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Tortile Yang-Baxter operators for crossed
group-categories
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Abstract. The notion of a tortile Yang-Baxter operator in a crossed group-category is
introduced. It is shown that a tortile Yang-Baxter operator on an object X induces a
unique braiding and a twist on the free crossed group-category generated by the objects
X and X^{*} .
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1. Introduction

The category of tangles in 3 dimension has a beautiful algebraic char-
acterization in terms of a universal property. This was initially developed
by Yetter [10], Turaev [8], Freyd-Yetter [1] and Joyal-Street [3], and has
culminated in the work of Shum [7] asserting that the category of framed
tangles \mathcal{F}\mathcal{T} is monoidally equivalent to the tortile category freely generated
by a single object. Joyal and Street [2] gave another purely algebraic inter-
pretation of this category as the free tensor category containing an object
equipped with a tortile Yang-Baxter operator.

Recently, Turaev [9] introduced the notion of a modular crossed group-
category, and used it to develop 3-dimensional homotopy quantum field the-
ory (HQFT). He started with defining the notion of a tortile (ribbon) crossed
\pi-category for a group \pi , and showed that modular crossed \pi-categories in-
duce invariants of 3-dimensional \pi-manifolds.

The aim of this paper is to give the Joyal and Street’s interpretation for
a crossed group-category. To do this, we define a balanced Yang-Baxter op-
erator and a tortile Yang-Baxter operator in a crossed group-category. Then
we prove that the free crossed group-category \mathcal{F} generated by a single ob-
ject equipped with a tortile Yang-Baxter operator admits a unique braiding
and a twist. Although our construction owes much to the paper [2], sev-
eral new aspects appear. First, it turns out that one should define a twist
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before a Yang-Baxter operator. This statement means that in a general
crossed group-category, it is not possible to define a Yang-Baxter operator
without a twist. Thus one can define only balanced Y_{\acute{c}}ng-Baxter operators
in a crossed group-category. Second, we use the fact that the category \mathcal{F}

admits a connectivity structure, which we feel non-trivial. In general, for
an object U in a crossed \pi-category C , the centralizer \mathcal{L}_{C}(U) does not ad-
mit a crossed \pi-category structure. However, if a crossed \pi category C is
connected, then the category \mathcal{L}_{C}(U) admits a crossed \pi-category structure,
so that we can aplly this procedure to \mathcal{F} . Third, since we have to consider
a Yang-Baxter operator with a twist, various identities which were simple
in [2] become much more complicated. To overcome this difficulty, we use
a diagrammatic notion. Then, we can check that each equality between
diagrams corresponds to a certain equality between morphisms in \mathcal{F} . As a
result, we see that the constructions above are all well done and the theorem
holds.

2. Preliminaries

Definition 1 Let \pi be a group and let C be a strict monoidal category
with a unit object I . Then the category C is called a \pi-category if it satisfies
the following conditions:

(a) there are full subcategories C_{\alpha}(\alpha\in\pi) of C such that each object
of C belongs to C_{\alpha} for a unique \alpha\in\pi ;

(b) if U\in C_{\alpha} and V\in C_{\beta} with \alpha\neq\beta then there is not any morphism
from U to V;

(c) I\in C_{1} , and if U\in C_{\alpha} and V\in C_{\beta} then U\otimes V\in C_{\alpha\beta} .

In [9] a K-additivity and a left duality are assumed in the monoidal
category C . In this paper, we do not assume those structures in C .

Definition 2 In the setting above, an automorphism of C is defined as a
functor \varphi : C - C wich preserves the tensor product and the unit object.
Thus,

\varphi(I)=I , \varphi(U\otimes V)=\varphi(U)\otimes\varphi(V) , \varphi(f\otimes g)=\varphi(f)\otimes\varphi(g) ,

for any objects U , V and any morphisms f , g in C . We denote by Aut(C)
the group of automorphisms of C . A crossed \pi category is a \pi category C

endowed with a group homomorphism \varphi : \piarrow Aut(C) such that for all
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\alpha , \beta\in\pi the functor \varphi_{\alpha}=\varphi(\alpha) : C – C maps C_{\beta} to C_{\alpha\beta\alpha^{-1}} . For objects
U\in C_{\alpha} , V\in C_{\beta} , set UV=\varphi_{\alpha}(V) .

For crossed \pi-categories C , C’ ., a tensor functor Carrow C’ is called a crossed
\pi-functor if it preserves the action of \pi .

