j , 1\leqq j\leqq l . For all i , 1\leqq i\leqq k , \chi_{iU_{p}}, =\psi_{U_{p}},\xi_{iU_{p}}, =

\psi_{U_{p}}, \sum_{j=1}^{l}d_{\xi_{i}\beta_{j}}\beta_{j}=\sum_{j=1}^{l}d_{\xi_{i}\beta_{j}}\chi_{j_{U_{p}}}, \cdot By Theorem 2 (d),

\chi_{iG_{p’}}=\sum_{j=1}^{l}d_{\xi_{i}\beta_{j}}\chi_{jG_{p’}} .

Let \alpha\in IBr(B) . By the Fong-Swan Theorem \alpha=\chi_{iG_{p}} , for some i , 1\leqq

i\leqq k . Since d_{\xi_{i}\beta_{j}}\geqq 0 , \alpha=\chi_{iG_{p}}, =\chi_{j_{G_{p}}} , for some j , 1\leqq j\leqq l . On the
other hand, since |IBr(B)|=l , we have IBr(B)=\{\chi_{1G_{p}}, , \chi_{lG_{p}}, \} . We
put

\alpha_{j}=\chi_{j_{G_{p}}}, for all j , 1\leqq j\leqq l . We note \sigma(\alpha_{j})=\beta_{j} . This completes

the proof of (a). Since \sum_{j=1}^{l}d_{\xi_{i}\beta_{j}}\alpha_{j}=\chi_{iG_{p}}, = \sum_{j=1}^{l}d_{\chi_{i}\alpha_{j}}\alpha_{j} , we have
d_{\chi_{i}\alpha_{j}}=d_{\xi_{i}\beta_{j}} for all i , 1\leqq i\leqq k and for all j , 1\leqq j\leqq l . This completes the
proof. \square

2. Proof of Theorem 1

We often use the following lemma in this section.

Lemma 5 ([Glauberman; see [12, Lemma 13.8]) Let A act on G with
(|A|, |G|)=1 . Suppose that A and G act on a set S , such that G transitive
on S. Assume that (sg) a=(s\cdot a)\cdot g^{a} for all s\in S , g\in G and a\in A .
Then
(i) A fifixes an element of S .
(ii) C_{G}(A) acts on the set of A-fifixed elements of S transitively. \square

For example, let A act on G with (|A|, |G|)=1 and N be an A-stable
normal subgroup of G . We suppose A acts on G/N trivially. Then A acts
on each N-coset gN of G and N acts on gN transitively by multiplication.
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We have

((gn_{0})n)\cdot a=(gn_{0}n)^{a}=(gn_{0})^{a}n^{a}=((gn_{0},)a)\cdot n^{a}

for all gn_{0}\in gN , a\in A and n\in N . Thus there exists an A-fixed element
in gN by Lemma 5. Therefore we have a set of the representatives of G/N
whose member is A-fixed and we have G=NC_{G}(A) .

The following proposition gives the blockwise correspondence \sigma between
G_{i} and G_{i+1} for each i in the introduction.

Proposition 6 Let A be a fifinite group which acts on G with (|A|, |G|)=1

and assume |G| is odd. Let L and K be A-stable normal p’ subgroups of G
with L\leq K and K/L abelian. Let H/L=C_{G/L}(A) and assume HK=G
and H\cap K=L . Let \theta\in Irr_{A}(L) and we defifine \overline{B1}_{A}(G|\theta)=\{B\in B1(G)|

Irr(B)\subseteq Irr_{A}(G|\theta)\} . Then there exists a correspondence between \overline{B1}_{A}(G|\theta)

and \overline{B1}_{A}(H|\theta) which satisfifies the following conditions. Let B\in\overline{B1}_{A}(G|\theta)

correspond to b\in\overline{B1}_{A}(H|\theta) .
(a) If \chi\in Irr(B) , there exists a unique constituent \xi\in Irr(H|\theta) of \chi_{H}

such that 2 { [\chi_{H}, \xi] . This correspondence is a bijection between Irr(B)
and Irr(6).

(b) There exists a perfect isometry \sigma between B and b induced from the
correspondence in (a).

(c) B and b have a common defect group.
(d) If \alpha\in IBr(B) , then \sigma(\alpha)\in IBr(b) . This correspondence is a bijection

between IBr(B) and IBr(6) .
(e) d_{\chi\alpha}=d_{\sigma(\chi)\sigma(\alpha)} and c_{\alpha\alpha’}=c_{\sigma(\alpha)\sigma(\alpha’)} for all \chi\in Irr(B) and \alpha , \alpha’\in

IBr(B) .

