Tortile Yang-Baxter operators for crossed group-categories

Takeo FUKUSHI

(Received September 4, 2000; Revised December 13, 2000)

Abstract. The notion of a tortile Yang-Baxter operator in a crossed group-category is introduced. It is shown that a tortile Yang-Baxter operator on an object X induces a unique braiding and a twist on the free crossed group-category generated by the objects X and X^* .

Key words: tortile Yang-Baxter operator, crossed group-category.

1. Introduction

The category of tangles in 3 dimension has a beautiful algebraic characterization in terms of a universal property. This was initially developed by Yetter [10], Turaev [8], Freyd-Yetter [1] and Joyal-Street [3], and has culminated in the work of Shum [7] asserting that the category of framed tangles \mathcal{FT} is monoidally equivalent to the tortile category freely generated by a single object. Joyal and Street [2] gave another purely algebraic interpretation of this category as the free tensor category containing an object equipped with a tortile Yang-Baxter operator.

Recently, Turaev [9] introduced the notion of a modular crossed groupcategory, and used it to develop 3-dimensional homotopy quantum field theory (HQFT). He started with defining the notion of a tortile (ribbon) crossed π -category for a group π , and showed that modular crossed π -categories induce invariants of 3-dimensional π -manifolds.

The aim of this paper is to give the Joyal and Street's interpretation for a crossed group-category. To do this, we define a balanced Yang-Baxter operator and a tortile Yang-Baxter operator in a crossed group-category. Then we prove that the free crossed group-category \mathcal{F} generated by a single object equipped with a tortile Yang-Baxter operator admits a unique braiding and a twist. Although our construction owes much to the paper [2], several new aspects appear. First, it turns out that one should define a twist

¹⁹⁹¹ Mathematics Subject Classification: 18D10.

before a Yang-Baxter operator. This statement means that in a general crossed group-category, it is not possible to define a Yang-Baxter operator without a twist. Thus one can define only balanced Yang-Baxter operators in a crossed group-category. Second, we use the fact that the category \mathcal{F} admits a connectivity structure, which we feel non-trivial. In general, for an object U in a crossed π -category \mathcal{C} , the centralizer $\mathcal{L}_{\mathcal{C}}(U)$ does not admit a crossed π -category structure. However, if a crossed π -category \mathcal{C} is connected, then the category $\mathcal{L}_{\mathcal{C}}(U)$ admits a crossed π -category structure, so that we can apply this procedure to \mathcal{F} . Third, since we have to consider a Yang-Baxter operator with a twist, various identities which were simple in [2] become much more complicated. To overcome this difficulty, we use a diagrammatic notion. Then, we can check that each equality between diagrams corresponds to a certain equality between morphisms in \mathcal{F} . As a result, we see that the constructions above are all well done and the theorem holds.

2. Preliminaries

Definition 1 Let π be a group and let C be a strict monoidal category with a unit object I. Then the category C is called a π -category if it satisfies the following conditions:

(a) there are full subcategories C_{α} ($\alpha \in \pi$) of C such that each object of C belongs to C_{α} for a unique $\alpha \in \pi$;

(b) if $U \in C_{\alpha}$ and $V \in C_{\beta}$ with $\alpha \neq \beta$ then there is not any morphism from U to V;

(c) $I \in \mathcal{C}_1$, and if $U \in \mathcal{C}_{\alpha}$ and $V \in \mathcal{C}_{\beta}$ then $U \otimes V \in \mathcal{C}_{\alpha\beta}$.

In [9] a K-additivity and a left duality are assumed in the monoidal category \mathcal{C} . In this paper, we do not assume those structures in \mathcal{C} .

Definition 2 In the setting above, an automorphism of \mathcal{C} is defined as a functor $\varphi : \mathcal{C} \to \mathcal{C}$ wich preserves the tensor product and the unit object. Thus,

$$arphi(I)=I, \quad arphi(U\otimes V)=arphi(U)\otimes arphi(V), \quad arphi(f\otimes g)=arphi(f)\otimes arphi(g),$$

for any objects U, V and any morphisms f, g in \mathcal{C} . We denote by $\operatorname{Aut}(\mathcal{C})$ the group of automorphisms of \mathcal{C} . A crossed π -category is a π -category \mathcal{C} endowed with a group homomorphism $\varphi : \pi \to \operatorname{Aut}(\mathcal{C})$ such that for all $\alpha, \beta \in \pi$ the functor $\varphi_{\alpha} = \varphi(\alpha) : \mathcal{C} \to \mathcal{C}$ maps \mathcal{C}_{β} to $\mathcal{C}_{\alpha\beta\alpha^{-1}}$. For objects $U \in \mathcal{C}_{\alpha}, V \in \mathcal{C}_{\beta}$, set ${}^{U}V = \varphi_{\alpha}(V)$.

For crossed π -categories $\mathcal{C}, \mathcal{C}'$, a tensor functor $\mathcal{C} \to \mathcal{C}'$ is called a crossed π -functor if it preserves the action of π .