Definition 3 Let C be a crossed \pi-category. A braiding in C is a system
of invertible morphisms c_{U,V} : U\otimes V – UV\otimes U satisfying the following
conditions:

(a) for any morphisms f : U – U’ and g : V – V’ such that U. U’ lie
in the same component of C , we have

c_{U’,V’}(f\otimes g)=(^{U}g\otimes f)c_{U,V;}

(b) for any objects U , V , W in C we have

c_{U\otimes V,W}=(c_{U^{V}W},\otimes 1)(1\otimes c_{V,W}) ;

(c) for any objects U , V., W in C we have

c_{U,V\otimes W}=(1\otimes c_{U,W})(c_{U,V}\otimes 1) ;

(d) the action of \pi on C preserves the braiding, i.e., for any \alpha\in\pi and
any V, W\in C we have

\varphi_{\alpha}(c_{V,W})=c_{\varphi_{\alpha}(V),\varphi_{\alpha}(W)} .

A crossed \pi-category equipped with a braiding is called a braided
crossed \pi-category. A braided crossed \pi-category C is called balanced if
it is equipped with a natural family of invertible morphisms \theta_{U} : Uarrow UU

(called twist) satisfying the following conditions:
(1) \theta_{I}=id_{I} : Iarrow I ;
(2) for any object U , V in C we have

\theta_{U\otimes V}=c_{(UV)V^{U}U},c_{(^{U}U),(^{V}V)}(\theta_{U}\otimes\theta_{V}) ;

(3) the action of \pi on C preserves the twist, i.e., for any \alpha\in\pi and
any U\in C we have \varphi_{\alpha}(\theta_{U})=\theta_{\varphi_{\alpha}(U)} .

A braided crossed \pi-category C is called tortile if it is balanced and
each object U has a dual U^{*} such that \theta uU^{*}=(\theta_{U})^{*} .
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3. Tortile Yang-Baxter operators in crossed group-categories

In this section we consider Yang-Baxter operators and twists in a crossed
\pi-category C . When \pi=1 , one can define a Yang-Baxter operator on each
object U in C without a twist. However, for a general crossed \pi-category C ,
one must define a twist first, then proceed to define a balanced Yang-Baxter
operator by using the twist.

Definition 4 A twist on an object U of a crossed \pi-category C is an
invertible arrow z : Uarrow UU . A balanced Yang-Baxter operator on an
object U is an invertible arrow y:U\otimes U - UU\otimes U satisfying the hexagonal
condition

(^{U}y\otimes 1)(1\otimes y)(y\otimes 1)=(1\otimes y)(y’\otimes 1)(1\otimes y)

where y’=(^{U}z\otimes 1)y(1\otimes z^{-1}) .

A left dual for an object U of C_{\alpha} is an object U^{*} in C_{\alpha^{-1}} together with
arrows

b_{U} : Iarrow U\otimes U^{*} and d_{U} : U^{*}\otimes U -arrow I

such that

(d_{U}\otimes 1)(1\otimes b_{U})=1 and (1\otimes d_{U})(b_{U}\otimes 1)=1 .

If both U , V have duals, then each arrow f : Uarrow V gives rise to an arrow
f^{*} : (d_{V}\otimes 1)(1\otimes f\otimes 1)(1\otimes b_{U}) : V^{*}arrow U^{*}

A balanced Yantg-Baxter operator on an object U\in C is called dualizable
if U has a dual and, both the arrows u : UU^{*}\otimes U - U\otimes U^{*} and v : U^{*}\otimes

U - U^{*}U\otimes U^{*} . given by the equations

u=(d_{U}U^{*}\otimes 1\otimes 1)(1\otimes y\otimes 1)(1\otimes 1\otimes b_{U})

and

v=(d_{U}\otimes 1\otimes 1)(1\otimes 1\otimes U^{*}1z^{-}\otimes 1)(1\otimes y^{-1}\otimes 1)

(1\otimes z\otimes 1\otimes 1)(1\otimes 1\otimes b_{U})

are invertible. A balanced Yang-Baxter operator on an object U is called
tortile if it is dualizable and the following identity holds.

U_{ZZ=}(1\otimes d_{U})U(1\otimes v-1)U(y’\otimes 1)(1\otimes b_{U}U) : Uarrow U(UU) .
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In a balanced crossed \pi-category C , we have a balanced YB-0perator
(y=c_{U,U}, z=\theta_{U}) on each object U . If U has a dual, then we have the
identities u=c_{U,U^{*}}^{-1} and v=c_{U^{*},U} in C . Hence (y=c_{U,U}, z=\theta_{U}) is
dualizable. The next proposition shows that a balanced crossed \pi-category
C becomes a tortile crossed \pi-category iff the above balanced YB-0perators
(y=c_{U,U}, z=\theta_{U}) become tortile for all objects U in C .