Proof. We have already known that there exists a correspondence between
IrrA(L) and Irr_{A}(H|\theta) by [II , Theorem 10.6]. In order to show this cor-
respondence is a blockwise correspondence and satisfies the conditions, we
follow the proof of [II , Theorem 10.6].

Let T be the inertial group of \theta in G . Since \theta is A-invariant, A stabilizes
T We put K_{0}=K\cap T and H_{0}=H\cap T Then H_{0}/L=C_{T/L}(A)

and A acts trivially on T/K_{0} . Since (|A|, |T : L|)=1 , we have T/L=
K_{0}/L\cdot C_{T/L}(A)=K_{0}/L\cdot H_{0}/L by Lemma 5 and T=K_{0}H_{0} . Thus T satisfies
the hypotheses of the theorem with respect to the subgroups L , K_{0} and
H_{0} . If T<G , then by induction, there exists the correspondence between
\overline{B1}_{A}(T|\theta) and \overline{B1}_{A}(H_{0}|\theta) . Let B\in\overline{B1}_{A}(G|\theta) . Take \overline{B}\in B1(T) which covers
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\theta and corresponds to B by the Clifford correspondence. Since \theta and B
are A-invariant, \overline{B} is A-invariant. Since all ordinary irreducible characters
of B are A-invariant, those characters of \overline{B} are also A-invariant and so
\overline{B}\in\overline{B1}_{A}\underline{(}T|\theta) . By the induction, let \overline{b}\in\overline{B1}_{A}(H_{0}|\theta) be the corresponding
block of B which satisfies the conditions from (a) to (e) with respect to T
and H_{0} . Then (\overline{b})^{H} is defined in the sense of Brauer and (\overline{b})^{H} corresponds
to \overline{b} by the Clifford correspondence. We put b=(\overline{b})^{H} and show that B
and b satisfy the conditions from (a) to (e) as follows. Let \chi_{-}\in Irr(B) and
\overline{\chi}\in Irr(\overline{B}) with \chi=(\overline{\chi})^{G} . By the induction, we can take \xi which is the
corresponding character of \overline{\chi} as in (a). We put \xi=(\overline{\xi})^{G} . In this way,
we have a character correspondence between Irr(B) and Irr(b). We claim
the multiplicity condition in (a). Since [\chi_{L}, \theta]=[\overline{\chi}_{L}, \theta]=[((\overline{\chi}_{H_{0}})^{H})_{L}, \theta] ,
we have \chi_{H}=(\overline{\chi}_{H_{0}})^{H}+\eta\underline{w}her\underline{e}[\eta_{L}, \theta]=-0 by [II , Lemma 10.4]. By
induction, we have \overline{\chi}_{H_{0}}=\xi+2\delta where \delta is a character of H_{0} . Then
\chi_{H}=\overline{\xi}^{H}+2\overline{\delta}^{H}+\eta=\xi+2\overline{\delta}^{H}+\eta and \xi is a unique irreducible constituent of
\chi_{H} such that 2 ( [\chi_{H}, \xi] and \xi\in Irr(H|\theta) . Since the Clifford correspondence
induces a perfect isometry, we have (b). Moreover it is well-known that
the Clifford correspondence also induces correspondence between irreducible
Brauer characters and preserves Cartan invariants, decomposition numbers
and defect groups, so we have (c), (d) and (e).

Thus we may suppose that \theta is invariant in G . Let R=K^{\perp} which is
computed in (K, L, \theta) ([II, \S 2]) . Then A stabilizes R and R\underline{\triangleleft}G . Moreover
\theta is extendible to R by [II , Theorem 2.7]. Let C be the group of linear
characters of R/L and let S be the set of extensions of \theta to R. Then C
acts transitively on S by multiplication. Since (|A|, |C|)=1 , it follows from
Lemma 5 that A fixes some \phi\in S . Since C_{C}(A)=1 , \phi is a unique A-fixed
element of S by Lemma 5 (ii). We claim that \phi is invariant in G . Since \phi is
a character of R=K^{\perp} , \phi is invariant in K by [II , Lemma 2.4]. Let h\in H

and a\in A . Since H/L=C_{G/L}(A) , we have h^{a}=lh for some l\in L . Then
(\phi^{h})^{a}=\phi^{h^{a}}=\phi^{lh}=\phi^{h} and \phi^{h} is an A-fixed element of S . Thus we have
\phi=\phi^{h} for all h\in H by the uniqueness of \phi . Since G=HK, \phi is invariant
in G .

