A characterization of dense vector fields in $\mathcal{G}^1(M)$ on 3-manifolds

Takeharu YAMANAKA

(Received June 5, 2000; Revised October 30, 2000)

Abstract. Recently Morales-Pacfico-Pujals introduced the new concept of singular hyperbolicity and showed that C^1 robust transitive sets of 3-flows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall characterize a dense subset of $\mathcal{G}^1(M)$ with dim M = 3.

Key words: $\mathcal{G}^1(M)$, singular hyperbolic set, Axiom A.

1. Introduction

The purpose of this paper is to study the space of vector fields known as $\mathcal{G}^1(M)$. Let M be a compact smooth manifold without boundary. We denote by $\chi^1(M)$ the set of C^1 vector fields on M, endowed with the C^1 topology and by X_t $(t \in \mathbb{R})$ the C^1 flow on M generated by $X \in \chi^1(M)$. $\Omega(X)$, per(X), Sing(X) are the sets of nonwandering, periodic and singular points of X respectively. Recall that a set $\Lambda \subset M$ is called a hyperbolic set of X if compact, invariant and there exists a continuous splitting $TM/\Lambda =$ $E^s \oplus E^X \oplus E^u$, invariant under the derivative of flow X_t , DX_t , where E^s and E^u are exponentially contracted and expanded respectively by DX_t and E^X is tangent to X. We say that $X \in \chi^1(M)$ satisfies Axiom A if $\Omega(X)$ is a hyperbolic set of X and $\Omega(X) = \overline{Sing(X) \cup per(X)}$ (We denote by \overline{A} the closure of A in M). Let $\mathcal{G}^1(M)$ be the interior of the set of vector fields in $\chi^1(M)$ whose critical elements (singularities and periodic orbits) are hyperbolic.

In [3], Hayashi showed that diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A where $\mathcal{F}^1(M)$ is the diffeomorphism version of $\mathcal{G}^1(M)$ and this naturally give rise to the following question: Do vector fields in $\mathcal{G}^1(M)$ satisfy Axiom A? Unfortunately this does not hold generally and the geometric Lorenz attractor in [2] is well-known as one of the counter examples. Vector field generating this attractor is an element of $\mathcal{G}^1(M)$ but has singularities accu-

²⁰⁰⁰ Mathematics Subject Classification: 37C75, 37D05.

mulated by the periodic orbits, hence its nonwandering set cannot be the hyperbolic set. So we hope for the other characterization of $\mathcal{G}^1(M)$, or at least dense subset of $\mathcal{G}^1(M)$, replacing Axiom A but until now no such a characterization exists for any dimension ≥ 3 .

Recently Morales-Pacifico-Pujals introduced the notion of singular hyperbolic set by generalizing both the geometric Lorenz attactor and the concept of hyperbolic set, and showed that C^1 robust transitive sets of 3-flows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall characterize a dense subset of $\mathcal{G}^1(M)$ on 3-manifold in this paper. Throughout the rest of this paper, we assume dim M = 3.

Before stating our theorem, we need the following definiton.

Definition 1.1 ([8], Definition 1) A compact invariant set Λ is a singular hyperbolic set of $X \in \chi^1(M)$ if it has singularities, all of them hyperbolic and there is a continuous splitting $TM/\Lambda = E^s \oplus E^{cu}$ invariant under DX_t such that E^{cu} contains the direction of the flow X_t , E^s is one-dimensional and there exist two numbers $\lambda > 0$ and C > 0 satisfying

- $\cdot \quad \|DX_t/E_x^s\| \cdot \|DX_{-t}/E_{X_t(x)}^{cu}\| \le Ce^{-\lambda t}$
- $\cdot \quad \|DX_t/E_x^s\| \le Ce^{-\lambda t}$

$$\cdot |\det(DX_t/E_x^{cu})| \ge Ce^{\lambda t}$$

for all $t \ge 0$ and $x \in \Lambda$. Here det(A) means the determinant of A.