Definition 3 Let \mathcal{C} be a crossed π -category. A braiding in \mathcal{C} is a system of invertible morphisms $c_{U,V} : U \otimes V \to {}^{U}V \otimes U$ satisfying the following conditions:

(a) for any morphisms $f: U \to U'$ and $g: V \to V'$ such that U, U' lie in the same component of \mathcal{C} , we have

$$c_{U',V'}(f\otimes g) = ({}^Ug\otimes f)c_{U,V};$$

(b) for any objects U, V, W in \mathcal{C} we have

 $c_{U\otimes V,W} = (c_{U,VW} \otimes 1)(1 \otimes c_{V,W});$

(c) for any objects U, V, W in \mathcal{C} we have

 $c_{U,V\otimes W} = (1 \otimes c_{U,W})(c_{U,V} \otimes 1);$

(d) the action of π on \mathcal{C} preserves the braiding, i.e., for any $\alpha \in \pi$ and any $V, W \in \mathcal{C}$ we have

 $\varphi_{\alpha}(c_{V,W}) = c_{\varphi_{\alpha}(V),\varphi_{\alpha}(W)}.$

A crossed π -category equipped with a braiding is called a braided crossed π -category. A braided crossed π -category C is called *balanced* if it is equipped with a natural family of invertible morphisms $\theta_U : U \to {}^U U$ (called twist) satisfying the following conditions:

(1)
$$\theta_I = \mathrm{id}_I : I \to I;$$

(2) for any object U, V in \mathcal{C} we have

 $\theta_{U\otimes V} = c_{(UV)}{}_{V,U}{}_{U}c_{(UU),(VV)}(\theta_{U}\otimes\theta_{V});$

(3) the action of π on \mathcal{C} preserves the twist, i.e., for any $\alpha \in \pi$ and any $U \in \mathcal{C}$ we have $\varphi_{\alpha}(\theta_U) = \theta_{\varphi_{\alpha}(U)}$.

A braided crossed π -category \mathcal{C} is called *tortile* if it is balanced and each object U has a dual U^* such that $\theta_{U_U^*} = (\theta_U)^*$.

3. Tortile Yang-Baxter operators in crossed group-categories

In this section we consider Yang-Baxter operators and twists in a crossed π -category \mathcal{C} . When $\pi = 1$, one can define a Yang-Baxter operator on each object U in \mathcal{C} without a twist. However, for a general crossed π -category \mathcal{C} , one must define a twist first, then proceed to define a balanced Yang-Baxter operator by using the twist.

Definition 4 A twist on an object U of a crossed π -category \mathcal{C} is an invertible arrow $z : U \to {}^{U}U$. A balanced Yang-Baxter operator on an object U is an invertible arrow $y : U \otimes U \to {}^{U}U \otimes U$ satisfying the hexagonal condition

$$({}^Uy\otimes 1)(1\otimes y)(y\otimes 1)=(1\otimes y)(y'\otimes 1)(1\otimes y)$$

where $y' = ({}^U z \otimes 1)y(1 \otimes z^{-1}).$

A left dual for an object U of \mathcal{C}_{α} is an object U^* in $\mathcal{C}_{\alpha^{-1}}$ together with arrows

$$b_U: I \to U \otimes U^*$$
 and $d_U: U^* \otimes U \to I$

such that

$$(d_U\otimes 1)(1\otimes b_U)=1 \quad ext{and} \quad (1\otimes d_U)(b_U\otimes 1)=1.$$

If both U, V have duals, then each arrow $f: U \to V$ gives rise to an arrow

$$f^*: (d_V \otimes 1)(1 \otimes f \otimes 1)(1 \otimes b_U): V^* \to U^*.$$

A balanced Yantg-Baxter operator on an object $U \in \mathcal{C}$ is called *dualizable* if U has a dual and, both the arrows $u : {}^{U}U^* \otimes U \to U \otimes U^*$ and $v : U^* \otimes U \to {}^{U^*}U \otimes U^*$, given by the equations

$$u = (d_{U_{U^*}} \otimes 1 \otimes 1)(1 \otimes y \otimes 1)(1 \otimes 1 \otimes b_U)$$

and

$$v = (d_U \otimes 1 \otimes 1)(1 \otimes 1 \otimes {}^{U^*}z^{-1} \otimes 1)(1 \otimes y^{-1} \otimes 1)$$
$$(1 \otimes z \otimes 1 \otimes 1)(1 \otimes 1 \otimes b_U)$$

are invertible. A balanced Yang-Baxter operator on an object U is called *tortile* if it is dualizable and the following identity holds.

$${}^Uzz = (1\otimes d_{{}^UU})(1\otimes {}^Uv^{-1})(y'\otimes 1)(1\otimes b_{{}^UU}):U
ightarrow {}^U({}^UU).$$

In a balanced crossed π -category \mathcal{C} , we have a balanced YB-operator $(y = c_{U,U}, z = \theta_U)$ on each object U. If U has a dual, then we have the identities $u = c_{U,U^*}^{-1}$ and $v = c_{U^*,U}$ in \mathcal{C} . Hence $(y = c_{U,U}, z = \theta_U)$ is dualizable. The next proposition shows that a balanced crossed π -category \mathcal{C} becomes a tortile crossed π -category iff the above balanced YB-operators $(y = c_{U,U}, z = \theta_U)$ become tortile for all objects U in \mathcal{C} .

