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Tortile Yang-Baxter operators for crossed
group-categories
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Abstract. The notion of a tortile Yang-Baxter operator in a crossed group-category is
introduced. It is shown that a tortile Yang-Baxter operator on an object X induces a

unique braiding and a twist on the free crossed group-category generated by the objects
X and X*.
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1. Introduction

The category of tangles in 3 dimension has a beautiful algebraic char-
acterization in terms of a universal property. This was initially developed
by Yetter [10], Turaev [8], Freyd-Yetter [1] and Joyal-Street [3], and has
culminated in the work of Shum (7] asserting that the category of framed
tangles 77 is monoidally equivalent to the tortile category freely generated
by a single object. Joyal and Street [2] gave another purely algebraic inter-
pretation of this category as the free tensor category containing an object
equipped with a tortile Yang-Baxter operator.

Recently, Turaev [9] introduced the notion of a modular crossed group-
category, and used it to develop 3-dimensional homotopy quantum field the-
ory (HQFT). He started with defining the notion of a tortile (ribbon) crossed
m-category for a group 7, and showed that modular crossed m-categories in-
duce invariants of 3-dimensional w-manifolds.

The aim of this paper is to give the Joyal and Street’s interpretation for
a crossed group-category. To do this, we define a balanced Yang-Baxter op-
erator and a tortile Yang-Baxter operator in a crossed group-category. Then
we prove that the free crossed group-category F generated by a single ob-
ject equipped with a tortile Yang-Baxter operator admits a unique braiding
and a twist. Although our construction owes much to the paper [2], sev-
eral new aspects appear. First, it turns out that one should define a twist
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before a Yang-Baxter operator. This statement means that in a general
crossed group-category, it is not possible to define a Yang-Baxter operator
without a twist. Thus one can define only balanced Yeng-Baxter operators
in a crossed group-category. Second, we use the fact that the category F
admits a connectivity structure, which we feel non-trivial. In general, for
an object U in a crossed m-category C, the centralizer L£¢(U) does not ad-
mit a crossed w-category structure. However, if a crossed w-category C is
connected, then the category L¢(U) admits a crossed m-category structure,
so that we can aplly this procedure to F. Third, since we have to consider
a Yang-Baxter operator with a twist, various identities which were simple
in [2] become much more complicated. To overcome this difficulty, we use
a diagrammatic notion. Then, we can check that each equality between
diagrams corresponds to a certain equality between morphisms in F. As a

result, we see that the constructions above are all well done and the theorem
holds.

2. Preliminaries

Definition 1 Let 7 be a group and let C be a strict monoidal category
with a unit object I. Then the category C is called a m-category if it satisfies
the following conditions:

(a) there are full subcategories C, (o € ) of C such that each object
of C belongs to C, for a unique a € T;

(b) ifU € Cy and V € Cg with a # (3 then there is not any morphism
from U to V;

(c) IT€C,andif UeC,andV €Csthen UV € Cop.

In [9] a K-additivity and a left duality are assumed in the monoidal
category C. In this paper, we do not assume those structures in C.

Definition 2 In the setting above, an automorphism of C is defined as a

functor ¢ : C — C wich preserves the tensor product and the unit object.
Thus,

o) =1, oUV)=pU)®¢(V), ¢(f®g)=¢(f)®¢(9),

for any objects U, V and any morphisms f, g in C. We denote by Aut(C)
the group of automorphisms of C. A crossed 7m-category is a m-category C
endowed with a group homomorphism ¢ : @ — Aut(C) such that for all
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a, B € m the functor ¢, = p(a) : C — C maps Cg to C,p3,-1. For objects
U €Cq V €Cg,set UV = (V).

For crossed m-categories C, C’, a tensor functor C — C' is called a crossed
mw-functor if it preserves the action of .