Let M=RH. The restriction map induces a correspondence between
Irr(M|\phi) and Irr(H|\theta) by [II , Lemma 10.5]. Then there exists a correspon-
dence between B1(M|\phi) and B1(H|\theta) such that the corresponding blocks
are isomorphic. In particular, there exists a perfect isometry between cor-
responding blocks and the restriction induces a correspondence of Brauer



72 H. Honmoto

characters. Moreover, the corresponding blocks have a common defect group
and same decomposition numbers as well-known (see [HK , Theorem 4.1]).
Now, if \psi\in IrrA(M|\theta) , then all irreducible constituents of \psi_{R} lie in S .
By Lemma 5, one of these is A-fixed. Therefore \phi is a constituent of \psi_{R}

and IrrA(Ml\mbox{\boldmath $\theta$})Irr(Ml\mbox{\boldmath $\phi$}). Since the restriction maps from Irr_{A}(M|\theta) to
IrrA(Hl\mbox{\boldmath $\theta$}), each block in \overline{B1}A(M|\theta) corresponds to a block in \overline{B1}_{A}(H|\theta) .

Now, we construct a correspondence between \overline{B1}_{A}(G|\theta) and \overline{B1}_{A}(M|\theta) .
\phi is fully ramified with respect to K/R by [II , Theorem 2.7]. Let \tau be the
unique irreducible constituent of \phi^{K} so that (G, K, R, \tau, \phi) is a character
five. Since |K : L| is odd, the hypothesis of Theorem 2 is satisfied for
(G, K, R, \tau, \phi) . Let U\subseteq G be as in [II , Theorem 2.7] and let \mathcal{T} be the G-
conjugacy class of U . Then A acts on \mathcal{T} , and K/R acts on \mathcal{T} transitively.
By Lemma 5 we may assume that A stabilizes Ur Then we have [U, A]\subseteq

U\cap K=R and A acts trivially on U/R. Since H/L=C_{G/L}(A) , it follows
that U\subseteq RH=M and U=M. Thus Theorem 2 provides a correspondence
between Irr(G|\tau) =Irr(G|\phi) and Irr(M|\phi) . Since \psi is determined by \phi

and the action of G on K/R ( [II , p.619, Theorem 6.3]), \psi is A-invariant.
Therefore A-invariant characters correspond to A-invariant characters by
Theorem 2 (c). Since Irr_{A}(G|\theta)\subseteq Irr(G|\phi) by the above argument, it follows
from Proposition 3 that there exists a correspondence between \overline{B1}_{A}(G|\theta) and
\overline{B1}_{A}(M|\theta) .

Then the composition of the two correspondences gives a correspon-
dence between \overline{B1}_{A}(G|\theta) and \overline{B1}_{A}(H|\theta) with (b) and (c) by Proposition 3,
(d) and (e) by Proposition 4. We claim that the correspondence satisfies the
multiplicity condition in (a). Let B correspond to b and \chi\in Irr(B) . Then
we have \chi_{M}=\xi+2\alpha for a character \alpha of M and an irreducible character
\xi of M by Theorem 2 (e). Since there exists the character correspondence
between B and b by mapping \chi to \xi_{H} as shown as above, we have that \xi_{H}

is a unique constituent of \chi_{H} in Irr(H|\theta) with odd multiplicity. \square

Let B be an A-invariant block of G and D be a defect group of B . If
D\leq C_{G}(A) , then all irreducible characters of B are A-invariant ([Wa, \S 2
Proposition 1]). Now, we are ready to prove Theorem 1.

