
Hokkaido Mathematical Journal Vol. 31 (2002) p. 459-468

Finsler metrics of positive constant flag curvature
on Sasakian space forms
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Abstract. Let M(c) be a Sasakian space form of constant \varphi-sectional curvature c\in

(-3,1) . We prove that for any K>0 there exists a Randers metric on M(c) of constant
flag curvature K . Moreover, we show that such a Randers metric is not projectively flat.
In particular, this means that every odd dimensional sphere admits such metrics.

Key words: Finsler manifolds of constant flag curvature, Sasakian space forms, Randers
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1. Introduction

Finsler metrics of constant flag curvature are unanimously considered
to be of great interest in Finsler geometry. Under some growth constraints
on the Cartan tensor, Akbar-Zadeh [1] proved that a closed Finsler mani-
fold with constant flag curvature K is locally Minkowskian if K=0, and
Riemannian if K=-1 . The case K>0 is the least understood. Bryant [8]
constructed many interesting non-Riemannian examples on the sphere S^{2}

with K=1 . Important results on the geometric structure of Finsler mani-
folds of constant flag curvature K=1 have been obtained by Shen [11].

Recently, Bao and Shen [5] constructed Randers metrics of constant
flag curvature K>1 on the Lie group S^{3} . They have also proved that
these Finsler space forms are not projectively flat. We would like to thank
professors Bao and Shen for sending this reprint [5] to us. Their results
have inspired our work, thus producing the present paper.

Our purpose here is to construct Randers metrics of positive constant
flag curvature on a Sasakian space form subject to some constraints on the
\varphi-sectional curvature. More precisely, we prove the following theorem.

Theorem 1 Let M(c) be a Sasakian space form of constant \varphi -sectional
curvature c\in(-3,1) . Then for any constant K>0 there exists a Randers
metric F on TM(c) such that (M(c), F) has constant flag curvature K and
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is not projectively flat

2. Sasakian space forms

Let M be a real (2m+1)-dimensional differentiable manifold and \varphi , \xi ,
and \eta be a tensor field of type (1, 1) , a vector field and a 1-form respectively
on M satisfying

(a) \varphi^{2}=-I+\eta\otimes\xi and (b) \eta(\xi)=1 . (2.1)

Then we say that M has a (\varphi, \xi, \eta) -structure. It is proved (see Blair [7],
pp.20, 21) that we have

(a) \varphi\xi=0 and (b) \eta 0\varphi=0 . (2.2)

Also, there exists a Riemannian metric a on M such that

a(\varphi X, \varphi Y)=a(X, Y)-\eta(X)\eta(Y) , (2.3)

for any vector fields X and Y on M . Taking Y=\xi in (2.3) and by using
(2.2a) and (2.1b) we obtain

\eta(X)=a(X, \xi) . (2.4)

Similarly, replace Y by \varphi Y in (2.3) and by using (2.1a), (2.2b) and (2.4) we
deduce that

a(\varphi X, Y)+a(X, \varphi Y)=0 . (2.5)

Throughout the paper we denote by \mathcal{F}(M) the algebra of differentiable
functions on M and by \Gamma(E) the \mathcal{F}(M) -module of sections of a vector bundle
E over M. Also, we make use of the Einstein convention, that is, repeated
indices with one upper index and one lower index denotes summation over
their range.

The manifold M endowed with a (\varphi, \xi, \eta)-structure is called a Sasakian
manifold if the above tensor fields satisfy

(\nabla_{X}\varphi)Y=a(X, Y)\xi-\eta(Y)X , \forall X , Y\in\Gamma(TM) , (2.6)

where \nabla is the Levi-Civita connection on M with respect to the Riemannian
metric a . Also, on the Sasakian manifold M we have

\nabla_{X}\xi=-\varphi X , \forall X\in\Gamma(TM) . (2.7)
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By direct calculations using (2.4), (2.7) and (2.5) we obtain

(\nabla_{X}\eta)Y=a(X, \varphi Y) , \forall X , Y\in\Gamma(TM) . (2.8)

Thus (2.8) and (2.5) imply that

(\nabla_{X}\eta)Y+(\nabla_{Y}\eta)X=0 , \forall X , Y\in\Gamma(TM) . (2.8)

Morover, by using (2.8), (2.6) and (2.4) we deduce that the second order
covariant derivative of \eta is given by

(\nabla_{Z}\nabla x\eta)Y=a(Y, Z)\eta(X)-a(X, Z)\eta(Y) , \forall X , Y, Z\in\Gamma(TM) .
(2.10)

