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Mutual exclusiveness among spacelike, timelike,
and lightlike leaves in totally geodesic

foliations of lightlike complete Lorentzian
two-dimensional tori

Ken YOKUMOTO
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Abstract. In this paper we prove an equation for totally geodesic foliations of pseud0-
Riemannian manifolds which is originally established in Riemannian case. We prove that
if \mathcal{F} is a totally geodesic foliation of a lightlike complete Lorentzian 2-torus T^{2} , then \mathcal{F}

consists of only one kind of leaves among spacelike, timelike, and lightlike ones. As a
corollary we prove that a totally geodesic foliation of a lightlike complete 2-torus has no
Reeb components.
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1. Introduction

In this section we explain what motivated us to consider totally geodesic
foliations of pseud0-Riemannian manifolds.

There are a lot of results about codimension-0ne totally geodesic folia-
tions of complete Riemannian manifolds as follows. Let \mathcal{F} be a codimension-
one totally geodesic foliation of a complete Riemannian manifold (M, g) .
The universal covering of M is a product L\cross R and the lift of \mathcal{F} is the
product foliation, where L is the universal covering of the leaves of \mathcal{F} (see
[BH] ) . The foliation perpendicular to \mathcal{F} is a Riemannian foliation ([CG]).
G. Oshikiri proved that any Killing field with bounded length preserves \mathcal{F}

(see [Osl], [Os2]). In [Gh], E. Ghys classified totally geodesic foliations of
a closed Riemannian manifold.

On the other hand, we do not know so many results on totally geodesic
foliations of pseud0-Riemannian manifolds. Hence we consider those of
pseud0-Riemannian manifolds, in particular, those of Lorentzian mani-
folds. We recall some results about them. In [Z], A. Zeghib constructed
codimension-0ne, lightlike totally geodesic foliations. He made a foliation
\mathcal{F} lightlike totally geodesic in two cases:
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(1) The foliation is defined by a locally free action with codimension-0ne
orbits of a Lie group with a one-dimensional normal subgroup;

(2) The foliation \mathcal{F} is the suspension of a foliation \mathcal{L} of a Ttiemannian
manifold (M, g) by a diffeomorphism of M preserving \mathcal{L} and g|_{T\mathcal{L}} .

He proved that the foliation \mathcal{F} is lightlike geodesible by means of a construc-
tion of a Lorentzian metric. In fact, we do not know whether the metric is
complete or not. So it seems significant to consider totally geodesic folia-
tions of complete Lorentzian manifolds. In [CR], Y. Carri\‘ere and L. Rozoy
proved that the canonical lightlike totally geodesic foliations of a lightlike
complete 2-torus are C^{0}-linearizable. The above three persons considered
lightlike totally geodesic foliations. The existence of a totally geodesic foli-
ation having spacelike, timelike, and lightlike leaves seems unknown. So we
ask the following.

Question 1 Does there exist a codimension-0ne totally geodesic foliation
of a complete, closed Lorentzian manifold which contains spacelike, timelike,
and lightlike leaves?

The condition of being codimension-0ne is necessary. There is an exam-
ple of a codimension-two totally geodesic foliation having spacelike, timelike,
and lightlike leaves of a complete, closed Lorentzian manifold (see Exam-
ple A in Section 2).

We have a partial answer to Question 1 as follows.

Theorem 5.1 Let (T^{2}, g) be a lightlike complete Lorentzian 2-t0rus.
There exists no totally geodesic foliation which contains more than or
equal to two kinds of leaves among spacelike, timelike, and lightlike ones.

The assumption of lightlike completeness is necessary. There is an ex-
ample of a totally geodesic foliation of a lightlike incomplete Lorentzian
2-torus that contains spacelike, timelike, and lightlike leaves (see Section 2).

As a corollary of Theorem 5.1, we have the following.

Corollary 5.5 Let (T^{2}, g) be a lightlike complete Lorentzian 2-torus. Let
\mathcal{F} be a totally geodesic foliation of T^{2} . Then \mathcal{F} has no Reeb components.

The condition of lightlike completeness is necessary. There is an ex-
ample of a totally geodesic foliation with Reeb components of a lightlike
incomplete 2-torus (see Example D in Section 2).
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2. Definitions and examples

This section contains definitions and examples. We prove an equation
for totally geodesic foliations of pseud0-Riemannian manifolds which is orig-
inally established in Riemannian case. It is useful to calculate examples.

We assume that all the manifolds are smooth, connected, and orientable
and that all the foliations are smooth and orientable.

Let M be a manifold.

Definition 2.1 A pseudO-Riemannian metric g on M is a nondegener-
ate, symmetric covariant 2-tensor. We call (M, g) a pseudO-Riemannian
manifold. In particular, if the signature of g is (+, \ldots, +, -) we call it a
Lorentzian metric.

Definition 2.2 Let g be a Lorentzian metric. A subspace E\subset T_{x}M is
called spacelike (resp. timelike, lightlike) if the signature of g|_{E} is (+, . ., +)
(resp. (+ , ., +, -), (+ , . ., + , 0)). A vector v\in T_{x}M is called spacelike
(resp. timelike, lightlike) if g(v, v)>0 (resp. g (v , v)<0 , g(v, v)=0).

For a pseud0-Riemannian manifold, it is well known that there exists
the Levi-Civita connection, that is, a connection which is torsion free and
compatible with the metric (see [ON]).

Definition 2.3 A pseud0-Riemannian metric g is called (geodesically)
complete if an affine parameter of any geodesic can be defined on entire
R. Otherwise g is called (geodesically) incomplete. A Lorentzian metric
g is called lightlike (geodesically) complete if an affine parameter of any
geodesic with a lightlike initial vector can be defined on entire R.

Definition 2.4 A foliation of a pseud0-Riemannian manifold (M, g) is
called totally geodesic if each leaf L is a totally geodesic submanifold, that
is, a submanifold such that any geodesic with any initial vector in TL is
contained in L .