Singular hyperbolic set is as sort of "partially" hyperbolic set which has volume expanding central direction. Here partially hyperbolicity implies that TM/Λ can be decomposed into $E^s \oplus E^{cu}$, E^s being a uniformly contracting one-dimensional bundle that dominates E^{cu} . Definiton 1.1 requires the additional condition that E^{cu} is volume expanding. It is easy to see that if singular hyperbolic set Λ has a compact invariant subset which is isolated from singularities in Λ , then this subset is hyperbolic. Hence we see that singular hyperbolicity is a generalized concept of hyperbolicity for 3-flows which can handle the invariant sets with singularities.

Now we state our result.

Theorem There exists a dense subset $\mathcal{U} \subset \mathcal{G}^1(M)$ such that for any $X \in \mathcal{U}$, replacing X by -X if necessary, X satisfies Axiom A or exhibits a singular hyperbolic set.

By above Theorem, any vector field in $\mathcal{G}^1(M)$ can be approximated by the vector fields which satisfy Axiom A or have the structure like the geometric Lorenz attractor.

2. Some Preliminaries

In this section we will state several results needed for the proof of Theorem. Let S be any vector field in $\mathcal{G}^1(M)$ and σ be any singularity of S. Since σ is hyperbolic, there exist neighborhoods $\mathcal{N}(S) \subset \mathcal{G}^1(M), U_{\sigma} \subset M$ of S and σ respectively and a continuous function $\rho : \mathcal{N}(S) \to U_{\sigma}$ which to each vector field $X \in \mathcal{N}(S)$ associates the unique singularity of X in U_{σ} . We call $\rho(X)$ the continuaton of σ for X. By ρ and compactness of M, Shas finite number of singularities, denoted by $\sigma_1(S), \ldots, \sigma_l(S)$ respectively, and next lemma is immediate.

Lemma 2.1 For any $S \in \mathcal{G}^1(M)$, there exists a neighborhood $\mathcal{U}_0 = \mathcal{U}_0(S)$ of S in $\mathcal{G}^1(M)$ such that singularities of each $X \in \mathcal{U}_0$ are only $\sigma_1(X), \ldots, \sigma_l(X)$, which are the continuations of $\sigma_1(S), \ldots, \sigma_l(S)$ for X respectively.

It is well-known that each element of $\mathcal{G}^1(M)$ has finitely many attracting and repelling periodic orbits ([10]). Denote the number of these periodic orbits of $S \in \mathcal{G}^1(M)$ by a(S) and r(S) respectively.

Lemma 2.2 Any $S \in \mathcal{G}^1(M)$ can be approximated by neighborhood $\mathcal{U}_1 = \mathcal{U}_1(S)$ in $\mathcal{G}^1(M)$ such that a(X) = a(Y), r(X) = r(Y) for all $X, Y \in \mathcal{U}_1$.

Proof. By contradiction, suppose that there exists a vector field S_0 and its neighborhood $\mathcal{B}_0 \subset \mathcal{G}^1(M)$ such that each $X \in \mathcal{B}_0$ is approximated by Y satisfying a(X) + r(X) < a(Y) + r(Y). Let $\mathcal{B}_n = \{X \in \mathcal{B}_0 : a(X) + r(X) \ge n\}$ $(n \ge 1)$ and then \mathcal{B}_n is open and dense in \mathcal{B}_0 . Since \mathcal{B}_0 is a Baire space, we can take $X_0 \in \bigcap_n \mathcal{B}_n (\subset \mathcal{B}_0)$. But clearly $a(X_0) + r(X_0) = \infty$, i.e., X_0 has infinite number of attracting or repelling periodic orbits. This is a contradiction to [10].

We take $\mathcal{U}_1 \subset \mathcal{U}_0$ in the following. Next we will characterize singularities of vector fields in \mathcal{U}_1 accumulated by the periodic orbits. To do this, we need the following definition.