Definition 3 Let C be a crossed w-category. A braiding in C is a system
of invertible morphisms cyy : UQ®V — UV @ U satisfying the following
conditions:

(a) for any morphisms f : U — U’ and g : V — V' such that U, U’ lie
in the same component of C, we have

coy(f@g)=("g® flevy;
(b) for any objects U, V, W in C we have

cugvw = (cyviw ® 1)(1 ® cv,w);

(c) for any objects U, V, W in C we have

cuvew = (1® cuw)(cuy ® 1);

(d) the action of 7 on C preserves the braiding, i.e., for any a € 7 and
any V,W € C we have

PalCV,W) = Cou (V) pa(W):

A crossed m-category equipped with a braiding is called a braided
crossed m-category. A braided crossed m-category C is called balanced if
it is equipped with a natural family of invertible morphisms 0y : U — VU
(called twist) satisfying the following conditions:

(1) 6r=id;:I—1I;

(2) for any object U, V in C we have

Ouey = cwv) V,UUC(UU),(V\/)(OU ® 9v);

(3) the action of 7w on C preserves the twist, i.e., for any @ € 7 and
any U € C we have o (0u) = 0, (v)-

A braided crossed m-category C is called tortile if it is balanced and
each object U has a dual U* such that fvy. = (6p)*.
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3. Tortile Yang-Baxter operators in crossed group-categories

In this section we consider Yang-Baxter operators and twists in a crossed
m-category C. When 7 = 1, one can define a Yang-Baxter operator on each
object U in C without a twist. However, for a general crossed m-category C,
one must define a twist first, then proceed to define a balanced Yang-Baxter
operator by using the twist.

Definition 4 A twist on an object U of a crossed m-category C is an
invertible arrow z : U — YU. A balanced Yang-Baxter operator on an
object U is an invertible arrow y : UQU — YU QU satisfying the hexagonal
condition

“yel)(1ey(yel) =1y @)(1ey)
where v’ = (V2 @ Dy(1® 2z71).

A left dual for an object U of C, is an object U* in C,-1 together with
arrows

by: I -UQ®U" and dy:U*QU — I

such that
dv@l)(1®by)=1 and (1®dy)(by®1)=1.

If both U, V have duals, then each arrow f : U — V gives rise to an arrow
ffildvel) (1 fe)(1®by): V* - U

A balanced Yantg-Baxter operator on an object U € C is called dualizable
if U has a dual and, both the arrows v : YU* QU - UQU* and v : U* ®
U — U"U @ U*, given by the equations

u=(dvg+®191)(1®yR1)(1®1Q by)
and
v=(dp®1®)(1e1e" o1y 'al)
1®z20181)(1®1® by)

are invertible. A balanced Yang-Baxter operator on an object U is called
tortile if it is dualizable and the following identity holds.

Vzz=(1@duy)10Yv )y © 1) (1@ buy) : U — Y(VU).
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In a balanced crossed m-category C, we have a balanced YB-operator
(y = cyy,z = By) on each object U. If U has a dual, then we have the
identities u = cl_],lU* and v = ¢y«y in C. Hence (y = cyy,z = Oy) is
dualizable. The next proposition shows that a balanced crossed m-category
C becomes a tortile crossed m-category iff the above balanced YB-operators
(y = cuu, 2 = Oy) become tortile for all objects U in C.

Proposition 1 In a balanced crossed m-category C, if U is an object with
a dual U*, then the pair (cy,u, 0u) is a tortile YB-operator iff Ouy. = (6u)*.

Proof.  We first observe that if (U*,dy,by) is a dual for U, then
Y, dugcuy pe clﬁ vybu) is a dual for U*. Then for an arrow f : U* — V*
in C, we obtain an arrow

A=1@dy)1efel)(buyel): 'V -"U.
Applying this construction to the arrow vy« : UU* — U*, we see that
(uy- )6y
= (dvy ® 1)(cuy oy ® 1)1 @ vy ® 1)1 @ i jru vy (1 ® buy)fu
= (dvy @ 1)(cvpuy ®1)(1®uy« ®1)(y ®1® 1)
(1® oy v gy (1 ® buy)
= (dvy ® 1) (coy vy ® 1)(0y ® vy @ 1)(1® c;b*’U(UU))(l ® buy)
= (dvy ® 1)(fvy- ® buy ® 1)(CUU* vy ® (1 ® C;g]*’U(UU))(l ® buy)
= (dvy @ 1)(cign vy © 1)(1® Copy vy (1 @ buy)
= (dvy ® 1)cy. vyguup)(1®buy)
=(1® dUU)CUU*®UU,U(UU)CUllj*’UU®U(UU)(1 ® buy)
= (1®dvy)(cvy-vEEyy @A cUU,U(UU))c;}J*,UmU(UU)(1 ® buy)
= (1® dvy)(cvyp ) ® Deoy. vwwyeuy(covy ® 1)1 8 buy)
= (1®dvy)(1® cyg vy)(cuoy ® 1)(1® buy)
= (1®dvy)1®Yv (Y @ 1)(1® buy).