Proposition 1 In a balanced crossed \pi -category C , if U is an object with
a dual U_{j}^{*} then the pair (c_{U,U}, \theta_{U}) is a tortile YB-Operator iff \theta uU^{*}=(\theta_{U})^{*}

Proof. We first observe that if (U^{*}, d_{U}, b_{U}) is a dual for U , then
(^{U}U, d_{U}Uc_{U}U,U^{*}’ c_{U^{*U}U}^{-1},b_{U}) is a dual for U^{*} Then for an arrow f : U^{*}arrow V^{*}

in C , we obtain an arrow

f^{\#}=(1\otimes d_{V}V)(1\otimes Uf\otimes 1)(b_{U}U\otimes 1) : VV - UU.

Applying this construction to the arrow \theta_{U}U^{*} : UU^{*}arrow U^{*} . we see that

(\theta_{U}U^{*})^{Q}\theta_{U}

=(d_{U}U\otimes 1)(CUU^{U},U^{*\otimes 1)(1\otimes\theta_{U}\otimes 1)(1\otimes c_{U}^{-1})(1\otimes b_{U})\theta_{U}}U^{*}U^{*U},(^{U}U)U

=(d_{U}U\otimes 1)(CUU^{U},U^{*\otimes 1)(1\otimes\theta_{U}\otimes 1)(\theta_{U}\otimes 1\otimes 1)}U^{*}

(1\otimes c_{U}^{-1},)U^{*U}(^{U}U)(1\otimes b_{U}U)

=(d_{U}U\otimes 1)(CUU^{U},U^{*\otimes 1)(\theta_{U}\otimes\theta_{U}\otimes 1)(1\otimes c_{U}^{-1})(1\otimes b_{U})}U^{*}U^{*U},(^{U}U)U

=(d_{U}U\otimes 1)(\theta_{U}U^{*}\otimes\theta_{U}U\otimes 1)(c_{U}^{-1},\otimes 1)U^{*U}U(1\otimes c_{U}^{-1},)U^{*U}(^{U}U)(1\otimes b_{U}U)

=(d_{U}U\otimes 1)(c_{U}^{-1},\otimes 1)U^{*U}U(1\otimes c_{U}^{-1},)U^{*U}(^{U}U)(1\otimes b_{U}U)

=(d_{U}U\otimes 1)c_{U}^{-1},(U^{*U}U\otimes^{U}(^{U}U)1\otimes b_{U}U)

=(1\otimes d_{U}U)c_{U}U^{*}\otimes^{U}U^{U},(^{U}U)c_{U}^{-1},(U^{*U}U\otimes^{U}(^{U}U)1\otimes b_{U}U)

=(1\otimes d_{U}U)(c_{U}U^{*U},(^{U}(^{U}U))\otimes 1)(1\otimes cUU^{U},(^{U}U))c_{U}^{-1},(U^{*U}U\otimes^{U}(^{U}U)1\otimes b_{U}U)

=(1\otimes d_{U}U)(c_{U}U^{*U},(^{U}(^{U}U))\otimes 1)c_{U}^{-1},(U^{*U}(^{U}(^{U}U))\otimes^{U}Uc_{U^{U}U},\otimes 1)(1\otimes b_{U}U)

=(1\otimes d_{U}U)(1\otimes c_{U}^{-1},)U^{*U}U(c_{U^{U}U},\otimes 1)(1\otimes b_{U}U)

=(1\otimes d_{U}U)(1\otimes v-1)U(y’\otimes 1)(1\otimes b_{U}U) .

Thus the balanced YB-0perator (y, z) is tortile iff (\theta_{U}U^{*})^{Q}\theta_{U}=U_{zz}=

U\theta_{U}\theta_{U} . That is, (\theta_{U}U^{*})\#=U\theta_{U} . Then it is easy to see that the condition
(\theta_{U}U^{*})^{\Downarrow}=U\theta_{U} is equivalent to the relation \theta_{U}U^{*}=(\theta_{U})^{*}

\square
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Definition 5 For a crossed \pi-category C , the centralizer \mathcal{L}_{C}(U) of an ob-
ject U\in C is the category whose objects are pairs (X, \alpha) where X is an
object in C and \alpha : U\otimes Xarrow UX\otimes U is an isomorphism in C , and whose
arrows f : (X, \alpha)arrow(Y, \beta) are the arrows f : Xarrow Y in C such that \beta(1\otimes

f)=(^{U}f\otimes 1)\alpha .