Proposition 1 In a balanced crossed π -category C, if U is an object with a dual U^* , then the pair $(c_{U,U}, \theta_U)$ is a tortile YB-operator iff $\theta_{U_U^*} = (\theta_U)^*$.

Proof. We first observe that if (U^*, d_U, b_U) is a dual for U, then $({}^UU, d_U {}_U c_U {}_{U,U^*}, c_{U^*, U U}^{-1} b_U)$ is a dual for U^* . Then for an arrow $f: U^* \to V^*$ in \mathcal{C} , we obtain an arrow

$$f^{\sharp} = (1 \otimes d_{V_V})(1 \otimes {}^U f \otimes 1)(b_{U_U} \otimes 1) : {}^V V \to {}^U U.$$

Applying this construction to the arrow $\theta_{U_{U^*}}: {}^UU^* \to U^*$, we see that

$$\begin{aligned} (\theta v_{U^*})^{\sharp} \theta_U \\ &= (dv_U \otimes 1)(cv_{U,U^*} \otimes 1)(1 \otimes \theta v_{U^*} \otimes 1)(1 \otimes c_{U^{U^*,U}(U_U)}^{-1})(1 \otimes bv_U) \theta_U \\ &= (dv_U \otimes 1)(cv_{U,U^*} \otimes 1)(1 \otimes \theta v_{U^*} \otimes 1)(\theta_U \otimes 1 \otimes 1) \\ (1 \otimes c_{U^{U^*,U}(U_U)}^{-1})(1 \otimes bv_U) \\ &= (dv_U \otimes 1)(cv_{U,U^*} \otimes 1)(\theta_U \otimes \theta v_{U^*} \otimes 1)(1 \otimes c_{U^{U^*,U}(U_U)}^{-1})(1 \otimes bv_U) \\ &= (dv_U \otimes 1)(\theta v_{U^*} \otimes \theta v_U \otimes 1)(c_{U^{U^*,U}U}^{-1} \otimes 1)(1 \otimes c_{U^{U^*,U}(U_U)}^{-1})(1 \otimes bv_U) \\ &= (dv_U \otimes 1)(c_{U^*,UU}^{-1} \otimes 1)(1 \otimes c_{U^*,U(U)}^{-1})(1 \otimes bv_U) \\ &= (dv_U \otimes 1)c_{U^{*,U}U^{*,U}}^{-1} \otimes 1)(1 \otimes c_{U^{*,U}U^{*,U}(U_U)}^{-1})(1 \otimes bv_U) \\ &= (1 \otimes dv_U)cv_{U^*} \otimes v_{U,U^{U}(U_U)}^{-1}(1 \otimes bv_U) \\ &= (1 \otimes dv_U)(cv_{U^*,U^{U}(U_U)}) \otimes 1)(1 \otimes cv_{U^*,U^{U}(U_U)})c_{U^{*,U}U^{*,U}(U_U)}^{-1}(1 \otimes bv_U) \\ &= (1 \otimes dv_U)(1 \otimes c_{U^{*,U}U^{*,U}}^{-1})(c_U,v_U \otimes 1)(1 \otimes bv_U) \\ &= (1 \otimes dv_U)(1 \otimes v^{-1})(y' \otimes 1)(1 \otimes bv_U). \end{aligned}$$

Thus the balanced YB-operator (y, z) is tortile iff $(\theta_{U_U^*})^{\sharp} \theta_U = {}^U z z = {}^U \theta_U \theta_U$. That is, $(\theta_{U_U^*})^{\sharp} = {}^U \theta_U$. Then it is easy to see that the condition $(\theta_{U_U^*})^{\sharp} = {}^U \theta_U$ is equivalent to the relation $\theta_{U_U^*} = (\theta_U)^*$.

T. Fukushi

Definition 5 For a crossed π -category \mathcal{C} , the centralizer $\mathcal{L}_{\mathcal{C}}(U)$ of an object $U \in \mathcal{C}$ is the category whose objects are pairs (X, α) where X is an object in \mathcal{C} and $\alpha : U \otimes X \to {}^{U}X \otimes U$ is an isomorphism in \mathcal{C} , and whose arrows $f : (X, \alpha) \to (Y, \beta)$ are the arrows $f : X \to Y$ in \mathcal{C} such that $\beta(1 \otimes f) = ({}^{U}f \otimes 1)\alpha$.

