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A note on value distribution of nonhomogeneous
differential polynomials
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Abstract. In the note we prove a result on value distribution of nonhomogeneous dif-
ferential polynomials which improves a long standing theorem of C.C . Yang.
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1. Introduction and Definitions

Let f be a transcendental meromorphic function in the open complex
plane \mathbb{C} . The problem of investigating possible Picard values of the deriva-
tive of f leads to the problem of investigating the value distribution of
certain polynomials in f and its derivatives which are called differential
polynomials generated by f and is explained in Defifinition 2.

Definition 1 A meromorphic function a is said to be a small function of
f if T(r, a)=S(r, f) .

Definition 2 [1, 3] Let n_{0j} , n_{1j} , \ldots , n_{kj} be nonnegative integers. The ex-
pression M_{j}[f]=b_{j}(f)^{n_{0j}}(f^{(1)})^{n_{1j}} \cdot(f^{(k)})^{n_{kj}} is called a differential mon0-

mial generated by f of degree \gamma_{M_{j}}=\sum_{i=0}^{k}n_{ij} and weight \Gamma_{M_{j}}=\sum_{i=0}^{k}(i+

1)n_{ij} , where T(r, b_{j})=S(r, f) .
The sum of the monomials P[f]= \sum_{i=1}^{l}M_{j}[f] is called a differential

polynomial generated by f of degree \gamma_{P}=\max\{\gamma_{M_{j}} : 1\leq j\leq l\} and weight
\Gamma_{P}=\max\{\Gamma_{M_{j}} : 1\leq j\leq l\} .

The numbers \underline{\gamma}_{P}=\min\{\gamma_{M_{j}} : ^{1}\leq j\leq l\} and k (the highest order
of the derivative of f in P[f]) are called respectively the lower degree and
order of P[f] .

P[f] is said to be homogeneous if \gamma_{P}=\underline{\gamma}_{P} .
Also we denote by \gamma_{P}^{*} the number \gamma_{P}^{*}=\max\{\gamma_{M_{j}} : \gamma_{M_{j}}<\gamma_{P} and

1\leq j\leq l\} .

2000 Mathematics Subject Classification : 30D35 .



454 I. Lahin

Definition 3 For a complex number a\in \mathbb{C}\cup\{\infty\} we denote by N_{1)}(r, a;f)

the counting function of simple a-points of f .

We do not explain the standard definitions and notations of the value
distribution theory because those are available in [6]. Hayman [5] proved
the following theorems.

Theorem A If f is transcendental entire and n\geq 3 , a\neq 0 then \psi=

f’-a(f)^{n} assume all fifinite values infifinitely often.
Theorem B If f is transcendental entire and n\geq 2 then f’(f)^{n} assumes
all fifinite values except possibly zero infinitely often.

Clunie [2] proved Theorem B for n\geq 1 . Later on Sons [7] generalised
Theorem B and proved the following result.

Theorem C If f is transcendental entire and \psi = (f)^{n_{0}}(f^{(1)})^{n_{1}} .
(f^{(k)})^{n_{k}} , where n_{0}\geq 2 , n_{k}\geq 1 and n_{i}\geq 0 for i\neq 0 , k then \delta(a;\psi)<1 for
a\neq 0 , \infty . Moreover if N_{1)}(r, 0;f)=0\{T(r, f)\} as rarrow\infty then for n_{0}\geq 1

the same conclusion holds.

For differential polynomials C.C . Yang [8] proved the following theorem.

Theorem D Let f be transcendental meromorphic with N(r, f)+
N(r, 0;f)=S(r, f) and \psi=\sum a(f)^{p_{\circ}}(f^{(1)})^{p1}\cdot\cdot(f^{(k)})^{pk} with no constant
term where T(r, a)=S(r, f) . If the degree n of \psi is greater than one and
p_{0}<n , 0\leq p_{i}\leq n for all i\neq 0 , then \delta(b, \psi)<1 for all b\neq 0 , \infty .

Following theorem of Gopalakrishna and Bhoosnurmath [4] shows that
for a homogeneous differential polynomial we get a better result.

Theorem E Let f be meromorphic with \overline{N}(r, f)+\overline{N}(r, 0;f)=S(r, f) and
\psi(f) be a nonconstant homogeneous differential polynomial. Then \Theta(b;\psi)=

0 for all b\neq 0 , \infty .

However for nonhomogeneous differential polynomials Theorem E does
not hold. For, let f=\exp(z) , \psi=f^{2}-2if’ Then \Theta(1;\psi)=\frac{1}{2} .

For nonhomogeneous differential polynomials C.C . Yang [9] proved the
following theorem.

Theorem F Let f be a transcendental meromorphic function with
N(r, f)+N(r, 0;f)=S(r, f) . Let \psi(f) be a differential polynomial in

f of degree n\geq 2 such that all the terms of \psi(f) have degree at least two.
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If \psi(f) is nonhomogeneous then \delta(b, \psi)\leq 1-\frac{1}{2n} for all b\neq\infty .

Now one may naturally ask: Is the upper bound 1- \frac{1}{2n} in TheO-
rem F sharp ? If not, what is the best possible upper bound ?

The purpose of the note is to study this problem. We apply a result
of H.X. Yi [10] to prove a theorem on the value distribution of nonhomoge-
neous diferential polynomials which not only gives the best possible upper
bound for \delta(b;P[f]) in Theorem F but also estimate a larger quantity, the
ramification index, under weaker hypothesis.