Then \mathcal{L}_{C}(U) becomes a \pi-category by the rule (X, \alpha)\in C_{x}\Leftrightarrow X\in C_{x}

for x\in\pi and the tensor product (X, \alpha)\otimes(Y, \beta)=(X\otimes Y, (\alpha\otimes 1)(1\otimes\beta)) .
Similarly, one can define the centralizer \mathcal{L}_{C}(h) of an arrow h : Uarrow V in C
as follows. The objects of \mathcal{L}_{C}(h) are triples (X, \alpha, \beta) where X is an object
in C and \alpha : U\otimes X – UX\otimes U and \beta : V\otimes Xarrow VX\otimes V are isomorphisms
in C such that \beta(h\otimes 1)=(1\otimes h)\alpha . The arrows (X, \alpha, \beta) - (Y, \gamma, \delta) in
\mathcal{L}_{C}(h) are arrows f : X - Y in C such that (^{U}f\otimes 1)\alpha=\gamma(1\otimes f) and (^{V}f\otimes

1)\beta=\delta(1\otimes f) . This category \mathcal{L}_{C}(h) also admits a \pi-category structure.
Definition 6 A crossed \pi category C is called connected if for each pair
(X, Y) of objects, there exists an invertible arrow g(X, Y) : XY -arrow Y such
that g(I, Y)=id_{Y} , g(X, I)=id_{I} , g(X’\otimes X, Y)=g(X’, Y)x’g(X, Y) and
g(X, Y\otimes Y’)=g(X, Y)\otimes g(X, Y’) .

When a crossed \pi category C is connected, the categories \mathcal{L}_{C}(U) and
\mathcal{L}_{C}(h) become crossed \pi categories via (X,\alpha)(Y, \beta)=(^{X}Y, (^{U}g^{-1}(X, Y)\otimes

1)\beta(1\otimes g(X, Y))) and (X,\alpha,\beta)(Y, \gamma, \delta)=(^{X}Y, (^{U}g^{-1}(X, Y)\otimes 1)\gamma(1\otimes g(X, Y)) ,
(^{U}g^{-1}(X, Y)\otimes 1)\delta(1\otimes g(X, Y))) .

Definition 7 For a crossed \pi-category C , the center \mathcal{L}_{C}ofC is the category
whose objects are pairs (U, \alpha) where U\in C and \alpha : U\otimes-arrow U-\otimes U is a
natural isomorphism obeying the following two conditions:

(1) \alpha_{I}=1 ;
(2) \alpha_{X\otimes Y}=(1\otimes\alpha_{Y})(\alpha_{X}\otimes 1) for all X, Y\in C .

An arrow f : (U, \alpha)arrow(V, \beta) in \mathcal{L}_{C} is an arrow f : U – V in C such that
\beta_{X}(f\otimes 1)=(1\otimes f)\alpha_{X} for all X\in C .

Then \mathcal{L}_{C} becomes a crossed \pi-category with (U, \alpha)\otimes(V, \beta)=(U\otimes

V, (\alpha\otimes 1)(1\otimes\beta)) and (U,\alpha)(V, \beta)=(^{UU}V,\beta_{U}*)x .

Proposition 2 (a) For a crossed \pi -category C , the crossed \pi category
\mathcal{L}_{C} is braided via \alpha_{V} : (U, \alpha)\otimes(V, \beta) - (U,\alpha)(V, \beta)\otimes(U, \alpha) .
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(b) Let C be a crossed \pi -calegory. Then for each object U\in C , the
equation F(X)=(X, \alpha x) determines a bijection between objects (U, \alpha)\in

\mathcal{L}_{C} and tensor functors F : C – \mathcal{L}_{C}(U) . Similarly, for each arrow h : Uarrow

V in C , the equation F’(X)=(X, \alpha_{X}, \beta_{X}) determines a bijection between
arrows h:(U, \alpha)arrow(V, \beta)\in \mathcal{L}_{C} and tensor functors F’ : Carrow \mathcal{L}_{C}(h) .

(c) For a crossed \pi -category C , the equation G(U)=(U, c_{U,-}) deter-

\mathcal{L}_{C}\min

.
es a bijection between braidings c on C and crossed \pi functors G:Carrow

Proof Straightforward. \square

For a connected crossed \pi-category C , let (y, z) be a balanced YB-
operator on an object U such that g(U, U)=z^{-1} . Then we have the
following lemma:

Lemma 1 (a) The balanced YB operator (y, z) defines a balanced
YB operator on the object (U, y)\in \mathcal{L}_{C}(U) . If (y, z) is dualizable, then
(U^{*}, u^{-1})\in \mathcal{L}_{C}(U) is a left dual for the object (U, y)\in \mathcal{L}_{C}(U) . Moreover,
(y, z) defines a dualizable balanced YB operator on (U, y) .

(b) The centralizer \mathcal{L}_{C}(U^{*}) contains (U, v) and (U^{*}, w) where w=
(d_{U}\otimes 1\otimes 1)(1\otimes 1\otimes^{U^{*}}z^{*}\otimes 1)(1\otimes u\otimes 1)(1\otimes z^{*-1}\otimes 1\otimes 1)(1\otimes 1\otimes b_{U}) . The
object (U^{*}, w) is dual to (U, v) and (y, z) defines a balanced YB-Operator
on (U, v) .

(c) If (y, z) is a tortile Yang-Baxter operator, then it is also a tortile
Yang-Baxter operator on (U, y)\in \mathcal{L}_{C}(U) and (U, v)\in \mathcal{L}_{C}(U^{*}) .