Then $\mathcal{L}_{\mathcal{C}}(U)$ becomes a π -category by the rule $(X, \alpha) \in \mathcal{C}_x \Leftrightarrow X \in \mathcal{C}_x$ for $x \in \pi$ and the tensor product $(X, \alpha) \otimes (Y, \beta) = (X \otimes Y, (\alpha \otimes 1)(1 \otimes \beta))$. Similarly, one can define the centralizer $\mathcal{L}_{\mathcal{C}}(h)$ of an arrow $h: U \to V$ in \mathcal{C} as follows. The objects of $\mathcal{L}_{\mathcal{C}}(h)$ are triples (X, α, β) where X is an object in \mathcal{C} and $\alpha: U \otimes X \to {}^U X \otimes U$ and $\beta: V \otimes X \to {}^V X \otimes V$ are isomorphisms in \mathcal{C} such that $\beta(h \otimes 1) = (1 \otimes h)\alpha$. The arrows $(X, \alpha, \beta) \to (Y, \gamma, \delta)$ in $\mathcal{L}_{\mathcal{C}}(h)$ are arrows $f: X \to Y$ in \mathcal{C} such that $({}^U f \otimes 1)\alpha = \gamma(1 \otimes f)$ and $({}^V f \otimes 1)\beta = \delta(1 \otimes f)$. This category $\mathcal{L}_{\mathcal{C}}(h)$ also admits a π -category structure.

Definition 6 A crossed π -category \mathcal{C} is called *connected* if for each pair (X, Y) of objects, there exists an invertible arrow $g(X, Y) : {}^{X}Y \to Y$ such that $g(I, Y) = \operatorname{id}_{Y}, g(X, I) = \operatorname{id}_{I}, g(X' \otimes X, Y) = g(X', Y) {}^{X'}g(X, Y)$ and $g(X, Y \otimes Y') = g(X, Y) \otimes g(X, Y').$

When a crossed π -category \mathcal{C} is connected, the categories $\mathcal{L}_{\mathcal{C}}(U)$ and $\mathcal{L}_{\mathcal{C}}(h)$ become crossed π -categories via ${}^{(X,\alpha)}(Y,\beta) = {}^{(X}Y, ({}^{U}g^{-1}(X,Y) \otimes 1)\beta(1 \otimes g(X,Y)))$ and ${}^{(X,\alpha,\beta)}(Y,\gamma,\delta) = {}^{(X}Y, ({}^{U}g^{-1}(X,Y) \otimes 1)\gamma(1 \otimes g(X,Y)), ({}^{U}g^{-1}(X,Y) \otimes 1)\delta(1 \otimes g(X,Y))).$

Definition 7 For a crossed π -category \mathcal{C} , the center $\mathcal{L}_{\mathcal{C}}$ of \mathcal{C} is the category whose objects are pairs (U, α) where $U \in \mathcal{C}$ and $\alpha : U \otimes - \to {}^{U} - \otimes U$ is a natural isomorphism obeying the following two conditions:

(1) $\alpha_I = 1;$

(2) $\alpha_{X\otimes Y} = (1 \otimes \alpha_Y)(\alpha_X \otimes 1)$ for all $X, Y \in \mathcal{C}$.

An arrow $f: (U, \alpha) \to (V, \beta)$ in $\mathcal{L}_{\mathcal{C}}$ is an arrow $f: U \to V$ in \mathcal{C} such that $\beta_X(f \otimes 1) = (1 \otimes f)\alpha_X$ for all $X \in \mathcal{C}$.

Then $\mathcal{L}_{\mathcal{C}}$ becomes a crossed π -category with $(U, \alpha) \otimes (V, \beta) = (U \otimes V, (\alpha \otimes 1)(1 \otimes \beta))$ and ${}^{(U,\alpha)}(V, \beta) = ({}^{U}V, {}^{U}\beta_{U^{*}X}).$

Proposition 2 (a) For a crossed π -category C, the crossed π -category $\mathcal{L}_{\mathcal{C}}$ is braided via $\alpha_V : (U, \alpha) \otimes (V, \beta) \to {}^{(U, \alpha)}(V, \beta) \otimes (U, \alpha).$

(b) Let C be a crossed π -category. Then for each object $U \in C$, the equation $F(X) = (X, \alpha_X)$ determines a bijection between objects $(U, \alpha) \in \mathcal{L}_{\mathcal{C}}$ and tensor functors $F : \mathcal{C} \to \mathcal{L}_{\mathcal{C}}(U)$. Similarly, for each arrow $h : U \to V$ in \mathcal{C} , the equation $F'(X) = (X, \alpha_X, \beta_X)$ determines a bijection between arrows $h : (U, \alpha) \to (V, \beta) \in \mathcal{L}_{\mathcal{C}}$ and tensor functors $F' : \mathcal{C} \to \mathcal{L}_{\mathcal{C}}(h)$.

(c) For a crossed π -category C, the equation $G(U) = (U, c_{U,-})$ determines a bijection between braidings c on C and crossed π -functors $G : C \to \mathcal{L}_C$.

Proof. Straightforward.

For a connected crossed π -category C, let (y, z) be a balanced YBoperator on an object U such that $g(U, U) = z^{-1}$. Then we have the following lemma:

Lemma 1 (a) The balanced YB-operator (y, z) defines a balanced YB-operator on the object $(U, y) \in \mathcal{L}_{\mathcal{C}}(U)$. If (y, z) is dualizable, then $(U^*, u^{-1}) \in \mathcal{L}_{\mathcal{C}}(U)$ is a left dual for the object $(U, y) \in \mathcal{L}_{\mathcal{C}}(U)$. Moreover, (y, z) defines a dualizable balanced YB-operator on (U, y).