Thus the balanced YB-operator (y, z) is tortile iff (fu . )*y = Vzz =
U9y 0y. That is, (Buy:)* = Yy. Then it is easy to see that the condition
(Bu )t = YOy is equivalent to the relation vy = (6y)*. O
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Definition 5 For a crossed 7-category C, the centralizer L¢(U) of an ob-
Ject U € C is the category whose objects are pairs (X, a) where X is an
objectinCanda: U®X - VYX QU is an isomorphism in C, and whose
arrows f : (X, a) — (Y, 3) are the arrows f : X — Y in C such that B(l®
f)=(f®1a.

Then Lc(U) becomes a 7-category by the rule (X,0) € Cp & X € C,
for z € m and the tensor product (X,a)® (V,8) = (X QY, (a® 1)(1® 0)).
Similarly, one can define the centralizer L¢(h) of an arrow h: U — V in C
as follows. The objects of L¢(h) are triples (X, , ) where X is an object
inCanda:U®X -VX®UandB8:V®X -VX®V are isomorphisms
in C such that S(h ® 1) = (1 ® h)a. The arrows (X, a, 8) — (Y,7,6) in
Lc(h) are arrows f : X — Y in C such that (Vf®1)a = v(1® f) and (Vf®
1)8=0(1® f). This category Lc(h) also admits a m-category structure.

Definition 6 A crossed m-category C is called connected if for each pair
(X,Y) of objects, there exists an invertible arrow g(X, Y): X Y — Y such
that g(1,Y) =idy, g(X,I) =id;, g(X'® X,Y) = g(X',Y) X 9(X,Y) and
IX,Y®Y')=9(X,Y)®g(X,Y").

When a crossed m-category C is connected, the categories Le(U) and
Lc(h) become crossed 7-categories via (X:2)(y, 8) = (XY, Vg I(X,Y)®
DA(1®g(X, Y))) and BV, ,6) = (XY, (Yg71(X,Y)®1)7(189(X, Y)),
(Y97 (X, Y) ®1)5(1® g(X,Y))).

Definition 7 For a crossed m-category C, the center L of C is the category
whose objects are pairs (U,a) where U € Cand a: U® — -V —®@ Uis a
natural isomorphism obeying the following two conditions:

(1) ar=1;

(2) axgy =(1Qay)(ax®1) forall X,Y €.

An arrow f : (U,a) — (V,8) in L is an arrow f : U — V in C such that
Bx(f®1)=(1® flax for all X € C.

Then Lc becomes a crossed m-category with (U,a) ® (V,8) = (U ®
V,(a®1)(1® B)) and UV, §) = (VV, Yy ).

Proposition 2 (a) For a crossed m-category C, the crossed T-category
Le is braided via oy : (U,a) ® (V, B) — UV, 8) ® (U, a).
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(b) Let C be a crossed m-category. Then for each object U € C, the
equation F(X) = (X, ax) determines a bijection between objects (U, ) €
Le and tensor functors F : C — Le(U). Similarly, for each arrow h: U —
V in C, the equation F'(X) = (X, ax, Bx) determines a bijection between
arrows h: (U,a) — (V,B) € L¢ and tensor functors F' : C — L¢(h).