Proof (a) For arrows (U, y) – (U,y)(U, y) and (U, y)\otimes(U, y) arrow

(U,y)(U, y)\otimes(U, y) in \mathcal{L}_{C}(U) , we take the arrows z : U – UU and y :
U\otimes Uarrow UU\otimes U in C . Then by the hexagnal condition on (y, z) and the
assumption g(U, U)=z^{-1} , we see that these arrows are indeed arrows in
\mathcal{L}_{C}(U) .

(b) We have to show that the object (U^{*}, w) is dual to (U, v) . For
this it is convenient to use a diagrammatic notion as used in [3], [5]. For
example, the following equalities show that the arrow d_{U} : U^{*}\otimes Uarrow I

becomes an arrow (U^{*}, w)\otimes(U, v) – (I, id_{U}*) in \mathcal{L}_{C}(U^{*}) .
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U^{*}

U^{*}
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U^{*}

U^{*}
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U^{*}

U^{*} U^{*}
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U^{*}=| =U^{*}|

U

The next equalities show that the arrow y : U\otimes U -arrow UU\otimes U defines
an arrow (U, v)\otimes(U, v) – (U,v)(U, v)\otimes(U, v) in \mathcal{L}_{C}(U^{*}) .

U^{*} U^{*}
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U^{*} U^{*}

U^{*} U^{*}
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U^{*} U^{*}

U^{*}
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(c) Straightforward. \square

Let \mathcal{F} be the crossed Z-category freely generated by objects X and X^{*}

and arrows d_{X} : X^{*}\otimes Xarrow I , b_{X} : Iarrow X\otimes X^{*} , y : X\otimes X – XX\otimes X ,
z:X -arrow XX , subject to the conditions that X\in \mathcal{F}_{1} , X^{*}\in \mathcal{F}_{-1} , X^{*} is left
dual to X via d_{X} and b_{X} , and (y, z) is a tortile YB-0perator on X .

Now we state our main theorem in this paper.

Theorem The category \mathcal{F} admits a unique braiding c and a twist \theta such
that c_{X,X}=y , \theta_{X}=z and \theta_{X}*=x*(\theta_{X})^{*}

To prove the existence of such a braiding, we begin with the following
proposition.

Proposition 3 There is a natural isomorphisms

c_{X,-} : X\otimes-arrow X-\otimes X and c_{X-}*, : X^{*}\otimes-arrow X^{*}-\otimes X^{*}

such that (X, c_{X,-}) and (X^{*}, c_{X^{*},-})\in \mathcal{L}_{\mathcal{F}} where c_{X,X}=y and c_{X^{*},X}=v .

Proof. We first show that the category \mathcal{F} is a connected crossed Z-category.
For this, observe that the category \mathcal{F} is generated as a monoidal category
by the objects X^{n}X , X^{*n}X , X^{n}X^{*} , X^{*n}X^{*} . where X^{n} and X^{*n} mean X\otimes

X\otimes \cdot\otimes X (n times) and X^{*}\otimes X^{*}\otimes\cdot\cdot\otimes X^{*} (n times) respectively, and
n runs through the set of non-negative integers. Besides, the objects x^{n}X

and x*nX belong to the same class of X , and the objects X^{n}X^{*} and x*nX^{*}

belong to the same class of X^{*} . Using this property we can prove that
for any object Y there exists an isomorphism YX - X . Indeed, for any
objects Y and Z we can define an isomophism Y\otimes ZXarrow X once we obtain
isomorphisms f : YX - X and g:XZarrow X since we can use the composi-
tion f^{Y}g . Thus it is enough to show that there are isomorphisms XX – X
and x*Xarrow X , and we can take the arrows z^{-1} and X^{*}z . The same ar-
gument applies to show that for any object Y there exists an isomorphism
Y(^{X^{n}}X) – X^{n}X . Actually, we only need isomorphisms x(x^{n}X) – X^{n}X

and x*(^{X^{n}}X)arrow X^{n}X , and we can take the arrows x^{n}z^{-1} and X^{n}(^{X^{*}}z) .
Similarly, one can prove that for any object Y there are isomorphisms
Y(^{X^{*n}}X) –

X^{*n} X., Y(^{X^{n}}X^{*}) –
X^{n}X^{*} and Y(^{X^{*n}}X^{*}) –

X^{*n}X^{*} . Finally,
we observe that for any object Y , Z and W , an isomorphism Y(Z\otimes W)=