Definition 2.5 Let L be a submanifold in a Lorentzian manifold (M, g) .
We call L spacelike (resp. timelike, lightlike) if the tangent space T_{x}L is a
spacelike (resp. timelike, lightlike) subspace of T_{x}M for each x\in L .

We can easily prove the following proposition.

Proposition 2.6 Every leaf L of a totally geodesic foliation of a
Lorentzian manifold is a spacelike, timelike, or lightlike submanifold.
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Now let (M, g) be a pseud0-Riemannian manifold and \mathcal{F} a foliation. We
define the normal distribution \mathcal{H} by H =(T\mathcal{F})^{\perp} , i.e., H is the distribution
which consists of all vectors perpendicular to T\mathcal{F} .

The following proposition is fundamental to consider totally geodesic
foliations of pseud0-Riemannian manifolds.

Proposition 2.7 Let (M, g) be a pseudO-Riemannian manifold and \mathcal{F} be
a codimension k foliation of Mt Then \mathcal{F} is totally geodesic if and only if
(\mathcal{L}xg)(Y, Z)=0 for all X\in\Gamma(H) and for all Y, Z\in\Gamma(T\mathcal{F}) .

Furthermore if \mathcal{F} is totally geodesic and X\in\Gamma(\mathcal{H}) is a foliation
preserving^{1} local vector field which can define a local one-parameter group,
then a local one-parameter group of local transformations generated by X
preserves the metrics induced on plaques.

Proof. Let \nabla be the Levi-Civita connection of g . We fix a splitting TM=
T\mathcal{F}\oplus\xi and define \alpha_{\xi}(Y, Z) for Y, Z\in\Gamma(T\mathcal{F}) by \xi-component of \nabla_{Y}Z .
Hence \mathcal{F} is totally geodesic, if and only if \nabla_{Y}Z\in\Gamma(T\mathcal{F}) for all Y,\cdot

Z\in

\Gamma(T\mathcal{F}) , if and only if \alpha_{\xi}(Y, Z)=0 for all Y, Z\in\Gamma(T\mathcal{F}) . We have

(\mathcal{L}_{X}g)(Y, Z)=X(g(Y, Z))-g([X, Y], Z)-g(Y, [X, Z])

=g(\nabla_{X}Y-[X, Y], Z)+g(Y, \nabla_{X}Z-[X, Z])

=g(\nabla_{Y}X, Z)+g(Y, \nabla_{Z}X)

=g(X, -\nabla_{Y}Z-\nabla_{Y}Z-[Z, Y])

=-2g(X, \nabla_{Y}Z)

=-2g(X, \alpha_{\xi}(Y, Z)) .

Notice that (H)^{\perp}=T\mathcal{F} . Thus given a non-zero vector v\in\xi there exists
w\in \mathcal{H} such that g(v, w)\neq 0 . Therefore the condition \alpha_{\xi}\equiv 0 is equivalent
to the following condition.

g(X, \alpha_{\xi}(Y, Z))=0 for all X\in\Gamma(H) and for all Y, Z\in\Gamma(T\mathcal{F}) .

This proves the first part of Proposition 2.7.
We will prove the second part of Proposition 2.7. First we assume that

\mathcal{F} is totally geodesic and X is a foliation preserving local vector field tangent
to H . Next we decompose g into g|\tau\tau+(g-g|_{T\mathcal{F}}) . By straightforward

x We call X foliation preserving if [X, Y]\in\Gamma(T\mathcal{F}) for all Y\in\Gamma(TF) .
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computation, we have

(\mathcal{L}_{X}(g-g|_{TF}))(Y, Z)=0 .

Since 0=(\mathcal{L}_{X}(g|_{T\mathcal{F}}))(Y, Z)+(\mathcal{L}_{X}(g-g|_{TF}))(Y, Z) , we get

(\mathcal{L}_{X}(g|_{TF}))(Y, Z)=0 .

This condition means that a local one-parameter group of local transfor-
mations generated by X preserves the metrics induced on plaques. More
precisely, let \psi_{t} be a local one-parameter group of local transformations
generated by X . Let P be a plaque of \mathcal{F} which is contained in domains
of \psi_{t} for all t\in(-\epsilon, \epsilon) . Because \psi_{t}(P) is a submanifold and its tangent
vectors lie in T\mathcal{F} by the definition of foliation preserving, \psi_{t}(P) is also a
plaque of \mathcal{F} . If p\in P and v\in T_{p}\mathcal{F} then \psi_{t*}v\in T_{\psi_{t}(p)}\mathcal{F} . We have

\lim\{(g|_{T\mathcal{F}})(\psi_{t*}v, \psi_{t*}v)-\underline{1}(g|_{T\mathcal{F}})(v, v)\}=0 ,
tarrow 0t

\lim\{(g|_{T\mathcal{F}})(\psi_{t+s*}v, \psi_{t+s*}v)-(g|_{TF})(\psi_{s*}v, \psi_{s*}v)\}=0\underline{1} .
tarrow 0t

Hence the differential of the map s\mapsto(g|\tau\tau)(\psi_{s*}v, \psi_{s*}v) is zero. Therefore

(g|_{TF})(\psi_{s*}v, \psi_{s*}v)=(g|_{TF})(v, v) .

This proves the second part of Proposition 2.7. \square

We introduce the concept of an element of holonomy.