Definition 2.3 ([8], Definition 3) Let $X \in \chi^1(M)$. We say that $\sigma \in Sing(X)$ is Lorenz-like if the eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$ of the derivative $D_{\sigma}X$ are real and satisfy

$$\lambda_2 < \lambda_3 < 0 < -\lambda_3 < \lambda_1.$$

In the following we denote by $per_1(X)$ and $\overline{per_1}(X)$ the sets of saddle periodic points of X and its closure respectively. We also denote by $\operatorname{ind} \sigma$ the index of σ , i.e., the dimension of stable subspace of $D_{\sigma}X$.

Proposition 2.4 Let $X \in U_1$ and $\sigma_X \in Sing(X) \cap \overline{per_1}(X)$ be given. Assume that $\operatorname{ind} \sigma_X = 2$. Then σ_X is Lorenz-like and satisfies

$$W^{ss}(\sigma_X) \cap \overline{per_1}(X) = \{\sigma_X\},\$$

where $W^{ss}(\sigma_X)$ is the stable manifold associated to the strong contracting eigenvalue λ_2 .

Proof. Proposition 2.4 is obtained by using the methods in the proof of [9, Lemmas 4.1 and 4.2] and the following lemma.

Lemma 2.5 ([4], the C^1 Connecting Lemma) Let $X \in \chi^1(M)$ and p, qbe two points which are not periodic. Assume that for all neighborhood Uand V of p and q respectively, there is $x \in U$ such that $X_t(x) \in V$ for some $t \ge 0$. Then $\forall \epsilon > 0$, $\exists L > 0$ such that for any $\delta > 0$, there is $Y C^1 \epsilon$ -close to X satisfying

·
$$Y = X$$
 on $M - B_{\delta} (X_{[0,L]}(p) \cup X_{[-L,0]}(q))$

 \cdot q is on the forward Y-orbit of p.

Here $X_{[a,b]}(x)$ denotes the segment of orbit $\{X_t(x) \mid a \leq t \leq b\}$ and $B_{\delta}(A)$ is δ -neighborhood of A in M.

By Lemma 2.5, we can perturb X to Y so that $Y \in \mathcal{U}_1$ and Y exhibits a homoclinic loop associated to σ_Y (continuation of σ_X for Y). We can further perturb Y to obtain C^{∞} vector field $Z \in \mathcal{U}_1$ such that Z still has a homoclinic loop associated to σ_Z .

Assume that there exists $X \in \mathcal{U}_1$ with $\sigma_X \in Sing(X) \cap \overline{per_1}(X)$ having a complex eigenvalue. Then σ_Z also has a complex eigenvalue. The argument of [14, p.247] shows that we can perturb Z to Z_1 , arbitrarily C^1 close to Z, to generate a new attracting periodic orbit. This contradicts $Z \in \mathcal{U}_1$, proving that the eigenvalues of σ_X are real.

We can arrange the eigenvalues λ_1 , λ_2 , λ_3 of $D_{\sigma}X$ such that

$$\lambda_2 \le \lambda_3 \le \lambda_1.$$

Then $X \in \mathcal{U}_1$ implies that $\lambda_3 < 0$ and $\lambda_1 > 0$. So if σ_X is not Lorenz-like, we

have that $|\lambda_2|$, $|\lambda_3| > \lambda_1$. Since the eigenvalues of σ_Z satisfy this inequality, [14, Theorem 3.2.12] enable us to perturb Z to generate a new attracting periodic orbit. This contradicts $Z \in \mathcal{U}_1$, proving σ_X is Lorenz-like. For the rest of Propotition, we can perturb X as in the proof of [9, Lemma 4.2] to generate an attracting periodic orbit again, which contradicts $X \in \mathcal{U}_1$.

3. Proof of Theorem

In this section we complete the proof of Theorem. For this let us state two key results. In [6], it was shown that on 2-manifolds compact invariant sets of diffeomorphisms in $\mathcal{F}^1(M)$ which have dense periodic orbits are hyperbolic. By applying the same method, we can immediately obtain the corresponding result for 3-flows as in the following (see also [12]).