YZ\otimes YWarrow Z\otimes W is obtained from YZarrow Z amd YW – W Hence the
category \mathcal{F} is connected, and the categories \mathcal{L}_{\mathcal{F}}(X) and \mathcal{L}_{\mathcal{F}}(X^{*}) become
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crossed Z-categories. Moreover, the condition g(X, X)=z^{-1} is satisfied.
Thus we can use the universality of the category \mathcal{F} and Lemma 1 to get
crossed Z-functors \mathcal{F}arrow \mathcal{L}_{\mathcal{F}}(X) and \mathcal{F}arrow \mathcal{L}_{\mathcal{F}}(X^{*}) . In particular, these
functors are tensor functors, hence by Proposition 2 (b) we obtain

the_{X^{*}na}t–ural isomorphisms c_{X,-} : X\otimes-arrow X-\otimes X and c_{X^{*},-} : X^{*}\otimes-arrow

\otimes X^{*}
\square

Lemma 2 The pair (y, z) becomes a tortile YB-Operator on the object
(X, c_{X,-}) in \mathcal{L}_{\mathcal{F}} . Also, the object (X^{*}, c_{X-}*,) is left dual to the object
(X, c_{X,-}) in \mathcal{L}_{\mathcal{F}} .

Proof. To obtain a tortile YB-0perator on the object (X, cx,-) in \mathcal{L}_{\mathcal{F}} , we
first consider the centralizer \mathcal{L}_{\mathcal{F}}(y) of y : X\otimes Xarrow XX\otimes X . Then we
see that the category \mathcal{L}_{\mathcal{F}}(y) contains the objects (X, \alpha, \beta) and (X^{*}, \gamma, \delta)

where \alpha=(y’\otimes 1)(1\otimes y) , \beta=(^{X}y\otimes 1)(1\otimes y) , \gamma=(^{X}z^{*-1}\otimes 1)(u^{-1}\otimes

1)(1\otimes z^{*}\otimes 1)(1\otimes u^{-1}) , \delta=(^{X}u^{-1}\otimes 1)(1\otimes u^{-1}) . Moreover, the object
(X^{*}, \gamma, \delta) is dual to (X, \alpha, \beta) , and we obtain a tortile YB-0perator (y, z)
on (X, \alpha, \beta) in \mathcal{L}_{\mathcal{F}}(y) . Since \mathcal{L}_{\mathcal{F}}(y) is a crossed Z-category, the universal
property of \mathcal{F} induces a crossed tensor functor \mathcal{F} – \mathcal{L}_{\mathcal{F}}(y) , which is a
section of the projection \mathcal{L}_{\mathcal{F}}(y)arrow \mathcal{F} . In particular, this functor is a tensor
functor, hence by Proposition 2 (b), we obtain an arrow y : (X, cx,-)\otimes

(X, cx,-)arrow(X,c_{X,-)}(X, c_{X,-})\otimes(X, cx,-) in \mathcal{L}_{\mathcal{F}} .
Next consider the category \mathcal{L}_{\mathcal{F}}(z) . Then we see that the category \mathcal{L}_{\mathcal{F}}(z)

contains the objects (X, y, \eta) and (X^{*} , u^{-1} , () where \eta=(1\otimes z)y(z^{-1}\otimes 1)

and \zeta=(1\otimes z)u^{-1}(z^{-1}\otimes 1) . In addition, (X^{*}, u^{-1}, \zeta) is dual to (X, y, \eta) ,
and we obtain a tortile YB-0perator (y, z) on the objects (X, y, \eta) in \mathcal{L}_{\mathcal{F}}(z) .
Thus we have a crossed tensor functor \mathcal{F}arrow \mathcal{L}_{\mathcal{F}}(z) , which corresponds to
an arrow z : (X, cx,-) – (X,c_{X,-})(X, cx,-) in \mathcal{L}_{\mathcal{F}} .

Then it is easy to see that the arrows y : (X, cx,-)\otimes(X, cx,-)arrow

(X,c_{X,-})(X, c_{X,-})\otimes(X, cx,-) and z : (X, cx,-) – (X,c_{X,-})(X, cx,-) in \mathcal{L}_{\mathcal{F}}

define a tortile YB-0perator on the object (X, cx,-) in \mathcal{L}_{\mathcal{F}} .
Finally, we check that the object (X^{*}, c_{X^{*},-}) is left dual to the ob-

ject (X, c_{X,-}) in \mathcal{L}_{\mathcal{F}} . For this we consider the centralizers \mathcal{L}_{\mathcal{F}}(d_{X}) and
\mathcal{L}_{\mathcal{F}}(b_{X}) . We see that the category \mathcal{L}_{\mathcal{F}}(d_{X}) contains the objects (X, \tau, id_{X})

and (X^{*}, \sigma, id_{X}*) where \tau=(^{X^{*}}z\otimes 1\otimes 1)(v\otimes 1)(1\otimes z^{-1}\otimes 1)(1\otimes y) and \sigma=