Definition 2.8 A piecewise smooth curve \sigma : [0, t_{0}] - M is called an
H-curve if its tangent vectors lie in \mathcal{H} . An element of holonomy along the
\prime H curve \sigma is a family of maps \{\psi_{t} : V_{\sigma(0)}arrow V_{\sigma(t)}\}_{t\in[0,t_{0}]} which satisfies the
following conditions:
(1) The set V_{\sigma(t)} is a plaque of the leaf containing the point \sigma(t) for each

t\in[0, t_{0}] ;
(2) The map \psi_{t} is an isometry from (V_{\sigma(0)}, g|_{V_{\sigma(0)}}) to (V_{\sigma(t)}, g|_{V_{\sigma(t)}}) for

each t\in[0, t_{0}] ;
(3) The curve \psi_{t}(x) with parameter t\in[0, t_{0}] is an H-curve for each x\in

V_{\sigma(0)} and \psi_{t}(\sigma(0))=\sigma(t) ;
(4) The map \psi_{0} is the identity map of V_{\sigma(0)} .
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By using this term, we can interpret Proposition 2.7: If we can take
a foliation preserving vector field X\in\Gamma(7\{) for an H-curve \sigma such that
X_{\sigma(t)}=\dot{\sigma}(t) , then we can construct an element of holonomy along the
H-curve \sigma .

If \mathcal{F} is a totally geodesic foliation of a complete Riemannian manifold,
then there exists an element of holonomy for each H-curve, see [BH] for
more details. We will consider sufficient conditions for the existence of an
element of holonomy for a totally geodesic foliation of a Lorentzian manifold
in Section 3.

Now we consider some examples related to Question 1.
There is an example of a totally geodesic foliation of a complete

Lorentzian manifold which contains spacelike, timelike, and lightlike leaves.
This foliation is codimension-two and its normal distribution is non-
integrable.

Example A We consider 4-dimensional torus T^{4}=R^{4}/2\pi Z^{4} and denote
the canonical coordinates of R^{4} by (x, y, z, w) . Put

\tilde{g}=dx\otimes dx+dy\otimes dy+dz\otimes dz-dw\otimes dw .

It is invariant under the Z^{4}-action. Hence it induces a metric g on T^{4} . The
metric g on T^{4} is complete because \tilde{g} on R^{4} is complete. Let T\mathcal{F} denote
the distribution generated by the vector fields

\frac{\partial}{\partial x} and cos y \frac{\partial}{\partial z}+\sin y\frac{\partial}{\partial w} .

Because strait lines in R^{4} are geodesies, this foliation \mathcal{F} is totally geodesic.
We can classify the leaves passing through (0, y, 0, 0) as follows: The leaves
passing through y= \frac{\pi}{4} , \frac{3}{4}\pi , \frac{5}{4}\pi , \frac{7}{4}\pi are lightlike; The leaves passing through
\frac{\pi}{4}<y<\frac{3}{4}\pi and \frac{5}{4}\pi<y<\frac{7}{4}\pi are timelike; The other leaves are spacelike.
Hence \mathcal{F} contains spacelike, timelike, and lightlike leaves.

In the case of codimension one, we have the following examples without
Reeb components: One has three kinds of leaves; Another has two kinds of
leaves.

Example B We consider 2-dimensional torus T^{2}=R^{2}/2\pi Z^{2} . Denote
the canonical coordinates of R^{2} by (x, y). Define the Lorentzian metric g
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by

g= \frac{1}{2}dx^{2}+(dx\otimes dy+dy\otimes dx)- cos xdy2 .

Define the foliation \mathcal{F} by

T \mathcal{F}=\{\frac{\partial}{\partial y}+\cos x\frac{\partial}{\partial x}\}

Since the vector field \frac{\partial}{\partial y} is perpendicular to \mathcal{F} and it is a Killing field,
\mathcal{F} is totally geodesic. The leaves passing through ( \frac{\pi}{2}, 0) and ( \frac{3}{2}\pi, 0) are
lightlike. The leaves passing through (x, 0) where \frac{\pi}{2}<x<\frac{3}{2}\pi are timelike.
The other leaves are spacelike. Hence \mathcal{F} contains spacelike, timelike, and
lightlike leaves. This Lorentzian metric is incomplete by Theorem 5.1.

Example C Let T^{2} , x , y be as in Example B. Define the Lorentzian
metric g by

g=dx^{2}+(dx\otimes dy+dy\otimes dx)-\cos^{2}xdy2 .

Define the foliation \mathcal{F} by

T \mathcal{F}=\{\frac{\partial}{\partial y}+\cos^{2}x\frac{\partial}{\partial x}\}

and1ight1ikeaves.Thismetricisincomp1etebyTheorem5.1SinceH=\{\frac{\partial}{\partial y,1e’}\},thefo1iation\mathcal{F}istota11ygeodesic.Itcontai.ns
spacelike

There is an example of a totally geodesic foliation with Reeb comp0-
nents of an incomplete Lorentzian 2-torus as follows.

Example D (torus of Clifton-Pohl [CR]) Consider

(R^{2}-\{0\} , \frac{1}{x^{2}+y^{2}}(dx\otimes dy+dy\otimes dx)).
This metric is invariant under homotheties. Hence we get a Lorentzian torus
(T^{2}, g) . Each of the canonical lightlike totally geodesic foliations has Reeb
components. The Lorentzian metric g on T^{2} is incomplete by Corollary 5.5.
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3. Some properties of totally geodesic foliations of Lorentzian
manifolds

In this section we consider general properties of totally geodesic folia-
tions of Lorentzian manifolds. We will prove that the union of all spacelike
leaves and that of all timelike ones are open, and that the union of all light-
like leaves is closed. We will give sufficient conditions for the existence of
an element of holonomy: When an H-curve \sigma intersects only spacelike (or
timelike) leaves or is contained in a lightlike leaf, we construct an element
of holonomy along \sigma .

Let (M, g) be a Lorentzian manifold and \mathcal{F} be a totally geodesic foliation
of codimension k of M . Geodesically completeness of g is not assumed.

We denote the union of all spacelike leaves, timelike ones and lightlike
ones of \mathcal{F} by S , T and L respectively. Hence we get a decomposition M=
S\cup T\square L (disjoint union). We call this the STL decomposition of M by \mathcal{F} .

