A note on the Glauberman correspondence of \boldsymbol{p}-blocks of finite \boldsymbol{p}-solvable groups

Hiroshi Horimoto

(Received September 25, 2000)

Abstract

We show that a p-block B of a p-solvable group and the Glauberman correspondent of B are Morita equivalent.

Key words: finite groups, Glauberman correspondence, modular representations.

Let G and S be finite groups. Let $(\mathcal{K}, \mathcal{O}, \mathcal{F})$ be a p-modular system and assume \mathcal{K} is an algebraically closed field. If S acts on G and $(|G|,|S|)=1$, then it is well-known that there exists a one-to-one map called the Glauberman-Isaacs correspondence

$$
\pi(G, S): \operatorname{Irr}_{S}(G) \rightarrow \operatorname{Irr}\left(C_{G}(S)\right)
$$

where $\operatorname{Irr}_{S}(G)$ is the set of all S-invariant ordinary irreducible characters of G and $\operatorname{Irr}\left(C_{G}(S)\right)$ is the set of all ordinary irreducible characters of $C_{G}(S)$ ([G1], [11], [I2, Section 13]). Let $\mathrm{Bl}(G)$ be the set of p-blocks of G. A p block B of G means a block ideal of $\mathcal{O} G$ or $\mathcal{F} G$. Let $\widetilde{\mathrm{Bl}}_{S}(G)$ be the set of S-invariant p-blocks B of G such that a defect group of B is centralized by S. By [Wa, Theorem 1] and [H, Theorem 1] the correspondence $\pi(G, S)$ induces a one-to-one map

$$
\widetilde{\pi}(G, S): \widetilde{\mathrm{Bl}}_{S}(G) \rightarrow \mathrm{Bl}\left(C_{G}(S)\right) .
$$

In fact the character correspondence $\pi(G, S)$ gives the perfect isometry between $B \in \widetilde{\mathrm{Bl}}_{S}(G)$ and $B^{*} \in \mathrm{Bl}\left(C_{G}(S)\right)$ where $B^{*}=\widetilde{\pi}(G, S)(B)$. B^{*} is called the Glauberman-Isaacs correspondent of $B . B$ and B^{*} have a common defect group and when $|G|$ is odd, B and B^{*} have the same Cartan matrix ($[\mathrm{H}$, Theorem 1] $)$. Now we are interested in relations between $\bmod B$ and $\bmod B^{*}$ where $\bmod B$ is the category of finite generated B-modules. Let b and b^{*} be the Brauer correspondent of B and B^{*} respectively. Recently Koshitani-Michler [KM] showed that if S is solvable (the Glauberman
correspondence case), b and b^{*} are Morita equivalent over \mathcal{F}, that is, $\bmod b$ and $\bmod b^{*}$ are equivalent over $\mathcal{F}([\mathrm{KM}$, Theorem 2.12, Theorem 3.4]). In particular if a defect group of B is a normal subgroup of G, then B and B^{*} are Morita equivalent. In this paper, we will show that when S is solvable and G is p-solvable, B and B^{*} are Morita equivalent, by using a lemma in [KM].

Theorem 1 Let S be a finite solvable group and G a finite p-solvable group. Suppose S acts on G and $(|G|,|S|)=1$. Let D be a p-subgroup of $C_{G}(S)$. If B is an S-invariant block of $\mathcal{O} G$ with defect group D, then B and the Glauberman correspondent B^{*} are Morita equivalent.

We review the Clifford extensions. Let K be a normal subgroup of G and let θ be a G-invariant irreducible character of K. We denote by e_{θ} the primitive idempotent of the center of $\mathcal{K} K$ which corresponds to θ. Then

$$
\mathcal{K} G e_{\theta}=\mathcal{K} K e_{\theta} C_{\mathcal{K} G e_{\theta}}\left(\mathcal{K} K e_{\theta}\right) \simeq \operatorname{Mat}_{\theta(1)}(\mathcal{K}) \otimes_{\mathcal{K}} \mathcal{K}^{(\alpha)}[G / K]
$$

for some $\alpha \in Z^{2}\left(G / K, \mathcal{K}^{\times}\right)$where $\operatorname{Mat}_{\theta(1)}(\mathcal{K})$ is the $(\theta(1), \theta(1))$-matrix algebra over \mathcal{K} and $\mathcal{K}^{(\alpha)}[G / K]$ is the twisted group algebra of G / K over \mathcal{K} with a factor set α. We call α a factor set with respect to (G, K, θ). If K is a p^{\prime}-group, then we can take $\alpha \in Z^{2}\left(G / K, \mathcal{O}^{\times}\right)$where \mathcal{O}^{\times}is the group of units of \mathcal{O} and α also induces a decomposition

$$
\mathcal{O} G e_{\theta}=\mathcal{O} K e_{\theta} C_{\mathcal{O G} e_{\theta}}\left(\mathcal{O K e} e_{\theta}\right) \simeq \operatorname{Mat}_{\theta(1)}(\mathcal{O}) \otimes_{\mathcal{O}} \mathcal{O}^{(\alpha)}[G / K]
$$

(see [NT, Chapter V, Theorem 7.2]).
The proof of [KM, Lemma 3.2] says the following fact implicitly. This plays an essential role in the proof of Theorem 1.