(c) For a crossed m-category C, the equation G(U) = (U, cy,—) deter-
mines a bijection between braidings ¢ on C and crossed w-functors G : C —

Lec.
Proof. Straightforward. O

For a connected crossed w-category C, let (y,z) be a balanced YB-
operator on an object U such that g(U,U) = z~!. Then we have the
following lemma:

Lemma 1l (a) The balanced YB-operator (y,z) defines a balanced
YB-operator on the object (U,y) € Lc(U). If (y,z) is dualizable, then
(U*,u™Y) € Le(U) is a left dual for the object (U,y) € Lc(U). Moreover,
(y, z) defines a dualizable balanced YB-operator on (U,y).

(b) The centralizer Lc(U*) contains (U,v) and (U*,w) where w =
(dr®19)(191Y 29 1)(19ue)(1®2*'®11)(1®1®by). The
object (U*,w) is dual to (U,v) and (y,z) defines a balanced YB-operator
on (U,v).

(¢) If (y,z) is a tortile Yang-Baxter operator, then it is also a tortile
Yang-Baxter operator on (U,y) € Lc(U) and (U,v) € Lc(U™).

Proof. (a) For arrows (U,y) — U¥(U,y) and (U,y) ® (U,y) —
WU, y) ® (U,y) in Lc(U), we take the arrows 2z : U — YU and y :
U®U = YU ®U in C. Then by the hexagnal condition on (y, z) and the
assumption g(U,U) = z7!, we see that these arrows are indeed arrows in
Le(U).

(b) We have to show that the object (U*, w) is dual to (U,v). For
this it is convenient to use a diagrammatic notion as used in , . For
example, the following equalities show that the arrow dy : U* @ U — [
becomes an arrow (U*, w) ® (U,v) — (I,idy~) in Lc(U*).
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U* u* u* U

The next equalities show that the arrow y : U @ U — VU ® U defines
an arrow (U, v) ® (U,v) — U)(U,v) ® (U,v) in L (U*).

AN

U* U U
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(c) Straightforward. O

Let F be the crossed Z-category freely generated by objects X and X*
and arrows dy : X*@X > L bx I - XX y: X®X - XX®X,
z: X — XX, subject to the conditions that X € Fy, X* € F_1, X* is left
dual to X via dx and by, and (y, z) is a tortile Y B-operator on X.

Now we state our main theorem in this paper.

Theorem The category F admits a unique braiding c and a twist 6 such
that cx x =y, Ox = z and Ox~ = X*(0x)*.

To prove the existence of such a braiding, we begin with the following
proposition.

Proposition 3 There is a natural isomorphisms
cx,_:X®——>X—®X and cX*y_:X*®——>X*—®X*
such that (X,cx,-) and (X*,cx+_) € Lx where cx, x =y and cx= x = v.

Proof. We first show that the category F is a connected crossed Z-category.
For this, observe that the category F is generated as a monoidal category
by the objects X" X, X" X, X" X* X" X* where X™ and X*" mean X ®
X®---®X (ntimes) and X*® X*®---® X* (n times) respectively, and
n runs through the set of non-negative integers. Besides, the objects XX
and X™" X belong to the same class of X, and the objects X" X* and X" X
belong to the same class of X*. Using this property we can prove that
for any object Y there exists an isomorphism ¥ X — X. Indeed, for any
objects Y and Z we can define an isomophism Y®Z X — X once we obtain
isomorphisms f : Y X — X and g: X — X since we can use the composi-
tion f¥g. Thus it is enough to show that there are isomorphisms * X — X
and X" X — X, and we can take the arrows z~! and X" 2. The same ar-
gument applies to show that for any object Y there exists an isomorphism
Y(X"X) — X" X. Actually, we only need isomorphisms X (X" X) — X" X
and X" (X"X) —» X" X, and we can take the arrows X" 27! and X" (*"2).
Similarly, one can prove that for any object Y there are isomorphisms
VX7 X) - XX Y(X"X*) - X" X* and Y (X7 X*) — X" X*. Finally,
we observe that for any object Y, Z and W, an isomorphism ¥ (Z @ W) =
YZ@YW — Z @ W is obtained from ¥Z — Z amd YW — W. Hence the
category F is connected, and the categories Lx(X) and Lx(X™*) become
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crossed Z-categories. Moreover, the condition g(X, X) = 27! is satisfied.
Thus we can use the universality of the category F and to get
crossed Z-functors F — Lr(X) and F — Lx(X*). In particular, these
functors are tensor functors, hence by [Proposition 2(b) we obtain the nat-
ural isomorphisms cx _ : X @ — > X —®X and cx-_ : X*®@ — — X" —
RX*. O

Lemma 2 The pair (y,z) becomes a tortile Y B-operator on the object
(X,cx,-) in Lr. Also, the object (X*,cx+_) is left dual to the object
(X, cx,—) in Lr.