We will inquire into several properties of the STL-decomposition.

Proposition 3.1 Let L be a spacelike (resp. timelike) leaf. Then there
exists a saturated neighborhood U of L such that all leaves in U are spacelike
(resp. timelike).

Proof. This proposition follows from the following lemma. \square

Lemma 3.2 Let L be a spacelike (resp. timelike) leaf. Then for all p\in

L there exists a foliation chart U around p such that all plaques in U are
spacelike (resp. timelike).

Proof. For a neighborhood V around p we take a frame of T\mathcal{F} and express
g|\tau\tau by a matrix-valued function G . If a leaf L is spacelike (resp. timelike),
then det G|_{L\cap V}\neq 0 . Since the condition det G\neq 0 is an open condition,
the fact det G|_{L\cap V}\neq 0 implies that there exists a foliation chart U around
p such that all plaques in U are spacelike (resp. timelike). \square

Corollary 3.3 The sets S and T are open in M, and L is closed in Mr

Proposition 3.4 If \mathcal{F} is codimension one and all the leaves of \mathcal{F} are
dense in M, then one of the following occurs:

(1) M=S, that is, all the leaves are spacelike;
(2) M=T, that is, all the leaves are timelike;
(3) M=L, that is, all the leaves are lightlike.
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Proof. Assume that \mathcal{F} has a spacelike leaf L . By assumption

M=\overline{L}\subset\overline{S}\subset M .

Hence \overline{S}=M . If \overline{S-S}\neq\phi then there is a leaf L’\subset\overline{S-S} , which implies
\overline{L}’\neq\subset M . This contradicts that all the leaves are dense in M. Therefore
S=M.

Assume that \mathcal{F} has a timelike leaf L\in \mathcal{F} . By the same argument as
above, we see that T=M.

Assume that \mathcal{F} has neither spacelike leaves nor timelike leaves. Hence
all the leaves of \mathcal{F} are lightlike. This proves the proposition. \square

Now we consider elements of holonomy. The following propositions give
sufficient conditions for the existence of an element of holonomy.

Proposition 3.5 If an H-curve \sigma : [0, t_{0}] - M intersects only spacelike
or timelike leaves then there exists an element of holonomy along \sigma .

Proof. We may suppose that \sigma is contained in a foliation chart U by de-
composing the domain [0, t_{0}] . We may also assume that U intersects only
spacelike leaves, because the same argument works for the case of timelike
leaves.

We denote the submersion defining the foliation \mathcal{F}|_{U} by f : U – R^{k} .
We can assume that f\circ\sigma is a simple curve in R^{k} . Define the vector field
V by

V_{f\circ\sigma(t)}= \frac{d}{dt}(fo\sigma)|_{t}

and put

U’=\cup\{P\in \mathcal{F}|_{U}|f(P)\in fo\sigma([0, t_{0}])\}

Define the local vector field X on U’ tangent to \prime H by f_{*}X=V By the
condition that X is tangent to H, this vector field X is well-defined. And
by the construction, X is foliation preserving. Therefore after shaving U’
we get an element of holonomy along \sigma . This proves the proposition. \square

The following proposition was given in different terms in Zeghib [Z].

Proposition 3.6 (Zeghib [Z]) If an H-curve \sigma : [0, t_{0}]arrow M is contained
in a lightlike leaf then there exists an element of holonomy along \sigma .
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Proof Assume that \sigma is contained in a lightlike leaf L . By definition, there
exists a distribution N \subset TL which consists of all lightlike vectors tangent
to L . Since the velocity vectors of \sigma are contained in \mathcal{H} , those must be
contained in N There is a vector field X\in\Gamma(N) which is defined on an
open set in L and satisfies X_{\sigma(t)}=\dot{\sigma}(t) . This vector field X is foliation
preserving. Thus we can construct an element of holonomy along \sigma . \square

4. The key proposition

In this section we prove a proposition, which will be used to prove the
main theorem in the next section.

We denote the coordinates of S^{1}\cross[0,1]=R/2\pi Z\cross[0,1] by (x, y) . Let

g=f(dx\otimes dy+dy\otimes dx)

be a Lorentzian metric on S^{1}\cross[0,1] , where f is a function defined on S^{1}\cross

[0,1] . Hence f is the function whose range is bounded away from 0. Note
that the vector fields \frac{\partial}{\partial x} , \frac{\partial}{\partial y} are lightlike.

Proposition 4.1 Let (S^{1}\cross[0,1], g) be as above. Then there exists no
totally geodesic foliation \mathcal{F} which satisfies the following conditions:

(1) S^{1}\cross\{0\} is a leaf of \mathcal{F} ;
(2) All the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} are spacelike (or timelike).

We will prove the proposition by contradiction. We assume the exis-
tence of a totally geodesic foliation \mathcal{F} satisfying (1) and (2) in Proposi-
tion 4.1. We are going to prove that the existence of such a foliation leads
to contradiction.

We may assume that f>0 and all the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} are spacelike
by considering the pull back of \mathcal{F} and g by the diffeomorphism (x, y)arrow

(-x, y) and considering -g , if necessary. We take the frame \{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\} of
T(S^{1}\cross[0,1]) . Hence the tangent vectors of a leaf of \mathcal{F}|_{S^{1}\cross(0,1]} lie in the
first and the third quadrants (Figure 1).

Lemma 4.2 All the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} are non-closed (Figure 2).

Proof Assume there exists a compact leaf L\in \mathcal{F}|_{S^{1}\cross(0,1]} . Taking a finite
covering, we can assume [L]=\pm 1\in H_{1}(S^{1}\cross[0,1]) , because the vector
field \frac{\partial}{\partial y} cannot be tangent to L . So we can regard L as a “graph” of S^{1} .