Next, we denote by D the contact distribution on M, that is, D is the
orthogonal complementary distribution to the 1-dimensional distribution
spanned by \xi on M. A plane section in the tangent space T_{x}M is said to
be a \varphi -section if it is spanned by X and \varphi X where X\in D_{x} . The sectional
curvature K(\square ) determined by a \varphi-section II is called a \varphi sectional cur-
vature. A Sasakian manifold of constant \varphi-sectional curvature c is called
a Sasakian space form and it is denoted by M(c) . The curvature tensor
R of M(c) is given by (cf. Blair [7], p.97)

a\{R\{X ,Y)Z, W)

= \frac{c+3}{4}\{a(Y, Z)a(X, W)-a(X, Z)a(Y, W)\}

+ \frac{1-c}{4}\{\eta(Y)\eta(Z)a(X, W)+\eta(X)\eta(W)a(Y, Z)

-\eta(X)\eta(Z)a(Y, W)-\eta(Y)\eta(W)a(X, Z)

-a(Y, \varphi Z)a(X, \varphi W)+a(X, \varphi Z)a(Y, \varphi W)

+2a(W, \varphi Z)a(Y, \varphi X)\} , \forall X , Y, Z, W\in\Gamma(TM) . (2.11)

We need some of those formulas expressed in local coordinates. To this
end we set

a_{ij}=a ( \frac{\partial}{\partial x^{i}} , \frac{\partial}{\partial x^{j}} ) ; \eta_{i}=\eta(\frac{\partial}{\partial x^{i}}) ; \eta^{j}=\eta_{i}a^{ij}

\eta_{i|j}=(\nabla_{\frac{\partial}{\partial xJ}}\eta)(\frac{\partial}{\partial x^{i}}) ; \eta_{i|j|k}=(\nabla_{\frac{\partial}{\partial x^{k}}}\nabla_{\frac{\partial}{\partial xJ}}\eta)(\frac{\partial}{\partial x^{i}}) ;
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R_{hijk}=a(R( \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{j}})\frac{\partial}{\partial x^{h}} , \frac{\partial}{\partial x^{i}})

Then, from (2.4) and (1.16) we deduce that

||\eta||^{2}=\eta_{i}\eta^{i}=1 . (2.12)

Also, (2.9) and (2.10) become

\eta_{j|i}+\eta_{i|j}=0 , (2.13)

and

\eta_{i|j|k}=aikVj-ajkVh (2. 4)

respectively. Finally, we substitute X , Y , Z , W by \partial/\partial x^{k} , \partial/\partial x^{j} , \partial/\partial x^{h} ,
\partial/\partial x^{i} in (2.11) and by using (2.8) and the above notations we obtain

R_{hijk}= \frac{c+3}{4}\{ajha_{ik}-a_{kh}a_{ij}\}

+ \frac{1-c}{4}\{\eta j\eta_{h}a_{ki}+\eta k\eta_{i}ajh-\eta_{k}\eta_{h}a_{ij}-\eta i\eta jakh

-\eta_{h|j}\eta_{i|k}+\eta h|k\eta i|j+2\eta h|i\eta k|j\} . (2.15)

3. Finsler metrics of constant flag curvature

Let F^{n}=(M, F) be a Finsler manifold, where M is an n-dimensional
C^{\infty} manifold and F is the Finsler metric of F^{n} . Here, F is supposed to
be a C^{\infty} function on the slit tangent bundle TM^{o}=TM\backslash \{0\} satisfying

(i) F(x, ky)=kF(x, y) , for any x\in M , y\in T_{x}M and k>0 (positive
homogeneity).

(ii) The n\cross n Hessian matrix

[g_{ij}(x, y)]=[ \frac{1}{2}\frac{\partial^{2}F^{2}}{\partial y^{i}\partial y^{j}}(x, y)] :

is positive definite at every point (x, y) of TM^{o} . We denote by (x^{i}, y^{i})

the coordinates on TM where (x^{i}) are the coordinates on M. The local
frame field on TM is \{\partial/\partial x^{i}, \partial/\partial y^{i}\} . Then the Liouville vector field L=
y^{i}(\partial/\partial y^{i}) is a global section of the vertical vector bundle TM^{o} . Moreover,
\ell=(1/F)L is a unit vector field,

g_{ij}(x, y)\ell^{i}\ell^{j}=1 , where \ell^{i}=\frac{y^{i}}{F} .
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A complementary vector bundle to the vertical vector bundle VTM^{O} in
TTM^{O} is called a non-linear connection. The canonical non-linear con-
section of F^{n} is the distribution GTM^{O} whose local frame field is given by
(see Bejancu-Farran ([6], p.37)