Proof.  To obtain a tortile Y B-operator on the object (X, cx,—)in Lx, we
first consider the centralizer Lx(y) of y : X ® X — ¥X ® X. Then we
see that the category Lr(y) contains the objects (X, o, ) and (X*,7,4)
where o = (¥ ® 1)(1®y), 8 = (Fy®@1)(1®y), v = * o)
Nlez®)(1eut),d=(*u®1)(1®u""!). Moreover, the object
(X*,v,0) is dual to (X, «,3), and we obtain a tortile Y B-operator (y, 2)
on (X,a,f) in Lz(y). Since Lx(y) is a crossed Z-category, the universal
property of F induces a crossed tensor functor F — Lx(y), which is a
section of the projection L£(y) — F. In particular, this functor is a tensor
functor, hence by [Proposition 2(b), we obtain an arrow y : (X, cx,—) ®
(X, ex,-) = Kex-)(X, ex.2) ® (X, cx,-)in Lg.

Next consider the category Lx(z). Then we see that the category £ 7(2)
contains the objects (X,y,n) and (X*,u™,{) where n = (1® 2)y(z"' ® 1)
and ¢ = (1® 2)u~1(27! ® 1). In addition, (X*,u™1,¢) is dual to (X, y,7),
and we obtain a tortile Y B-operator (y, z) on the objects (X, y,n) in L£(z).
Thus we have a crossed tensor functor F — Lx(z), which corresponds to
an arrow z : (X, cx,—) — Xx-)(X ex._) in Lz.

Then it is easy to see that the arrows y : (X,cx_) ® (X,cx,_) —
(Xoex-) (X, ex ) ® (X, cx,—) and z : (X, cx—) — Xx-)(X cx ) in Lf
define a tortile Y B-operator on the object (X,cx ) in L.

Finally, we check that the object (X*,cx+_) is left dual to the ob-
ject (X,cx,-) in Lr. For this we consider the centralizers Lr(dx) and
Lr(bx). We see that the category Lr(dx) contains the objects (X, ,idx)
and (X*,0,idx~) where 7 = (¥ 2®@1®1)(v®1)(1® 27! ®1)(1®y) and o =
(X*z*_1®1®1)(w®1)(1®z*®1)(1®u“1). Moreover, the object (X*, o,idx+)
is dual to (X, 7,idx), and (y, z) defines a tortile Y B-operator on the ob-
ject (X, 7,idx) in L#(dx). Thus we obtain a crossed tensor functor F —
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Lr(dx), which corresponds to an arrow (X*,cx»_) ® (X,cx,~) — (I,id)
in Lr. Similarly, the category L (bx) contains the objects (X, u,1dx) and
(X* v,idx-) where p = (271 ®1® 1)y 1)(1®* 2@ 1)(1®v) and v =
(z®101)(u'®1)(1®% 2* ' ®1)(1®w), which induces a crossed tensor
functor F — Lr(bx) and hence an arrow (I,id) — (X, cx —) ® (X*, cx*—)
in Lr. O

Using the lemma above, we can prove the existence of the braiding
in Mheoreml. In fact, since (y, z) is a tortile Y B-operator on the object
(X,cx,-), and (X* cx-_) is dual to the object (X,cx ), we obtain a
crossed tensor functor F — L. Thus by [Proposition 2 (c), we see that F
has a braiding ¢ with cx x = y.