(b) The centralizer $\mathcal{L}_{\mathcal{C}}(U^*)$ contains (U, v) and (U^*, w) where $w = (d_U \otimes 1 \otimes 1)(1 \otimes 1 \otimes U^* z^* \otimes 1)(1 \otimes u \otimes 1)(1 \otimes z^{*-1} \otimes 1 \otimes 1)(1 \otimes 1 \otimes b_U)$. The object (U^*, w) is dual to (U, v) and (y, z) defines a balanced YB-operator on (U, v).

(c) If (y, z) is a tortile Yang-Baxter operator, then it is also a tortile Yang-Baxter operator on $(U, y) \in \mathcal{L}_{\mathcal{C}}(U)$ and $(U, v) \in \mathcal{L}_{\mathcal{C}}(U^*)$.

Proof. (a) For arrows $(U, y) \to {}^{(U,y)}(U, y)$ and $(U, y) \otimes (U, y) \to {}^{(U,y)}(U, y) \otimes (U, y)$ in $\mathcal{L}_{\mathcal{C}}(U)$, we take the arrows $z : U \to {}^{U}U$ and $y : U \otimes U \to {}^{U}U \otimes U$ in \mathcal{C} . Then by the hexagnal condition on (y, z) and the assumption $g(U, U) = z^{-1}$, we see that these arrows are indeed arrows in $\mathcal{L}_{\mathcal{C}}(U)$.

(b) We have to show that the object (U^*, w) is dual to (U, v). For this it is convenient to use a diagrammatic notion as used in [3], [5]. For example, the following equalities show that the arrow $d_U : U^* \otimes U \to I$ becomes an arrow $(U^*, w) \otimes (U, v) \to (I, \mathrm{id}_{U^*})$ in $\mathcal{L}_{\mathcal{C}}(U^*)$.

207

The next equalities show that the arrow $y: U \otimes U \to {}^{U}U \otimes U$ defines an arrow $(U, v) \otimes (U, v) \to {}^{(U,v)}(U, v) \otimes (U, v)$ in $\mathcal{L}_{\mathcal{C}}(U^*)$.

 \equiv

(c) Straightforward.

Let \mathcal{F} be the crossed **Z**-category freely generated by objects X and X^* and arrows $d_X : X^* \otimes X \to I$, $b_X : I \to X \otimes X^*$, $y : X \otimes X \to {}^X X \otimes X$, $z : X \to {}^X X$, subject to the conditions that $X \in \mathcal{F}_1$, $X^* \in \mathcal{F}_{-1}$, X^* is left dual to X via d_X and b_X , and (y, z) is a tortile YB-operator on X.

Now we state our main theorem in this paper.

Theorem The category \mathcal{F} admits a unique braiding c and a twist θ such that $c_{X,X} = y$, $\theta_X = z$ and $\theta_{X^*} = {}^{X^*}(\theta_X)^*$.

To prove the existence of such a braiding, we begin with the following proposition.

Proposition 3 There is a natural isomorphisms

$$c_{X,-}: X \otimes - \to {}^X - \otimes X \quad and \quad c_{X^*,-}: X^* \otimes - \to {}^{X^*} - \otimes X^*$$

such that $(X, c_{X,-})$ and $(X^*, c_{X^*,-}) \in \mathcal{L}_{\mathcal{F}}$ where $c_{X,X} = y$ and $c_{X^*,X} = v$.

Proof. We first show that the category \mathcal{F} is a connected crossed **Z**-category. For this, observe that the category \mathcal{F} is generated as a monoidal category by the objects $X^n X$, $X^{*n} X$, $X^n X^*$, $X^{*n} X^*$, where X^n and X^{*n} mean $X \otimes$ $X \otimes \cdots \otimes X$ (*n* times) and $X^* \otimes X^* \otimes \cdots \otimes X^*$ (*n* times) respectively, and n runs through the set of non-negative integers. Besides, the objects $X^n X$ and $X^{*n}X$ belong to the same class of X, and the objects X^nX^* and $X^{*n}X^*$ belong to the same class of X^* . Using this property we can prove that for any object Y there exists an isomorphism ${}^{Y}X \to X$. Indeed, for any objects Y and Z we can define an isomophism $Y \otimes Z X \to X$ once we obtain isomorphisms $f: {}^{Y}X \to X$ and $g: {}^{Z}X \to X$ since we can use the composition $f^{Y}g$. Thus it is enough to show that there are isomorphisms $X \to X$ and $X^*X \to X$, and we can take the arrows z^{-1} and X^*z . The same argument applies to show that for any object Y there exists an isomorphism $\tilde{Y}(X^nX) \to X^nX$. Actually, we only need isomorphisms $X(X^nX) \to X^nX$ and $X^*(X^n X) \to X^n X$, and we can take the arrows $X^n z^{-1}$ and $X^n(X^* z)$. Similarly, one can prove that for any object Y there are isomorphisms $Y(X^{*n}X) \to X^{*n}X, Y(X^nX^*) \to X^nX^* \text{ and } Y(X^{*n}X^*) \to X^{*n}X^*.$ Finally, we observe that for any object Y, Z and W, an isomorphism $Y(Z \otimes W) =$ ${}^{Y}Z \otimes {}^{Y}W \to Z \otimes W$ is obtained from ${}^{Y}Z \to Z$ and ${}^{Y}W \to W$. Hence the category \mathcal{F} is connected, and the categories $\mathcal{L}_{\mathcal{F}}(X)$ and $\mathcal{L}_{\mathcal{F}}(X^*)$ become