Proposition 3.1 Let $X \in \mathcal{G}^1(M)$ and Λ is a compact invariant set of X which has dense periodic orbits. Then if $\Lambda \cap Sing(X) = \phi$, Λ is a hyperbolic set of X.

If $\Lambda \cap Sing(X) \neq \phi$, Λ cannot be a hyperbolic set of X. However the following result holds in parallel with above Proposition.

Proposition 3.2 Let $X \in \mathcal{G}^1(M)$ and Λ is a compact invariant set of X which has dense periodic orbits. Suppose that X has a neighborhood \mathcal{U}_X such that $a(Y_1) = a(Y_2)$ and $r(Y_1) = r(Y_2)$ for all $Y_1, Y_2 \in \mathcal{U}_X$. Then if $\Lambda \cap Sing(X) \neq \phi$ and every singularity in Λ is Lorenz-like, Λ is a singular hyperbolic set of X.

Proposition 3.2 is obtained from the methods in the proof of [9, Theorem C]. Let \mathcal{P}_{Λ} be the set of periodic orbits contained in Λ . Then we have the hyperbolic splitting $TM/\mathcal{P}_{\Lambda} = E^s \oplus E^X \oplus E^u$, where E^s is the stable bundle, E^u is the unstable bundle and E^X is tangent to the flow direction. We set $E^{cu} = E^X \oplus E^u$ and define over \mathcal{P}_{Λ} the splitting

$$TM/\mathcal{P}_{\Lambda} = E^s \oplus E^{cu}.$$
(1)

Suppose that we can extend this splitting continuously to the closure $\overline{\mathcal{P}_{\Lambda}} = \Lambda$, denoted by $TM/\Lambda = \tilde{E}^s \oplus \tilde{E}^{cu}$, and \tilde{E}^s dominates \tilde{E}^{cu} . Then we can show that \tilde{E}^s and \tilde{E}^{cu} is actually uniformly contracting and volume expanding bundle respectively. In fact if \tilde{E}^s (resp. \tilde{E}^{cu}) is not contracting (resp. volume

expanding), we can perturb X to generate a new repelling (resp. attracting) periodic orbit by [9, §5.3 and 5.4], the argument similar to [6, pp.521–524]. But this contradicts $X \in \mathcal{U}_1$. Thus we see that Λ is a singular hyperbolic set of X.

The proof of the continuous extension of (1) to Λ and the domination property of $(\tilde{E}^s, \tilde{E}^{cu})$ is rather technical, but the basic idea follow from [6] substantially. In fact it is primarily proved that (E^s, E^{cu}) has the domination property, then by this property and [7, Proposition 1.3], (1) can be extended continuously to Λ . To prove the domination property of (E^s, E^{cu}) , roughly speaking, it is enough to show that the angle between E^s and E^{cu} is uniformly bounded away from 0 over \mathcal{P}_{Λ} , which corresponds to the result of [6, Lemma II.9].

The hypothesis of robust transitivity is necessary to prove these facts for two reasons: to utilize the property of the periodic orbits of [9, Theorem 3.11] and prohibit the generation of new attracting or repelling periodic orbit by small C^1 perturbation. But our situation that $X \in \mathcal{U}_1$ satisfies these properties, hence we can directly use the proof of [9, Theorem C] to show Proposition 3.2.

To complete the proof of Theorem, we shall show that there exists a vector field in \mathcal{U}_1 of Lemma 2.2 which satisfies Axiom A or has a compact invariant subset satisfying the condition of Proposition 3.2. At first we state a well-known generic property without proof.

Lemma 3.3 There exists a residual subset \mathcal{R} of $\chi^1(M)$ such that, for any $X \in \mathcal{R}$, if K is a compact subset in M satisfying $\overline{per_1}(X) \cap K = \phi$, then $\overline{per_1}(Y) \cap K = \phi$ for all Y sufficiently C^1 close to X.