Next we consider the existence of a twist § in . For any braided crossed
m-category C, let C' be the category whose objects are pairs (U, ) where
¢ : U — YU is an isomorphism in C, and whose arrows f : (U,£) — (V,()
are arrows f : U — V in C such that U f¢é = (f. We can define a tensor
product and a cross action on C’' by putting

U, @ (V,()=UeV,x) and U, ¢)=("v,Y

where x = cuvy)uvycuyyvy(§ ® (). This tensor product makes C’ into
a crossed m-category. Applying this procedure to the braided crossed Z-
category F, we obtain a crossed Z-category F'. To get a left dual for the
object (X, z) in F’, we use the following lemma:

Lemma 3 The following identity holds in F.

X 2 (dxx ®1)(1® C;—&,x*x)(cx,x* ®1)(bx ®1)
=1: %X - XX,

Proof. Since z is a tortile Y B-operator the term z X" 2 coincides with the

composition (1®dx ) (1®c;(£, x)(cx* x x®1)bx. Then the following equalities
show the identity in Lemma 3.
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Using the lemma above, we can prove the following one:

Lemma 4 The object (X*,%X"2*) is dual to the object (X,z) in F', and
(y, 2) defines a tortile Y B-operator on (X, z).

Proof. We have to show that the arrows dx : X*®@ X — I and bx : [ —
X ® X* define arrows (X*, X" 2*) ® (X, 2) — (I,id) and (I,id) — (X, 2) ®
(X*,X"2*) in F'. The next caluculations show that the arrow dx : X* ®
X — I is an arrow (X*, %X 2*) ® (X, 2) — (I,id) in F.
dx (cx x*x«)(Cx x+ xX)(X*z* ® z)
= dxcyxx(dxx ®1@)(1®cxry  ®1)(1® 1@ bxex)(F 2" ® 2)
=dxx(1®1®dx)(1®1®cx xx:)(1® Cx*xx ®1)
(1®1Qbx+x)(* 2*®2)
=dxx(1®1Q®dx)(1® CX*XX* @1 ®cx+x x«®1)
(191®cxxx)1®cxy v ®1(1O1® bx~ ) (X 2* ® 2)
=dxx(1®dxx ®1)(1®@1®cx+x x) (1 ®cxxx x+ ® 1)
(1818 cxxx)1 Oy, ®D1LO18brx) (7 ©2)
=dx x(1®dxx ®1)(1®cxx x+ ®1)(1® 1 ® cx» x x* x+)
(1®cxxx®1)(1® CX*XX @1)(1®18bxx)(X 2" ®2)
=dxx(1®dxx ®1)(1®cxx x+ ®1)(1®1® cx» x x* xx)
(181®bxx)(* 2" ®2)
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=dxr x(1®dxx ®1)(1®1® cxy x+ 5 ) (1 ®Ccx x+ ®1)
(1®bx®1)(x*z*®z)

= dx- (1®X NEF el
= dx-x(1©® )(dx®1® N1e¥*z20181)(1@bx-x ®1)
= dx (dX®1®1)( X010 (1@bxxy ®1)(1® X 27

—dx(191®dx ) 1% 2010 1)(1Qbx-yx ®1)(1® X 271)
=dx(19 X 2)1®1®dxx)(1®bxrx @ (1@ X 271
=dx(19 X 2) 1% 271

= dy.

Similarly, one can prove that the arrow bx : I — X ® X™* defines an
arrow (I,id) — (X, 2) ® (X*, X" 2*) in F'. O

Using the lemma above, we obtain a crossed tensor functor F — F’
which takes X to (X, z) and takes X* to (X*,”X z*). Then for any object
U in F, the value (U, 0y) of this tensor functor at U gives the twist § : U —
UU. The uniqueness of the braiding and the twist follows from the same
argument in [2]. Let ¢, ¢ be braidings on F such that cx,x =y = c’X, - For
any object U of F, let £(U) be the set of objects Z for which cy z = C’U,Zv
and let £ be the set of objects U for which £(U) = objF. Then using the
connectivity structure on F, we see that both £(U) and £ are closed under
tensor product and crossed action. Moreover, using the fact that u = c)_(1 o
v =cx+x and w = cx~ x=, we see that X, X* € £(X) and X, X* € S(X*)
Thus X, X* € £, and since X, X* generate objF, we have £ = objF.
Similarly, one can prove the uniqueness of twist. This completes our proof

of Theoreml.
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