(^{X^{*}}z^{*-1}\otimes 1\otimes 1)(w\otimes 1)(1\otimes z^{*}\otimes 1)(1\otimes u^{-1}) . Moreover, the object (X^{*}, \sigma, id_{X}*)

is dual to (X, \tau, id_{X}) , and (y, z) defines a tortile YB-0perator on the ob-
ject (X, \tau, id_{X}) in \mathcal{L}_{\mathcal{F}}(d_{X}) . Thus we obtain a crossed tensor functor \mathcal{F}arrow
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\mathcal{L}_{\mathcal{F}}(d_{X}) , which corresponds to an arrow (X^{*}, c_{X^{*},-})\otimes(X, cx,-) - (I, id)

in \mathcal{L}_{\mathcal{F}} . Similarly, the category \mathcal{L}_{\mathcal{F}}(b_{X}) contains the objects (X, \mu, id_{X}) and
(X^{*}, \nu, id_{X}*) where \mu=(z^{-1}\otimes 1\otimes 1)(y\otimes 1)(1\otimes X^{*}z\otimes 1)(1\otimes v) and \nu=

(z^{*}\otimes 1\otimes 1)(u^{-1}\otimes 1)(1\otimes^{X^{*}}z^{*-1}\otimes 1)(1\otimes w) , which induces a crossed tensor
functor \mathcal{F}arrow \mathcal{L}_{\mathcal{F}}(b_{X}) and hence an arrow (I, id) -arrow(X, cx,-)\otimes(X^{*}, c_{X^{*},-})

in \mathcal{L}_{\mathcal{F}} . \square

Using the lemma above, we can prove the existence of the braiding
in Theorem. In fact, since (y, z) is a tortile YB-0perator on the object
(X, cx,-) , and (X^{*}, c_{X^{*},-}) is dual to the object (X, cx,-) , we obtain a
crossed tensor functor \mathcal{F}arrow \mathcal{L}_{\mathcal{F}} . Thus by Proposition 2 (c), we see that \mathcal{F}

has a braiding c with cx,x=y.
Next we consider the existence of a twist \theta in \mathcal{F} . For any braided crossed

\pi category C , let C’ be the category whose objects are pairs (U, \xi) where
\xi : U - UU is an isomorphism in C , and whose arrows f : (U, \xi) – (V, \zeta)

are arrows f : U – V in C such that Uf\xi=\zeta f . We can define a tensor
product and a cross action on C’ by putting

(U, \xi)\otimes(V, \zeta)=(U\otimes V, \chi) and (U,\xi)(V, \zeta)=(^{UU}V,\zeta)

where \chi=c_{U}(^{V}V),UUc_{U}U^{V},V(\xi\otimes\zeta) . This tensor product makes C’ into
a crossed \pi-category. Applying this procedure to the braided crossed Z-
category \mathcal{F} , we obtain a crossed Z category \mathcal{F}’ . To get a left dual for the
object (X, z) in \mathcal{F}’ , we use the following lemma:

Lemma 3 The following identity holds in \mathcal{F} .

zz(x*d_{X}X\otimes 1)(1\otimes c_{\overline{x}^{1}},)X^{X^{*}}X(cx,x*\otimes 1)(b_{X}\otimes 1)

=1 : x_{X}arrow x_{X} .

Proof. Since z is a tortile YB-0perator the term zzx* coincides with the
composition (1\otimes d_{X})(1\otimes c_{X^{*},X}^{-1})(c_{X}*\otimes x,x1)b_{X} . Then the following equalities
show the identity in Lemma 3.
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|

\square

Using the lemma above, we can prove the following one:

Lemma 4 The object (X^{*X^{*}},z^{*}) is dual to the object (X, z) in \mathcal{F}’ , and
(y, z) defines a tortile YB-Operator on (X, z) .

Proof. We have to show that the arrows d_{X} : X^{*}\otimes Xarrow I and b_{X} : Iarrow

X\otimes X^{*} define arrows (X^{*X^{*}},z^{*})\otimes(X, z)arrow(I, id) and (I, id) – (X, z)\otimes

(X^{*X^{*}},z^{*}) in \mathcal{F}’ . The next caluculations show that the arrow d_{X} : X^{*}\otimes

Xarrow I is an arrow (X^{*X^{*}},z^{*})\otimes(X, z)arrow(I, id) in \mathcal{F}’r

d_{X}(c_{x^{x^{*}}x*)(Cx*)(^{X^{*}}z^{*}\otimes z)},X^{*X},X

=d_{X}Cx,\chi*x*(d_{X}*\otimes X1\otimes 1)(1\otimes c_{X^{*}}^{-1}\otimes 1)x,x(1\otimes 1\otimes b_{X}*)x(^{X^{*}}z^{*}\otimes z)

=dx^{*}x(1\otimes 1\otimes d_{X})(1\otimes 1\otimes c_{X,X^{*}}\chi*)(1\otimes c_{\overline{x}^{1}}*\otimes 1)X,X