crossed **Z**-categories. Moreover, the condition $g(X, X) = z^{-1}$ is satisfied. Thus we can use the universality of the category \mathcal{F} and Lemma 1 to get crossed **Z**-functors $\mathcal{F} \to \mathcal{L}_{\mathcal{F}}(X)$ and $\mathcal{F} \to \mathcal{L}_{\mathcal{F}}(X^*)$. In particular, these functors are tensor functors, hence by Proposition 2 (b) we obtain the natural isomorphisms $c_{X,-}: X \otimes - \to X - \otimes X$ and $c_{X^*,-}: X^* \otimes - \to X^* - \otimes X^*$.

Lemma 2 The pair (y, z) becomes a tortile YB-operator on the object $(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$. Also, the object $(X^*, c_{X^*,-})$ is left dual to the object $(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$.

Proof. To obtain a tortile YB-operator on the object $(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$, we first consider the centralizer $\mathcal{L}_{\mathcal{F}}(y)$ of $y : X \otimes X \to {}^{X}X \otimes X$. Then we see that the category $\mathcal{L}_{\mathcal{F}}(y)$ contains the objects (X, α, β) and (X^*, γ, δ) where $\alpha = (y' \otimes 1)(1 \otimes y), \beta = ({}^{X}y \otimes 1)(1 \otimes y), \gamma = ({}^{X}z^{*-1} \otimes 1)(u^{-1} \otimes 1)(1 \otimes z^* \otimes 1)(1 \otimes u^{-1}), \delta = ({}^{X}u^{-1} \otimes 1)(1 \otimes u^{-1})$. Moreover, the object (X^*, γ, δ) is dual to (X, α, β) , and we obtain a tortile YB-operator (y, z)on (X, α, β) in $\mathcal{L}_{\mathcal{F}}(y)$. Since $\mathcal{L}_{\mathcal{F}}(y)$ is a crossed **Z**-category, the universal property of \mathcal{F} induces a crossed tensor functor $\mathcal{F} \to \mathcal{L}_{\mathcal{F}}(y)$, which is a section of the projection $\mathcal{L}_{\mathcal{F}}(y) \to \mathcal{F}$. In particular, this functor is a tensor functor, hence by Proposition 2 (b), we obtain an arrow $y : (X, c_{X,-}) \otimes (X, c_{X,-}) \otimes (X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$.

Next consider the category $\mathcal{L}_{\mathcal{F}}(z)$. Then we see that the category $\mathcal{L}_{\mathcal{F}}(z)$ contains the objects (X, y, η) and (X^*, u^{-1}, ζ) where $\eta = (1 \otimes z)y(z^{-1} \otimes 1)$ and $\zeta = (1 \otimes z)u^{-1}(z^{-1} \otimes 1)$. In addition, (X^*, u^{-1}, ζ) is dual to (X, y, η) , and we obtain a tortile YB-operator (y, z) on the objects (X, y, η) in $\mathcal{L}_{\mathcal{F}}(z)$. Thus we have a crossed tensor functor $\mathcal{F} \to \mathcal{L}_{\mathcal{F}}(z)$, which corresponds to an arrow $z : (X, c_{X,-}) \to {}^{(X, c_{X,-})}(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$.

Then it is easy to see that the arrows $y : (X, c_{X,-}) \otimes (X, c_{X,-}) \rightarrow (X, c_{X,-}) \otimes (X, c_{X,-})$ and $z : (X, c_{X,-}) \rightarrow (X, c_{X,-}) (X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$ define a tortile YB-operator on the object $(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$.

Finally, we check that the object $(X^*, c_{X^*,-})$ is left dual to the object $(X, c_{X,-})$ in $\mathcal{L}_{\mathcal{F}}$. For this we consider the centralizers $\mathcal{L}_{\mathcal{F}}(d_X)$ and $\mathcal{L}_{\mathcal{F}}(b_X)$. We see that the category $\mathcal{L}_{\mathcal{F}}(d_X)$ contains the objects (X, τ, id_X) and $(X^*, \sigma, \mathrm{id}_{X^*})$ where $\tau = (X^*z \otimes 1 \otimes 1)(v \otimes 1)(1 \otimes z^{-1} \otimes 1)(1 \otimes y)$ and $\sigma = (X^*z^{*-1} \otimes 1 \otimes 1)(w \otimes 1)(1 \otimes z^* \otimes 1)(1 \otimes u^{-1})$. Moreover, the object $(X^*, \sigma, \mathrm{id}_{X^*})$ is dual to (X, τ, id_X) , and (y, z) defines a tortile YB-operator on the object (X, τ, id_X) in $\mathcal{L}_{\mathcal{F}}(d_X)$. Thus we obtain a crossed tensor functor $\mathcal{F} \to \mathcal{F}$