Therefore there is a point p\in S^{1} such that T_{p}L= R\frac{\partial}{\partial x} . This contradicts
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\frac{\partial}{\partial y}-component

timelike spacelike

\frac{\partial}{\partial x}-component
spacelike timelike

lelike

-\sigma

spacelj

bcelike timelil

Fig. 1. T_{p}(S^{1}\cross[0,1])

I

Fig. 2. a leaf\in \mathcal{F}|_{S^{1}\cross(0,1]}

that the tangent vectors of L are spacelike. This proves Lemma 4.2. \square

Define the Riemannian metric g_{R} on S^{1}\cross[0,1] by g_{R}=dx^{22}+dy . Let d

be the distance function induced by g_{R} . For a submanifold N\subset S^{1}\cross[0,1] ,
define diam_{N}N by

diam_{N}N=\sup_{p,q\in N}d_{N}(p, q) , (1)

where d_{N} denotes the distance function induced by g_{R}|_{N} . Recall that all
the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} are spacelike.

Lemma 4.3 Let U= \alpha\frac{\partial}{\partial x}+\beta\frac{\partial}{\partial y}(\beta>0) be a vector field tangent to
\mathcal{F}|_{S^{1}\cross(0,1]} such that g(U_{p}, U_{p})=1 for all p\in S^{1}\cross(0,1] . Then for each
A>0 there exists a \delta>0 such that g_{R}(U_{p}, U_{p})>A for all p\in S^{1}\cross(0, \delta) .

Proof All the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} approach S^{1}\cross\{0\} . Let \{p_{n}\}_{n=1}^{\infty} be an
arbitrary sequence which converges to some point in S^{1}\cross\{0\} . So

\lim_{narrow\infty}\frac{\beta(p_{n})}{\alpha(p_{n})}=0 .
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By the assumption of U_{:} we have 2\alpha\beta f=1 . Hence

\lim_{narrow\infty}2\beta(p_{n})^{2}f(p_{n})=\lim_{narrow\infty}\frac{\beta(p_{n})}{\alpha(p_{n})}=0 .

We have \lim_{narrow\infty}\beta(p_{n})^{2}=0 , because the range of f is bounded away from
0. Hence \lim_{narrow\infty}\alpha(p_{n})=+\infty . By setting \beta(S^{1}\cross\{0\})=0 , we can extend
\beta to a C^{0} function on S^{1}\cross[0,1] . Because \beta|_{S^{1}\cross(0,1]}>0 , the set \beta^{-1}([0, \nu))

for each \nu>0 is open in S^{1}\cross[0,1] and contains S^{1}\cross\{0\} . Hence for each
\nu>0 there exists a \delta>0 such that \beta(S^{1}\cross[0, \delta])\subset[0, \nu) .

Now assume that an arbitrary A>0 are given. Take a \nu>0 such that

0< \nu<\frac{1}{2A(\max f)} .

Thus there exists a \delta>0 such that \beta(S^{1}\cross(0, \delta))\subset(0, \nu) . Hence for p\in
S^{1}\cross(0, \delta) ,

\alpha(p)=\frac{1}{2\beta(p)f(p)}>\frac{1}{2\nu f(p)}>\frac{2A(\max f)}{2f(p)}\geq A .

This means g_{R}(U_{p}, U_{p})>A . This proves Lemma 4.3. \square

Fix L\in \mathcal{F}|_{S^{1}\cross(0,1]} and p\in L . Let H be the foliation defined by the
normal distribution of \mathcal{F} . We denote by V_{\epsilon}(p) the \epsilon-neighborhood of p in
L about the distance induced from the Riemannian metric g|_{L} . Orient \mathcal{F}

and H so that \omega limit sets of leaves in S^{1}\cross(0,1] are S^{1}\cross\{0\} . (Notice that
orientations of S^{1}\cross\{0\} from \mathcal{F} and H are opposite.) Define an H-curve
h:[0, \infty) – S^{1}\cross[0,1] such that h(0)=p and h(t) approaches S^{1}\cross\{0\} as
tarrow\infty (see Figure 3).

\backslash L
\backslash \backslash

\backslash \backslash

\backslash \sim p^{\sim}\sim\sim

\sim\sim\sim h\sim\sim-

-\sim---— ———

Fig. 3.
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Lemma 4.4 There is an \epsilon>0 such that any H-curve passing through
V_{\epsilon}(p) intersects V_{\epsilon}(p) only one time.

Proof. By the same argument as in Lemma 4.2, all the leaves of H|_{S^{1}\cross(0,1]}

are non-closed. We assume that for arbitrary n\in N there exist y_{n} and y_{n}’\in

V_{\frac{1}{n}}(p) such that the \prime H-curve from y_{n} with the positive direction intersects
V_{\frac{1}{n}}(p) at y_{n}’ for the first time. Notice that

\lim_{narrow\infty}y_{n}=p and \lim_{narrow\infty}y_{n}’=p .

Let W be the union of \{p\} and a connected component of V_{\frac{1}{2}}(p)-\{p\}

containing infinitely many y_{n} . If y_{n}\in W then y_{n}’\in W Take a subsequence
\{z_{m}\}\subset W of \{y_{n}\} such that \{z_{m}\} monotonely converges to p . Define the
subsequence \{z_{m}’\} of \{y_{n}’\} corresponding to \{z_{m}\} . Taking subsequences of
\{z_{m}\} and \{z_{m}’\} , we can assume

z_{1}<z_{1}’<z_{2}<z_{2}’< <p or p< 1<z_{2}<z_{2}’<z_{1}<z_{1}’ ,

where “a<b” denotes the existence of \mathcal{F}-curve from a to b with the positive
direction.

Case 1: z_{1}<z_{1}’<z_{2}<z_{2}’< <p .