2. Lemmas

In this section we state two lemmas which will be needed in the sequel.

Lemma 1 [9] Let P[f]= \sum_{i=0}^{n}a_{i}f^{i} where a_{n}\not\equiv 0 and T(r, a_{i})=S(r, f)

for i=0,1,2 , . . , n . Then T(r, P[f])=nT(r, f)+S(r, f) .

Lemma 2 [10] Let F=f^{n}+P[f] , where n\geq 2 and \Gamma_{P}\leq n-1 . Then
either P[f]\equiv 0 or

(n-\gamma_{P})T(r, f)\leq\overline{N}(r, 0; f)+\overline{N}(r, 0; F)

+(1+\Gamma_{P}-\gamma_{P})\overline{N}(r, \infty;f)+S(r, f) .

3. The Main Result

In this section we prove the main result of the note.

Theorem 1 Let either \Gamma_{M_{j}} =\gamma_{M_{j}} (j=1, ^{2}, ., ^{l}) or \overline{N}(r, 0;f)+

\overline{N}(r, f)=S(r, f) and P[f]= \sum_{j=1}^{l}M_{j}[f] be such that \gamma_{P}>\underline{\gamma}_{P}\geq 1 .
Then

\Theta(a;P[f])\leq\frac{\gamma_{P}^{*}}{\gamma_{P}}

for any small function a(\not\equiv\infty) of f .

Proof Clearly we can write M_{j}[f]=c_{j}f^{\gamma M_{j}} , where

c_{j}=b_{j}( \frac{f^{(1)}}{f})^{n_{1j}}(\frac{f^{(2)}}{f})^{n_{2j}} ( \frac{f^{(k)}}{f})^{n_{kj}}

Now by Milloux theorem {p.55 [6]} we see that
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m(r, c_{j}) \leq m(r, b_{j})+\sum_{i=1}^{k}n_{ij}m(r, \frac{f^{(i)}}{f})=S(r, f) .

Also

N(r, c_{j}) \leq N(r, b_{j})+\sum_{i=1}^{k}n_{ij}N(r, \frac{f^{(i)}}{f}) .

We note that poles of \frac{f^{(i)}}{f} occur only at the poles and zeros of f and a
pole or a zero of f is a pole of \frac{f^{(i)}}{f} with multiplicity at most i . So

N (r, \frac{f^{(i)}}{f})\leq i\{\overline{N}(r, f)+\overline{N}(r, 0;f)\} .

Therefore

N(r, c_{j}) \leq\{\sum_{i=1}^{k}in_{ij}\}\{\overline{N}(r, f)+\overline{N}(r, 0;f)\}+S(r, f)

=(\Gamma_{M_{j}}-\gamma_{M_{j}})\{\overline{N}(r, f)+\overline{N}(r, 0;f)\}+S(r, f)

=S(r, f) ,

by the given condition. Hence T(r, c_{j})=S(r, f) for j=1,2 , ., l .
Now collecting the same powers of f together and if necessary putting

some \alpha_{i}\equiv 0

P[f]= \alpha_{\gamma P}f^{\gamma P}+\sum_{i=1}^{\gamma_{P}^{*}}\alpha_{i}f^{i} , (1)

where T(r, \alpha_{i})=S(r, f) for i=1,2 , \ldots , \gamma_{P}^{*} , \gamma_{P} and \alpha_{\gamma P}\not\equiv 0 .
Now we put

F= \frac{P[f]}{\alpha_{\gamma P}}-\frac{a}{\alpha_{\gamma P}}

=f^{\gamma P}+ \{\sum_{i=1}^{\gamma_{P}^{*}}\frac{\alpha_{i}}{\alpha_{\gamma P}}f^{i}-\frac{a}{\alpha_{\gamma P}}\} ,

where T(r, a)=S(r, f) and a\not\equiv\infty .
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Clearly

\sum_{i=1}^{\gamma_{P}^{*}}\frac{\alpha_{i}}{\alpha_{\gamma P}}f^{i}-\frac{a}{\alpha_{\gamma P}}\not\equiv 0 .

For, otherwise by Lemma 1 we arrive at a contradiction. Hence by Lemma 2
we obtain

(\gamma_{P}-\gamma_{P}^{*})T(r, f)\leq\overline{N}(r, 0; F)+S(r, f)

=\overline{N}(r, a;P[f])+S(r, f) . (2)

Also by Lemma 1 we get from (1) that

T(r, P[f])=\gamma_{P}T(r, f)+S(r, f) .

Therefore it follows from (2) that

(1- \frac{\gamma_{P}^{*}}{\gamma_{P}})T(r, P[f])\leq\overline{N}(r, a;P[f])+S(r, P[f]) ,

from which the theorem follows. This proves the theorem. \square

Remark 1 The condition \underline{\gamma}_{P}\geq 1 is necessary. For, let f=\exp(z) and
P[f]=(f’)^{2}+2f’-2f+1 {cf. [9]}. Then \Theta(1;P[f])=1 .

Remark 2 The bound \gamma_{P}^{*}/\gamma_{P} is sharp. For, let f=\exp(z) and P[f]=
f^{3}-f^{2} . Then \Theta(0;P[f])=2/3 .
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