 $\mathcal{L}_{\mathcal{F}}(d_X), \text{ which corresponds to an arrow } (X^*, c_{X^*, -}) \otimes (X, c_{X, -}) \to (I, \mathrm{id})$ in $\mathcal{L}_{\mathcal{F}}.$ Similarly, the category $\mathcal{L}_{\mathcal{F}}(b_X)$ contains the objects (X, μ, id_X) and $(X^*, \nu, \mathrm{id}_{X^*})$ where $\mu = (z^{-1} \otimes 1 \otimes 1)(y \otimes 1)(1 \otimes {}^{X^*}z \otimes 1)(1 \otimes v)$ and $\nu = (z^* \otimes 1 \otimes 1)(u^{-1} \otimes 1)(1 \otimes {}^{X^*}z^{*-1} \otimes 1)(1 \otimes w), \text{ which induces a crossed tensor functor } \mathcal{F} \to \mathcal{L}_{\mathcal{F}}(b_X)$ and hence an arrow $(I, \mathrm{id}) \to (X, c_{X, -}) \otimes (X^*, c_{X^*, -})$ in $\mathcal{L}_{\mathcal{F}}.$

Using the lemma above, we can prove the existence of the braiding in Theorem. In fact, since (y, z) is a tortile YB-operator on the object $(X, c_{X,-})$, and $(X^*, c_{X^*,-})$ is dual to the object $(X, c_{X,-})$, we obtain a crossed tensor functor $\mathcal{F} \to \mathcal{L}_{\mathcal{F}}$. Thus by Proposition 2 (c), we see that \mathcal{F} has a braiding c with $c_{X,X} = y$.

Next we consider the existence of a twist θ in \mathcal{F} . For any braided crossed π -category \mathcal{C} , let \mathcal{C}' be the category whose objects are pairs (U,ξ) where $\xi: U \to {}^{U}U$ is an isomorphism in \mathcal{C} , and whose arrows $f: (U,\xi) \to (V,\zeta)$ are arrows $f: U \to V$ in \mathcal{C} such that ${}^{U}f\xi = \zeta f$. We can define a tensor product and a cross action on \mathcal{C}' by putting

$$(U,\xi)\otimes (V,\zeta)=(U\otimes V,\chi) \quad ext{and} \quad {}^{(U,\xi)}(V,\zeta)=({}^{U}V,{}^{U}\zeta)$$

where $\chi = c_{U(VV),UU} c_{UU,VV}(\xi \otimes \zeta)$. This tensor product makes \mathcal{C}' into a crossed π -category. Applying this procedure to the braided crossed **Z**category \mathcal{F} , we obtain a crossed **Z**-category \mathcal{F}' . To get a left dual for the object (X, z) in \mathcal{F}' , we use the following lemma:

Lemma 3 The following identity holds in \mathcal{F} .

$$z^{X^*} z (d_{X_X} \otimes 1) (1 \otimes c_{X_{X,X^*}X}^{-1}) (c_{X,X^*} \otimes 1) (b_X \otimes 1)$$

= 1 : ^XX \rightarrow ^XX.

Proof. Since z is a tortile YB-operator the term $z^{X^*}z$ coincides with the composition $(1 \otimes d_X)(1 \otimes c_{X^*,X}^{-1})(c_{X^*X,X} \otimes 1)b_X$. Then the following equalities show the identity in Lemma 3.

Using the lemma above, we can prove the following one:

Lemma 4 The object (X^*, X^*z^*) is dual to the object (X, z) in \mathcal{F}' , and (y, z) defines a tortile YB-operator on (X, z).

Proof. We have to show that the arrows $d_X : X^* \otimes X \to I$ and $b_X : I \to X \otimes X^*$ define arrows $(X^*, X^*z^*) \otimes (X, z) \to (I, \mathrm{id})$ and $(I, \mathrm{id}) \to (X, z) \otimes (X^*, X^*z^*)$ in \mathcal{F}' . The next caluculations show that the arrow $d_X : X^* \otimes X \to I$ is an arrow $(X^*, X^*z^*) \otimes (X, z) \to (I, \mathrm{id})$ in \mathcal{F}' .

$$\begin{aligned} d_X(c_{X,X^*X^*})(c_{X^*X^*,XX})(^{X^*}z^*\otimes z) \\ &= d_Xc_{X,X^*X^*}(d_{X^*X}\otimes 1\otimes 1)(1\otimes c_{X^*X,X}^{-1}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes 1\otimes d_X)(1\otimes 1\otimes c_{X,X^*X^*})(1\otimes c_{X^*X,X}^{-1}\otimes 1) \\ &(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes 1\otimes d_X)(1\otimes c_{X^*X,X^*}^{-1}\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1) \\ &(1\otimes 1\otimes c_{X,X^*X^*})(1\otimes c_{X^*X,X}^{-1}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes 1\otimes c_{X^*X,X})(1\otimes c_{X^*X,X^*}\otimes 1) \\ &(1\otimes 1\otimes c_{X,X^*X^*})(1\otimes c_{X^*X,X}^{-1}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X})(^{X^*}z^*\otimes z) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_{X^*X,X^*}\otimes 1)(1\otimes 1\otimes b_{X^*X,X^*}) \\ &= d_{X^*X}(1\otimes d_X X\otimes 1)(1\otimes c_X X^*\otimes 1)(1\otimes 1\otimes b_X X^*\otimes 1)(1\otimes 1\otimes$$