Lemma 2 (Dade-Koshitani-Michler ([KM, Lemma 3.2])) Suppose S is cyclic of prime order. Let K be a normal subgroup of G such that $G=$ $K C_{G}(S)$ and K is S-invariant. Let $\theta \in \operatorname{Irr}_{S}(K)$ such that θ is G-invariant and let $\theta^{*} \in \operatorname{Irr}\left(C_{K}(S)\right)$ be the Glauberman correspondent of θ. Let $\alpha \in$ $Z^{2}\left(G / K, \mathcal{K}^{\times}\right)$be a factor set with respect to (G, K, θ) and $\alpha^{*} \in Z^{2}\left(C_{G}(S) /\right.$ $\left.C_{K}(S), \mathcal{K}^{\times}\right)$a factor set with respect to $\left(C_{G}(S), C_{K}(S), \theta^{*}\right)$. Then we have

$$
\alpha B^{2}\left(G / K, \mathcal{K}^{\times}\right)=\alpha^{*} B^{2}\left(C_{G}(S) / C_{K}(S), \mathcal{K}^{\times}\right)
$$

via the isomorphism $G / K \simeq C_{G}(S) / C_{K}(S)$.

Remark θ^{*} is $C_{G}(S)$-invariant by [I2, Theorem 13.1 (c)] (cf. [Wo, Lemma 2.5]).

Proof of Theorem 1. Since S is solvable, there exists a composition series

$$
S=S_{n} \triangleright S_{n-1} \triangleright \cdots \triangleright S_{1} \triangleright S_{0}=1
$$

of S such that S_{i} / S_{i-1} is cyclic of prime order, and then we have

$$
\pi(G, S)=\pi\left(C_{G}\left(S_{n-1}\right), S / S_{n-1}\right) \circ \cdots \circ \pi\left(C_{G}\left(S_{1}\right), S_{2} / S_{1}\right) \circ \pi\left(G, S_{1}\right)
$$

by [I2, Theorem 13.1]. Thus we may assume that S is cyclic of prime order.
Now we prove the theorem by induction on $|G|$. Put $K=O_{p^{\prime}}(G)$. Let Θ be the set of all irreducible characters of K which are covered by B. Since B is S-invariant, S acts on Θ. Moreover G acts on Θ transitively and

$$
\begin{aligned}
\left(\theta^{g}\right)^{s}(k) & =\theta^{g}\left(k^{s^{-1}}\right)=\theta\left(\left(k^{s^{-1}}\right)^{g^{-1}}\right)=\theta\left(\left(k^{\left(g^{s}\right)^{-1}}\right)^{s^{-1}}\right) \\
& =\theta^{s}\left(k^{\left(g^{s}\right)^{-1}}\right)=\left(\theta^{s}\right)^{g^{s}}(k)
\end{aligned}
$$

for all $\theta \in \Theta, g \in G, s \in S$ and $k \in K$. Therefore there exists an S invariant irreducible character θ of K which is covered by B by a lemma of Glauberman [I2, Lemma 13.8]. Let T be the inertial subgroup of θ in G. Since θ is S-invariant, S stabilizes T. Let \widetilde{B} be the Clifford correspondent of B. Since B is S-invariant, \widetilde{B} is S-invariant. Put $\widetilde{B}^{*}=\widetilde{\pi}(T, S)(\widetilde{B})$. By [Wo, Lemma 2.5], B^{*} covers θ^{*} and $C_{T}(S)$ is the inertial subgroup of θ^{*} in $C_{G}(S)$ and $B^{*}=\widetilde{\pi}(G, S)(B)$ is the Clifford correspondent of \widetilde{B}^{*}. If $G \geqslant T$, by induction, \widetilde{B} and \widetilde{B}^{*} are Morita equivalent. Since the Clifford correspondence also induces a Morita equivalent, B and B^{*} are Morita equivalent.