\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-G_{i}^{j}\frac{\partial}{\partial y^{j}} , (3.1)

where we set

(a) G_{i}^{j}= \frac{\partial G^{j}}{\partial y^{i}} ; (b) G^{j}= \frac{1}{4}g^{jh}(\frac{\partial^{2}F^{2}}{\partial y^{h}\partial x^{k}}y^{k}-\frac{\partial F^{2}}{\partial x^{h}}) (3.2)

By means of the local coefficients G_{i}^{j} there are defined the following Finsler
tensor fields (cf. BaO-Chern-Shen [4], p.66)

(a) R_{j}^{k}= \ell^{h}(\frac{\delta}{\delta x^{j}}(\frac{G_{h}^{k}}{F})-\frac{\delta}{\delta x^{h}}(\frac{G_{j}^{k}}{F})) ; (b) R_{ij}=g_{ik}R_{j}^{k} .

(3.3)

Next, we consider a flag \ell\wedge V at x\in M determined by \ell and V=
V^{i}(\partial/\partial x^{i}) . Then according to BaO-Chern-Shen [4], p.69 the flag curvature
for the flag \ell\Lambda V is the number

K( \ell, V)=\frac{V^{i}R_{ij}V^{j}}{g_{ij}V^{i}V^{j}-(g_{ij}\ell^{i}V^{j})^{2}} .

When the flag curvature K depends neither on (y^{i}) nor on (V^{i}) it is proved
that K must be a constant (see Matsumoto [10], p.169). Also, it is proved
that F^{n} has constant flag curvature K if and only if (see BaO-Chern-Shen
[4], p.313).

R_{ij}=Kh_{ij} , (3.4)

where h_{ij} are the components of the angular metric on F^{n} given by

h_{ij}=g_{ij}-\ell_{i}\ell_{j} . (3.5)

4. Randers metrics of positive constant flag curvature

In the present section we prove Theorem 1. To this end we first consider
a real n-dimensional manifold M endowed with a Riemannian metric a=
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(a_{ij}(x)) and a 1-form b=(b_{i}(x)) . Then we define on TM^{O} the function

F(x, y)=\sqrt{a_{ij}(x)y^{i}y^{j}}+b_{i}(x)y^{i} . (4.1)

It can be proved that F is positive-valued on the whole TM^{o} if and only if
the length ||b|| of b satisfies (see Antonelli-Ingarden-Matsumoto [2], p.43)

||b||^{2}=b_{i}(x)b^{i}(x)<1 , (4.2)

where b^{i}(x)=a^{ij}(x)b_{j}(x) and [a^{ij}(x)] is the inverse matrix of [a_{ij}(x)] . A
Finsler metric given by (4.1) is called a Randers metric and F^{n}=(M, F)

is called a Randers manifold. Now we prove the following.

Lemma 1 Let F^{n}=(M, F) be a Randers manifold of constant fflag cur-
vature K=1 . Then for any constant K^{*}>0 there exists a Randers metric
F^{*} on TM^{o} such that F^{n*}=(M, F^{*}) is a Randers manifold of constant
flag curvature K^{*} ,

Proof By using (3.4) on F^{n} we have

R_{ij}=h_{ij} . (4.3)

Now, define on M the Riemannian metric

a_{ij}^{*}(x)= \frac{1}{K^{*}}a_{ij}(x) , (4.4)

and the l-form

b_{i}^{*}(x)= \frac{1}{\sqrt{K^{*}}}b_{i}(x) . (4.5)

Then it is easy to check (4.2) for the pair (b_{i}^{*}(x), a_{ij}^{*}(x)) . Thus the function

F^{*}(x, y)= \sqrt{a_{ij}^{*}(x)y^{i}y^{j}}+b_{i}^{*}(x)y^{i}=\frac{1}{\sqrt{K^{*}}}F(x, y) , (4.6)

is a new Randers metric on F^{n} . Also, we have

(a) g_{ij}^{*}(x, y)= \frac{1}{K^{*}}g_{ij}(x, y) and (b) g^{ij*}(x, y)=K^{*ij}g(x, y) .

(4.7)

Then by using (3.2), (4.6) and (4.7b) we deduce that F and F^{*} define the
same canonical non-linear connection i.e., G_{i}^{j*}=G_{i}^{j} . As a consequence,
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(3.3), (4.6) and (4.7a) imply

R_{ij}^{*}=R_{ij} . (4.8)

Finally, by using (3.5) for both F and F^{*} and taking into account (4.6) and
(4.7a) we infer that

h_{ij}=K^{*}h_{ij}^{*} . (4.9)

Then (4.3), (4.8) and (4.9) yield R_{ij}^{*}=K^{*}h_{ij}^{*} , that is, F^{n*} is a Randers
manifold of constant flag curvature K^{*}- \square

Now, we recall the following important result.