We take a C^{\infty} immersion

C : [0, 1] \cross[0,1] - S^{1}\cross(0,1)

such that

C([0,1]\cross\{*\}) is contained in an \mathcal{F}-leaf,
C(\{*\}\cross[0,1]) is contained in an H-leaf,
C(0,0)=z_{1} ,
C(1, O)=p, and
C([0,1]\cross\{0\}) and C([0,1]\cross\{1\}) are contained in the same \mathcal{F}-leaf L .

We can construct C as follows. First we take an \mathcal{F}-curve F : [0, 1] -arrow S^{1}\cross

(0,1) such that F(0)=z_{1} , F(1)=p and \frac{d}{dt}F\neq 0 . Similarly we take an
H-curve H : [0, 1]-arrow S^{1}\cross(0,1) such that H(0)=z_{1} , H(1)=z_{1}’ and \frac{d}{dt}H\neq

0 . Next we take lifts \hat{F} and \hat{H} of F and H onto the universal covering
\pi : R\cross(0,1)arrow S^{1}\cross(0,1) so that \hat{F}(0)=\hat{H}(0) . Consider the rectangle
defined by \hat{H}([0,1]) and \hat{F}([0,1]) . We define \hat{C} by \hat{C}(t, s)=(\hat{F}(s),\hat{H}(t)) .
Thus \hat{C} : [0, 1] \cross[0,1]arrow R\cross(0,1) is a C^{\infty} embedding. We get the C^{\infty}
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immersion C by C=\pi\circ\hat{C} .
Now we define \tau_{m}\in[0,1] by C(\tau_{m}, 0)=z_{m} . Thus \lim_{marrow\infty}\tau_{m}=1 .

By the construction of \tau_{m} and C, we have C(\tau_{m}, 1)=z_{m}’ . A curve k(t)=
C(1, t) with parameter t\in[0,1] is an H-curve. We have

k(0)=p, k(1)=C(1,1)=C( \lim_{marrow\infty}\tau_{m}, 1)= \lim_{marrow\infty}z_{m}’=p .

Therefore the H-curve passing through p is closed. This contradicts the fact
that all the leaves of H|_{S^{1}\cross(0,1]} are non-closed.

Case 2: p< . <z_{2}<z_{2}’<z_{1}<z_{1}’ .

We can prove it by a similar argument. This proves Lemma 4.4. \square

Fix 2\epsilon>0 satisfying the condition of Lemma 4.4. Denote by V_{h(0)} the
closure of V_{\epsilon}(p) in V_{2\epsilon}(p) . By considering Sat\mu V_{h(0)} , we can construct an
element of holonomy along h

\{\psi_{t} ^{:} ^{V_{h(0)}}arrow V_{h(t)}\}_{t\in[0,\infty)} .

Lemma 4.5 If t\neq t’ then V_{h(t)}\cap V_{h(t’)}=\phi .

Proof. Assume that there exist t and t’(t>t’) such that V_{h(t)}\cap V_{h(t’)}\neq\phi .
Fix a point x\in V_{h(t)}\cap V_{h(t’)} and put t’=t-t’ . By the definition of an
element of holonomy, there exist y and y’\in V_{h(0)} such that \psi_{t}(y)=x and
\psi_{t’}(y’)=x . Thus

\psi_{t’+t’}(y)=\psi_{t}(y)=\psi_{t’}(y’) .

Hence \psi_{t’}(y)=y’ . By the definition, \psi_{s}(z) with parameter s\in[0, \infty) is an
H-curve for each z\in V_{h(0)} . Therefore there exists an H-curve from y to y’ .
This contradicts Lemma 4.4. This proves Lemma 4.5. \square

Lemma 4.6

\lim_{tarrow\infty}diam_{V_{h(t)}}V_{h(t)}=+\infty .

Proof. First we take the unit curve (about the metric g|_{L} ) c(s) =

(x(s), y(s)) with parameter s\in [-\epsilon, \epsilon] on V_{h(0)} such that \frac{d}{ds}x>0 and
\frac{d}{ds}y>0 for all s\in[-\epsilon, \epsilon] . Thus

diam_{V_{h(0)}}V_{h(0)}=\int_{-\epsilon}^{\epsilon}\sqrt{g_{R}(\frac{d}{ds}c,\frac{d}{ds}c)}ds .
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The curve \psi_{t}(c(s)) with parameter s\in [-\epsilon, \epsilon] is the unit curve on V_{h(t)}

about the distance induced from g|_{L_{h(t)}} (Figure 5). So

diam_{V_{h(t)}}V_{h(t)}=\int_{-\epsilon}^{\epsilon}

Next we prove that for each \delta>0 there exists a t>0 such that V_{h(t)}\subset

S^{1}\cross(0, \delta) . The H curve \psi_{t}(c(\epsilon)) approaches S^{1}\cross\{0\} as tarrow\infty . Hence for
each \delta>0 there exists a t>0 such that \{\psi_{s}(c(\epsilon))|s\in[t, \infty)\}\subset S^{1}\cross(0, \delta) .
Because \psi_{t}(c(\epsilon)) has the largest y-component of all the points in V_{h(t)} , for
each \delta>0 there exists a t>0 such that V_{h(t)}\subset S^{1}\cross(0, \delta) . Combining this
with Lemma 4.3, we get that for each A>0 there exists a t>0 such that
diam_{V_{h(t)}}V_{h(t)}\geq 2\epsilon A . This proves Lemma 4.6. \square

Lemma 4.7 Let (x, y) be the canonical coordinates of R^{2} . Put g_{R}=

dx^{2}+dy2 . Assume that a curve c(t)=(x(t), y(t)) with parameter t\in[0,1]

satisfies
\dot{x}(t)=\frac{d}{dt}x(t)>0 , \dot{y}(t)=\frac{d}{dt}y(t)>0 for all t\in[0,1] .

Then (see Figure 4)

\int_{0}^{1}\sqrt{g_{R}(\dot{c}(t),\dot{c}(t))}dt\leq\int_{0}^{1}\dot{x}(t)dt+\int_{0}^{1}\dot{y}(t)dt .

ual

Fig. 4.