Now we may assume that $G=T$, that is, θ is G-invariant. Then B is a unique block of G which covers θ and D is a Sylow p-subgroup of G by [N , Theorem 10.20]. Since G is p-solvable, there exists a Hall p^{\prime}-subgroup H of G by [Go, Chapter 6, Theorem 3.5]. Let \mathfrak{H} be the set of all Hall p^{\prime}-subgroups of G. Then S and G act on \mathfrak{H}. Moreover G acts on \mathfrak{H} transitively by [Go, Chapter 6, Theorem 3.6] and there exists an S-invariant Hall p^{\prime}-subgroup H of G by a lemma of Glauberman [I2, Lemma 13.8]. Since $G=D H$ and $D \leq$ $C_{G}(S)$, we have $[G, S]=[H, S]$. Since $[g, s]^{x}=(g x)^{-1}(g x)^{s}\left(x^{-1} x^{s}\right)^{-1} \in$ [G, S] for all $g, x \in G$ and $s \in S,[G, S]$ is a normal subgroup of G. Hence we have $K=O_{p^{\prime}}(G) \geq[H, S]=[G, S]$ and $G=C_{G}(S)[G, S]=C_{G}(S) K$ by [I1, p.629].

Let $\alpha \in Z^{2}\left(G / K, \mathcal{O}^{\times}\right)$be a factor set with respect to (G, K, θ) and let $\alpha^{*} \in Z^{2}\left(C_{G}(S) / C_{K}(S), \mathcal{O}^{\times}\right)$be a factor set with respect to $\left(C_{G}(S)\right.$, $\left.C_{K}(S), \theta^{*}\right)$. By Lemma 2 we have

$$
\alpha B^{2}\left(G / K, \mathcal{K}^{\times}\right)=\alpha^{*} B^{2}\left(C_{G}(S) / C_{K}(S), \mathcal{K}^{\times}\right)
$$

that is, there exists a 1 -cochain $\gamma \in C^{1}\left(G / K, \mathcal{K}^{\times}\right)$such that

$$
\alpha\left(\overline{g_{1}}, \overline{g_{2}}\right) \alpha^{*}\left(\overline{g_{1}}, \overline{g_{2}}\right)^{-1}=\gamma\left(\overline{g_{1}}\right) \gamma\left(\overline{g_{2}}\right) \gamma\left(\overline{g_{1} g_{2}}\right)^{-1}
$$

for all $\overline{g_{1}}, \overline{g_{2}} \in G / K$. Then we have

$$
\gamma(\bar{g})^{|G / K|}=\prod_{\bar{x} \in G / K} \alpha(\bar{g}, \bar{x}) \alpha^{*}(\bar{g}, \bar{x})^{-1} \in \mathcal{O}^{\times}
$$

and hence $\gamma(\bar{g}) \in \mathcal{O}^{\times}$for all $\bar{g} \in G / K$. Therefore we have

$$
\alpha B^{2}\left(G / K, \mathcal{O}^{\times}\right)=\alpha^{*} B^{2}\left(C_{G}(S) / C_{K}(S), \mathcal{O}^{\times}\right)
$$

In particular $\mathcal{O}^{(\alpha)}[G / K]$ and $\mathcal{O}^{(\alpha)}\left[C_{G}(S) / C_{K}(S)\right]$ are isomorphic. Since θ is covered by the unique block B, we have

$$
B \simeq \operatorname{Mat}_{\theta(1)}(\mathcal{O}) \otimes_{\mathcal{O}} \mathcal{O}^{(\alpha)}[G / K]
$$

and hence we have also

$$
B^{*} \simeq \operatorname{Mat}_{\theta^{*}(1)}(\mathcal{O}) \otimes \mathcal{O} \mathcal{O}^{\left(\alpha^{*}\right)}\left[C_{G}(S) / C_{K}(S)\right]
$$

Hence B and B^{*} are Morita equivalent.
The case where D is abelian in Theorem 1] is obtained in [KM, Corollary 3.5].

References

[Go] Gorenstein D., Finite groups. Harper \& Row, 1968.
[G1] Glauberman G., Correspondences of characters for relatively prime operator groups. Canadian J. Math. 20 (1968), 1465-1488.
[H] Horimoto H., On a correspondence between blocks of finite groups induced from the Isaacs correspondence. Hokkaido Math. J. 30 (2001), 65-74.
[I1] Isaacs I.M., Characters of solvable and symplectic groups. Amer. J. Math. 95 (1973), 594-635.
[I2] Isaacs I.M., Character theory of finite groups. Academic, 1976.
[KM] Koshitani S. and Michler G.O., Glauberman correspondence of p-blocks of finite groups. Institut für Experimentelle Mathematik, Essen University, Preprint No. 3 (2000).
[NT] Nagao H. and Tsushima Y., Representations of finite groups. Academic Press, 1989.
[N] Navarro G., Characters and blocks of finite groups. Cambridge, 1998.
[Wa] Watanabe A., The Glauberman character correspondence and perfect isometries for blocks of finite groups. J. Algebra 216 (1999), 548-565.
[Wo] Wolf T.R., Character correspondences induced by subgroups of operator groups. J. Algebra 57 (1979), 502-521.

Department of Information and Computer Science
Kumamoto National College of Technology
2659-2, Suya, Nishigoshi-machi
Kikuchi-gun, Kumamoto 861-1102
Japan