$$= d_{X^*X} (1 \otimes d_{X_X} \otimes 1) (1 \otimes 1 \otimes c_{X^*X,X^*X}^{-1}) (1 \otimes c_{X,X^*} \otimes 1) (1 \otimes b_X \otimes 1) (X^* z^* \otimes z) = d_{X^*X} (1 \otimes X^* z^{-1}) (X^* z^* \otimes 1) = d_{X^*X} (1 \otimes X^* z^{-1}) (d_X \otimes 1 \otimes 1) (1 \otimes X^* z \otimes 1 \otimes 1) (1 \otimes b_{X^*X} \otimes 1) = d_{X^*X} (d_X \otimes 1 \otimes 1) (1 \otimes X^* z \otimes 1 \otimes 1) (1 \otimes b_{X^*X} \otimes 1) (1 \otimes X^* z^{-1}) = d_X (1 \otimes 1 \otimes d_{X^*X}) (1 \otimes X^* z \otimes 1 \otimes 1) (1 \otimes b_{X^*X} \otimes 1) (1 \otimes X^* z^{-1}) = d_X (1 \otimes X^* z) (1 \otimes 1 \otimes d_{X^*X}) (1 \otimes b_{X^*X} \otimes 1) (1 \otimes X^* z^{-1}) = d_X (1 \otimes X^* z) (1 \otimes 1 \otimes d_{X^*X}) (1 \otimes b_{X^*X} \otimes 1) (1 \otimes X^* z^{-1}) = d_X (1 \otimes X^* z) (1 \otimes X^* z^{-1}) = d_X .$$

Similarly, one can prove that the arrow $b_X : I \to X \otimes X^*$ defines an arrow $(I, \mathrm{id}) \to (X, z) \otimes (X^*, X^* z^*)$ in \mathcal{F}' . \Box

Using the lemma above, we obtain a crossed tensor functor $\mathcal{F} \to \mathcal{F}'$ which takes X to (X, z) and takes X^* to $(X^*, {}^{X^*}z^*)$. Then for any object U in \mathcal{F} , the value (U, θ_U) of this tensor functor at U gives the twist $\theta : U \to U$. The uniqueness of the braiding and the twist follows from the same argument in [2]. Let c, c' be braidings on \mathcal{F} such that $c_{X,X} = y = c'_{X,X}$. For any object U of \mathcal{F} , let $\mathcal{E}(U)$ be the set of objects Z for which $c_{U,Z} = c'_{U,Z}$, and let \mathcal{E} be the set of objects U for which $\mathcal{E}(U) = \text{obj }\mathcal{F}$. Then using the connectivity structure on \mathcal{F} , we see that both $\mathcal{E}(U)$ and \mathcal{E} are closed under tensor product and crossed action. Moreover, using the fact that $u = c_{X,X^*}^{-1}$, $v = c_{X^*,X}$ and $w = c_{X^*,X^*}$, we see that $X, X^* \in \mathcal{E}(X)$ and $X, X^* \in \mathcal{E}(X^*)$. Thus $X, X^* \in \mathcal{E}$, and since X, X^{*} generate obj \mathcal{F} , we have $\mathcal{E} = \text{obj }\mathcal{F}$. Similarly, one can prove the uniqueness of twist. This completes our proof of Theorem.

References

- [1] Freyd P. and Yetter D., Braided compact closed categories with applications to low dimensional topology. Adv. in Math. 77 (1989), 156-182.
- [2] Joyal A. and Street R., Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra. 71 (1991), 43-51.
- [3] Joyal A. and Street R., The geometry of tensor calculus I. Adv. in Math. 88 (1991), 55–112.
- [4] Kassel C., Quantum groups. GTM. 155, Springer-Verlag, New York 1995.
- [5] Kassel C. and Turaev V., Double construction for monoidal categories. Acta. Math. 175 (1995), 1–48.

$T. \ Fukushi$

- [6] Majid S., Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Mat. Palermo (2) Suppl. (1991), 197-206.
- [7] Shum M.C., Tortile tensor categories. J. Pure. Appl. Algebra. 93 (1994), 57-110.
- [8] Turaev V., The Yang-Baxter equation and invariants of links. Invent. Math. 92 (1988), 527-553.
- [9] Turaev V., Homotopy field theory in dimension 3 and crossed group-categories. GT/0005291.
- [10] Yetter D., Markov Algebras, in Braids (J.S. Birman and A. Libgober eds.) AMS Cotemp. Math. Vol. 78 (1988), 705–730.

10-14 Yanagida, Kashiwagimachi Hiraka-machi, Minamitsugaru-gun Aomori 036-0104, Japan E-mail: colour@mrh.biglobe.ne.jp