Proof. Notice that

\{\dot{x}(t)+\dot{y}(t)\}^{2}-\{\dot{x}(t)\}^{2}-\{\dot{y}(t)\}^{2}=2\dot{x}(t)\dot{y}(t)>0 .
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Therefore

\int_{0}^{1}\{\dot{x}(t)+\dot{y}(t)\}dt-\int_{0}^{1}\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}}dt>0 .

This proves the lemma. \square

Now we prove the proposition.

Proof of Proposition 4.1. Assume that \mathcal{F} is a totally geodesic foliation
which satisfies (1) and (2) of Proposition 4.1. We may assume that f>0
and all the leaves of \mathcal{F}|_{S^{1}\cross(0,1]} are spacelike. Define the Riemannian metric
9R on S^{1}\cross[0,1] by g_{R}=dx^{2}+dy2 . Let H be the foliation defined by the
normal distribution of \mathcal{F} with respect to g . Fix L\in \mathcal{F}|_{S^{1}\cross(0,1]} and p\in L .
Define an H-curve h : [0, \infty)arrow S^{1}\cross[0,1] such that h(0)=p and h(t)
approaches S^{1}\cross\{0\} as tarrow\infty (see Figure 3). Fix 2\epsilon>0 satisfying the
condition of Lemma 4.4. Denote by V_{h(0)} the closure of V_{\epsilon}(p) in V_{2\epsilon}(p) . By
considering Sat_{\mathcal{H}}V_{h(0)} , we can construct an element of holonomy along h

\{\psi_{t }arrow V_{h(t)}\}_{t\in[0,\infty)}

We lift V_{h(t)} to the universal cover R\cross[0,1] - S^{1}\cross[0,1] . We can write
(see equation (1) for the definition of diam_{V_{h(t)}}V_{h(t)} )

diam_{V_{h(t)}}V_{h(t)}=\int_{-\epsilon}^{\epsilon}\sqrt{g_{R}(\frac{d}{ds}\psi_{t}(c),\frac{d}{ds}\psi_{t}(c))}ds

as in the proof of Lemma 4.6 (Figure 5). We have \lim_{tarrow\infty}diam_{V_{h(t)}}V_{h(t)}=

+\infty by Lemma 4.6. Applying the above lemma, we have

| \int_{-\epsilon}^{\epsilon}\frac{d}{ds}y(s)ds|=|y(\epsilon)-y(-\epsilon)|\leq 1 .

I
]V_{h(t_{0})}

\psi_{t}(c(-\epsilon))

Fig. 5. Fig. 6.
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This means |x(\epsilon)-x(-\epsilon)|arrow\infty . By this argument there exist t_{0}\in[0, \infty)

and s\in S^{1} such that V_{h(t_{0})}\cap(\{s\}\cross[0,1]) contains more than two points
(Figure 6).

Choose distinct points q_{0} , q_{1}\in V_{h(t_{0})}\cap(\{s\}\cross I) so that q_{0} is nearer
to S^{1}\cross\{0\} than q_{1} , and all the points in V_{h(t_{0})} between q_{0} and q_{1} do not
intersect \{s\}\cross I . Cutting S^{1}\cross I along \{s\}\cross I , we get I\cross I . The W-curve
passing through q_{1} must intersect V_{h(t_{0})} (Figure 7), because its tangent
vectors must lie in the second and the fourth quadrants (Figure 1). Hence
there exist t_{1}>t_{0} such that V_{h(t_{1})}\cap V_{h(t_{0})}\neq\phi . This contradicts Lemma 4.5,
and Proposition 4.1 is proved. \square

q_{1} q_{1}

a subset of V_{h(t_{0})}

q_{0}

the H-curve passing through q_{1}

Fig. 7.

5. The proof of main theorem

In this section we show that a totally geodesic foliation of a lightlike
complete Lorentzian manifold T^{2} has only one kind of leaves among space-
like, timelike, and lightlike ones. Examples B and C show that there is an
example of a totally geodesic foliation of an incomplete Lorentzian 2-t0rus
which contains more than or equal to two kinds of leaves.

We review the main theorem.

Theorem 5.1 Let (T^{2}, g) be a lightlike complete Lorentzian 2-t0rus.
There exists no totally geodesic foliation which contains more than or
equal to two kinds of leaves among spacelike, timelike, and lightlike ones.

First we recall some results, which will be used in the proof. Let (M, g)
be a tw0-dimensional Lorentzian manifold. Because the set of all lightlike
vectors on M can be described as a union of two line bundles, there exist
two foliations whose leaves are lightlike submanifolds. Only they are the
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lightlike totally geodesic foliations. We call them the canonical lightlike
totally geodesic foliations of M . The following is known.

Theorem 5.2 (Carri\‘ere-Rozoy [CR]) Let (T^{2}, g) be a C^{2} Lorentzian
torus. If g is lightlike complete, then the canonical lightlike totally geodesic
foliations are C^{0} -linearizable.

We are going to prove the following lemmas.

Lemma 5.3 Let \mathcal{G}0 and \mathcal{G}_{1} be foliations of T^{2} . If all the leaves of \mathcal{G}0 and
\mathcal{G}_{1} are compact and \mathcal{G}0 and \mathcal{G}_{1} are transverse each other, then L_{0}\cap L_{1}\neq\phi

for each L_{0}\in \mathcal{G}0 and each L_{1}\in \mathcal{G}_{1} .