Theorem 2 (Yasuda-Shimada [13]) A Randers manifold of dimension
n>2 is of positive constant flag curvature K if and only if the follow-
ing conditions are satisfied:

(i) The length ||b|| of b is constant.
(ii) The cova riant derivative of b with respect to the Levi-Civita con-

nection on M satisfies
b_{i|j}+b_{j|i}=0 . (4.10)

(iii) The curvature tensor of the Riemannian manifold (M, a_{ij}(x)) is
given by

R_{hijk}=K(1-||b||^{2})\{a_{hj}a_{ik}-a_{hk}a_{ij}\}

+K\{b_{i}b_{k}a_{hj}+b_{h}b_{j}a_{ik}-b_{i}b_{j}a_{hk}-b_{h}b_{k}a_{ij}\}

-b_{h|j}b_{i|k}+b_{h|k}b_{i|j}+2b_{h|i}b_{k|j} . (4.11)

Now, we may complete the proof of Theorem 1. Suppose M(c) is a
Sasakian space form of \varphi-sectional curvature c\in(-3,1) and (\varphi, \xi, \eta, a) is
the Sasakian structure on M(c) . Then let \alpha=\sqrt{1-c}/2 and define a new
1-form b=\alpha\eta on M(c) . By using (2.12) we deduce that

||b||^{2}=b_{i}b^{i}=\alpha^{2}<1 . (4.12)

Therefore F given by (4.1) with a=(a_{ij}(x)) from the Sasakian structure
and the above b=(b_{i}(x)) is a Randers metric on M(c) . Then we prove the
following.

Lemma 2 The Randers manifold F^{2m+1}=(M(c), F) is a Finsler mani-
fold of constant flag curvature K=1 .
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Proof. We check the conditions from Theorem 2 for K=1 . By (4.12) we
see that (i) is satisfied. Then by using (2.13) we obtain (4.10). Finally, from
(2. 15) we obtain (4. 11) since

\frac{c+3}{4}=1-\alpha^{2}=1-||b||^{2} ; \frac{1-c}{4}\eta_{j}\eta_{h}=b_{j}b_{h} and

\frac{1-c}{4}\eta_{h|j}\eta_{i|k}=b_{h|j}b_{i|k} .

This completes the proof of the lemma. \square

Combining the Lemmas 1 and 2 we deduce that for any K^{*}>0 , on
a Sasakian space form M(c) of constant \varphi-sectional curvature c\in(-3,1)
there exists a Randers metric of constant flag curvature K^{*} . Finally we
show that the above Randers manifolds are not projectively flat. First,
from Douglas [9] we know that a Finlser manifold is projectively flat if
and only if its projective Weyl and Douglas tensors both vanish. Then
from Bacs\’o-Matsumoto [3] we know that the Douglas tensor of a Randers
manifold vanishes if and only if the 1-form b is closed. But, in case of a
Sasakian space form M(c) , by using (2.8) we deduce that

db(X, Y)=\alpha d\eta(X, Y)=\frac{\alpha}{2}((\nabla x\eta)Y-(\nabla_{Y}\eta)X)

=\alpha a(X, \varphi Y) , \forall X , Y\in\Gamma(TM(c)) .

Thus for any non zero vector field Y from the contact distribution of
M(c) we have

db(\varphi Y, Y)=\alpha a(\varphi Y, \varphi Y)>0 .

This completes the proof of Theorem 1.

Corollary 1 Let S^{2m+1} be the real (2m+1) -dimensional sphere with m\geq

1 . Then, for any K>0 there exists on S^{2m+1} a Finsler metric F of con-
slant flag curvature K. Moreover F^{2m+1}=(S^{2m+1}, F) is not projectively
fflat.
Proof. By a result of Tanno [12], for any \epsilon>0 there exists on S^{2m+1} a
Sasakian structure of constant \varphi-sectional curvature c= \frac{4}{\epsilon}-3 . Take \epsilon>1

and obtain -3<c<1 . Thus we may apply Theorem 1 and complete the
proof of the corollary. \square
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The above corollary confirms Bao and Shen’s prediction [5] that odd
dimensional spheres may admit such metrics.

Remark After submitting this paper for publication, we were informed
by professor D. Bao that Collen Robles is in the process of constructing
Randers metrics of constant positive curvature on spheres using a totally
different approach.

Added in Proofs According to a recent paper: Bao, D. and Robles, C.,
On Randers metrics of constant curvature, preprint 2001, the Theorem 2 is
true provided that the additional condition

b^{i}(b_{i|j}-b_{j|i})=0 ,

is satisfied. By using (2.8) and (2.2a) we deduce that this condition is satis-
fied on any Sasakian space form. Thus our main result stated in Theorem 1
is not affected by the above correction.
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