Proof of Theorem 1. First we prove the theorem when D is a Sylow p-
subgroup of G . Let K=[G, A] , L=[G, A]’ and U=[G, A]’C_{G}(A) . Then
we note G_{1}=U in the introduction. It suffices to establish the correspon-
dence between B1_{A}(G|D) and B1_{A}(U|D) and to show that it satisfies the
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following conditions. Let B\in B1_{A}(G|D) correspond to b\in B1A(U|D) .
(a’) \sigma(G, U) induces a perfect isometry \sigma between B and b .
(b’) If \alpha\in IBr(B) , then \sigma(\alpha)\in IBr(b) . This correspondence is a bijection

from IBr(B) to IBr(fe) .
(c ’ ) d_{\chi\alpha}=d_{\sigma(\chi)\sigma(\alpha)} and c_{\alpha\alpha’}=c_{\sigma(\alpha)\sigma(\alpha’)} for all \chi\in Irr(B) and \alpha , \alpha’\in

IBr(B) .
Let fi be the set of all p-complements in G. Then A acts on \mathfrak{H} and G

acts on \mathfrak{H} transitively by the solvability of G . By Lemma 5, there exists an
A-invariant element H of \mathfrak{H} . Since G=DH, we have [G, A]=[H, A]\leq H .
In particular K=[G, A] is a p’-group. Moreover we have U/L=C_{G/L}(A) ,
UK=G and U\cap K=L . Let B\in B1_{A}(G|D) . Since A acts on the set of
all ordinary irreducible characters of L which is covered by B and G acts it
transitively, we can choose \theta\in Irr_{A}(L) which is covered by B by Lemma 5.
Let \chi\in Irr(B) and \xi=\sigma(G, U)(\chi)\in Irr_{A}(U) be the unique character
such that 2 ( [\chi_{U}, \xi] by [II , Corollary 10.7]. We assume \theta_{0}\in Irr_{A}(L) with
[\xi_{L}, \theta_{0}]\neq 0 . Then [\chi_{L}, \theta_{0}]\neq 0 and \theta_{0} and \theta are U-conjugate by Lemma 5.
Thus [\xi_{L}, \theta]=[\xi_{L}, \theta_{0}]\neq 0 and \xi\in Irr_{A}(U|\theta) . Let B correspond to b as in
Proposition 6. Then \xi\in Irr(b) and B and b satisfies (a’) , (b’) and (c’) by
Proposition 6. The proof of the first cases is complete.

Secondly let X=O_{p’}(G) . Since the set of irreducible characters of X
which is covered by B is a G-conjugacy class, there exists an A-invariant
character \nu of X which is covered by B by Lemma 5. Let T be the inertial
group of \nu in G and \overline{B}\in B1(T\underline{)}be the Clifford correspondent of B . Since
\nu and B are A-invariant and B is the unique block of T which covers \nu

with (\overline{B})^{G}=B,\overline{B} is A-invariant. Let \mathfrak{D}_{B} (resp. \mathfrak{D} -) be the set of defect
groups of B (resp. \overline{B} ). Since \underline{\mathfrak{D}}

- is a T-conjugacy class and A acts on
it, A stabilizes a defect group D\in \mathfrak{D} - by Lemma 5. On the other hand,
A acts on \mathfrak{D}_{B} and G acts on it transitively. Since D and \overline{D} are A-fixed
elements of \mathfrak{D}_{B} , these are C_{G}(A) -conjugate by Lemma 5. Since D\leq C_{G}(A) ,
\overline{D}\leq C_{G}(A)\cap T=C_{T}(A) .

Suppose G>T Let \nu^{*}=\sigma(X, C_{X}(A))(\nu) . By [Wo, Lemma 2.5 (b)],
C_{T}(A) is the inertial group of \nu^{*} in C_{G}(A) . By the induction we can define
the correspondence between B1_{A}(T|\overline{D}) and a set of B1(C_{T}(A)|\overline{D}) and let \overline{B}

correspond to \overline{b}.\underline{B}y [Wo, Lemma 2.5 (a)], \overline{b} covers \nu^{*} . Let b be the Clifford
correspondent of b . By [Wo, Lemma 2.5 (b)], the Clifford correspondence
commutes with the Isaacs correspondence. Thus characters of B correspond
to characters of b by the Isaacs correspondence, and they satisfy (a), (b)
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and (c) by the induction and the property of the Clifford correspondence.
We assume that G=T, that is, \nu is G-invariant. Then a defect group

of B is a Sylow p-subgroup of G by [N , Theorem 10.20]. In this case, the
statement has been already proved. The proof of Theorem 1 is complete.

\square

If A centralizes a Sylow p-subgroup of G , then each block of G has a
defect group centralized by A . Then we have the following corollary.

Corollary 7 Let A act on G with (|A|, |G|)=1 and |G| is odd. If A
centralizes a Sylow p-subgroup of G , then the Isaacs correspondence induces
a correspondence between the set of A-invariant blocks of G and the set of
blocks of C_{G}(A) which satisfifies (a), (b) and (c) in Theorem 1.
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