Proof. We assume that there exist L_{0}\in \mathcal{G}0 and L_{1}\in \mathcal{G}_{1} such that L_{0}\cap

L_{1}=\phi . By the standard Euler class argument, both of the homology classes
[L_{0}] and [L_{1}] are non-zero. Cutting T^{2} along L_{0} , we obtain a manifold
diffeomorphic to [0, 1] \cross S^{1} . Rom \mathcal{G}_{1} we obtain a foliation of [0, 1] \cross S^{1}

which is transverse to the boundaries. Since L_{1}\subset[0,1]\cross S^{1} is a compact
leaf, [L_{1}]=\pm 1 in H_{1}([0,1]\cross S^{1}) . Hence [0, 1]\cross S^{1}-L_{1} has two connected
components. So the \mathcal{G}_{1} -leaves which intersect L_{0} are not closed. Therefore
this contradicts that all the leaves of \mathcal{G}_{1} are compact. This proves the
lemma. \square

By using the theorem of Carri\‘ere-Rozoy, we have the following lemma.

Lemma 5.4 Let (T^{2}, g) be a lightlike complete Lorentzian 2-torus and \mathcal{F}

a totally geodesic foliation of T^{2} . Denote the canonical lightlike totally
geodesic foliations by \mathcal{G}0 and \mathcal{G}_{1} . Let T^{2}=S\square Tu L denote the STL-
decomposition of T^{2} by \mathcal{F} . Assume that

\phi\neq L\subset T^{2}\neq .

Then L consists of either \mathcal{G}o leaves or \mathcal{G}_{1} -leaves. (And all the leaves
contained in L are compact.)

Proof. By Theorem 5.2, we can consider the following cases for each of \mathcal{G}0

and \mathcal{G}_{1} :

(c) all leaves are compact;
(d) all leaves are dense.
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Thus we have the following cases:

Consider the STL-decomposition of T^{2} by \mathcal{F} :

T^{2}=su Tu L.

Since L is the set of all lightlike leaves of \mathcal{F} , the set L is a union of leaves
of \mathcal{G}0 and \mathcal{G}_{1} .

In the case (i), all leaves of \mathcal{G}0 and \mathcal{G}_{1} are dense in T^{2} . Thus L must
contain a dense leaf. So L=\overline{L}=T^{2} . Therefore this contradicts the
assumption. Hence this case does not occur.

In the case (ii), the set L cannot contain \mathcal{G}_{0}-leaves, because leaves of \mathcal{G}0

are dense in T^{2} . Therefore L is a union of some \mathcal{G}_{1} leaves
In the case (iii), by changing the numbering of \mathcal{G}0 and \mathcal{G}_{1} , we can reduce

the case (iii) to the case (ii).
In the case (iv), the set L cannot contain \mathcal{G}o leaves and \mathcal{G}_{1} leaves t0-

gether by Lemma 5.3. Therefore L contains either \mathcal{G}o leaves or \mathcal{G}_{1} leaves
\square

Now we prove the main theorem.

Proof of Theorem 5.1. We prove Theorem 5.1 by contradiction. Assume
that there exists a totally geodesic foliation \mathcal{F} of a lightlike complete
Lorentzian 2-torus T^{2} which contains more than or equal to two kinds of
leaves among spacelike, timelike, and lightlike ones. Notice that \phi\neq L\subset\neq

T^{2} . Since \mathcal{F} satisfies the assumption of Lemma 5.4, the set L consists of
either \mathcal{G}o leaves or \mathcal{G}_{1} -leaves. By the proof of Lemma 5.4 and renumbering
\mathcal{G}0 and \mathcal{G}_{1} , we can assume that all the leaves of \mathcal{G}0 are compact and that L
is a union of some \mathcal{G}o leaves

Case 1: S\neq\phi .

Fix a Riemannian metric \zeta on T^{2} , and consider the completion of S
with respect to \zeta|s (see [CC], for example) and immerse it to T^{2} . Denote
the immersed image by \hat{S} . Since \hat{S} is a closed saturated set, \hat{S-S} is a closed
saturated set contained in L. Fix an arbitrary compact leaf L_{0}\subset\hat{S} – S.
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Take an embedding \varphi : S^{1}\cross[0,1]arrow T^{2} such that

(a) \varphi(S^{1}\cross\{*\})\in \mathcal{G}0 ,
(b) \varphi(\{*\}\cross[0,1]) is contained in a leaf of \mathcal{G}_{1} ,
(c) \varphi(S^{1}\cross\{0\})=L_{0} , and
(d) \varphi(S^{1}\cross(0,1])\subset S .

Let (x, y) be a coordinate of S^{1}\cross[0,1] . Notice that the vector fields
\varphi_{*}(\frac{\partial}{\partial x}) and \varphi_{*}(\frac{\partial}{\partial y}) are lightlike. Hence we can write

\varphi^{*}g=f(dx\otimes dy+dy\otimes dx) ,

where f is a function whose range is bounded away from 0. Notice that
\varphi : (S^{1}\cross[0,1], \varphi^{*}g)Larrow(T^{2}, g) is an isometry. Therefore \varphi^{*}\mathcal{F} is a totally
geodesic foliation of (S^{1}\cross[0,1], \varphi^{*}g) which satisfies the condition (1) and (2)
in Proposition 4.1. Therefore the existence of such a foliation contradicts
Proposition 4.1.

Case 2: T\neq\phi .

We are brought to a contradiction in the same way as above. This
proves Theorem 5.1. \square

The foliation in Example D has Reeb components. In contrast with
this foliation, we have the following.

Corollary 5.5 Let (T^{2}, g) be a lightlike complete Lorentzian 2-torus. Let
\mathcal{F} be a totally geodesic foliation of T^{2} . Then \mathcal{F} has no Reeb components.

Proof If all the leaves of \mathcal{F} are spacelike or timelike, then the foliation
H defined by the normal distribution of \mathcal{F} is a Riemannian foliation. Ac-
cording to [CG], \mathcal{F} is geodesible in Riemannian sense. By [G], \mathcal{F} has no
Reeb components. If all the leaves of \mathcal{F} are lightlike, then \mathcal{F} has no Reeb
components by [CR]. This proves the corollary. \square
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