(1\otimes 1\otimes b_{xx}*)(^{X^{*}}z^{*}\otimes z)

=d_{X}*x(1\otimes 1\otimes d_{X})(1\otimes c_{X^{*}}^{-1}x,x*\otimes 1)(1\otimes c_{X}*X,X^{*}\otimes 1)

(1\otimes 1\otimes c_{x^{x*}x*},)(1\otimes c_{X^{*}}^{-1}X,X\otimes 1)(1\otimes 1\otimes b_{X}*)x(^{X^{*}}z^{*}\otimes z)

=d_{X}*x(1\otimes d_{X}X\otimes 1)(1\otimes 1\otimes c_{X}*)x,x(1\otimes c_{X}*X,X^{*}\otimes 1)

(1\otimes 1\otimes c_{X^{\chi*}X^{*)(1}},\otimes c_{X^{*}}^{1}X,X\otimes 1)(1\otimes 1\otimes b_{X}*)x(^{X^{*}}z^{*}\otimes z)

=d_{X^{*}}x(1\otimes d_{X}X\otimes 1)(1\otimes cxx,x*\otimes 1)(1\otimes 1\otimes c_{X^{*}}X^{X^{*}},X^{*)}

(1\otimes c_{X}*X,X\otimes 1)(1\otimes c_{X^{*}}^{-1}X,X\otimes 1)(1\otimes 1\otimes b_{X}*x)(^{X^{*}}z^{*}\otimes z)

=d_{X}*x(1\otimes dxx\otimes 1)(1\otimes cxx,x*\otimes 1)(1\otimes 1\otimes cx^{*}x^{\chi*},x*)

(1\otimes 1\otimes b_{X}*)x(^{X^{*}}z^{*}\otimes z)
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=d_{X}*x(1\otimes dxX\otimes 1)(1\otimes 1\otimes c_{\overline{x}_{X^{X^{*}}X}^{1}},)(1\otimes c_{X,X^{*}}\otimes 1)

(1\otimes b_{X}\otimes 1)(^{X^{*}}z^{*}\otimes z)

=d_{X^{*}}x(1\otimes z^{-1})X^{*}(^{X^{*}}z^{*}\otimes 1)

=d_{X}*x(1\otimes x*z^{-1})(d_{X}\otimes 1\otimes 1)(1\otimes^{X^{*}}z\otimes 1\otimes 1)(1\otimes b_{X^{*}}X\otimes 1)

=d_{X}*x(d_{X}\otimes 1\otimes 1)(1\otimes X^{*}z\otimes 1\otimes 1)(1\otimes b_{X}*X\otimes 1)(1\otimes x*z^{-1})

=d_{X}(1\otimes 1\otimes d_{X}*)x(1\otimes x*z\otimes 1\otimes 1)(1\otimes b_{X}*X\otimes 1)(1\otimes x*z^{-1})

=d_{X}(1\otimes x*z)(1\otimes 1\otimes d_{X}*x)(1\otimes b_{X}*X\otimes 1)(1\otimes^{X^{*}}z^{-1})

=d_{X}(1\otimes z)x*(1\otimes^{X^{*}}z^{-1})

=d_{X} .

Similarly, one can prove that the arrow b_{X} : I – X\otimes X^{*} defines an
arrow (I, id)arrow(X, z)\otimes(X^{*X^{*}},z^{*}) in \mathcal{F}’ . \square

Using the lemma above, we obtain a crossed tensor functor \mathcal{F} -arrow \mathcal{F}’

which takes X to (X, z) and takes X^{*} to (X^{*X^{*}},z^{*}) . Then for any object
U in \mathcal{F} , the value (U, \theta_{U}) of this tensor functor at U gives the twist \theta : U -arrow

UU . The uniqueness of the braiding and the twist follows from the same
argument in [2]. Let c , c’ be braidings on \mathcal{F} such that cx,x =y=c_{X,X}’ . For
any object U of \mathcal{F} , let \mathcal{E}(U) be the set of objects Z for which c_{U,Z}=c_{U,Z}’ ,
and let \mathcal{E} be the set of objects U for which \mathcal{E}(U)=obj\mathcal{F} . Then using the
connectivity structure on \mathcal{F} , we see that both \mathcal{E}(U) and \mathcal{E} are closed under
tensor product and crossed action. Moreover, using the fact that u=c_{X,X^{*}}^{-1} ,
v=c_{X^{*},X} and w=cx*,x* , we see that X, X^{*}\in \mathcal{E}(X) and X, X^{*}\in \mathcal{E}(X^{*}) .
Thus X, X^{*}\in \mathcal{E} , and since X , X^{*} generate obj \mathcal{F} , we have \mathcal{E}=obj\mathcal{F} .
Similarly, one can prove the uniqueness of twist. This completes our proof
of Theorem.
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