Since we now take $\mathcal{U}_1 \subset \mathcal{U}_0$, each $X \in \mathcal{U}_1$ has l singularities, $\sigma_1(X), \ldots, \sigma_l(X)$. By using Lemma 3.3 and arranging the subscript of these singularities appropriately, we obtain the following lemma.

Lemma 3.4 There exist a neighborhood $U_2 \subset U_1$ and number k with $0 \leq k \leq l$ such that

- 1) $X \in \mathcal{U}_2 \Rightarrow \sigma_1(X), \ldots, \sigma_k(X)$ are not accumulated by the periodic orbits of X.
- 2) $X \in \mathcal{U}_2 \cap \mathcal{R} \Rightarrow \sigma_{k+1}(X), \ldots, \sigma_l(X)$ are accumulated by the periodic orbits of X.

Proof. First assume that there exist $X_1 \in \mathcal{U}_1 \cap \mathcal{R}$ and $\sigma_1(X_1) \in Sing(X_1)$ such that $\overline{per_1}(X_1) \cap \{\sigma_1(X_1)\} = \phi$, otherwise the lemma is proved by setting $\mathcal{U}_2 = \mathcal{U}_1$ and k = 0. Then by Lemma 3.3, there exists a neighborhood \mathcal{V}_1 of X_1 in \mathcal{U}_1 such that $\overline{per_1}(Y) \cap \{\sigma_1(Y)\} = \phi$ for any $Y \in \mathcal{V}_1$. Next assume that there exist $X_2 \in \mathcal{V}_1 \cap \mathcal{R}$ and $\sigma_2(X_2) \in Sing(X_2)$ such that $\overline{per_1}(X_2) \cap \{\sigma_2(X_2)\} = \phi$, otherwise the lemma is proved by setting $\mathcal{U}_2 = \mathcal{V}_1$ and k = 1. Again by Lemma 3.3, there exists a neighborhood \mathcal{V}_2 of X_2 in \mathcal{V}_1 such that $\overline{per_1}(Y) \cap \{\sigma_2(Y)\} = \phi$ for any $Y \in \mathcal{V}_2$. Since the number of singularities of vector fields in \mathcal{U}_1 is l, we can prove the lemma by continuing this process at most l times.

Remark After continuing this process, suppose that we have reached the situation such that $Sing(X_0) \cap \overline{per_1}(X_0) = \phi$ for some $X_0 \in \mathcal{U}_1 \cap \mathcal{R}$. Then by Proposition 3.1, we have that $\overline{per_1}(X_0)$ (and therefore $\overline{Sing(X_0) \cup per(X_0)}$) is a hyperbolic set of X_0 . Moreover by the general density theorem ([11]), we may assume that $\Omega(X_0) = \overline{Sing(X_0) \cup per(X_0)}$. This implies X_0 satisfies Axiom A, proving our Theorem. So we will assume $k \leq l$ in the following.

Lemma 3.5 Let $X \in \mathcal{U}_2 \cap \mathcal{R}$. Then for any $\sigma_X \in Sing(X) \cap \overline{per_1}(X)$ and any $\delta > 0$, there exists a neighborhood \mathcal{W} of X in \mathcal{U}_2 such that each $Y \in \mathcal{W}$ satisfies

$$W^u(\sigma_Y) \subset B_\delta(\overline{per_1}(X)) \quad or \ W^s(\sigma_Y) \subset B_\delta(\overline{per_1}(X))$$

according to ind $\sigma_X = 2$ or 1 respectively. Here σ_Y is the continuation of σ_X for Y.

Proof. This Lemma corresponds to [9, Corollary 3.5], for which the property of robust transitivity is essential. The proof here is, however, the consequence from Lemma 3.3.

Suppose that on the contrary, there exist $\sigma_X \in Sing(X) \cap \overline{per_1}(X), \delta_0 > 0$ and Y_0 arbitrarily C^1 close to X such that the lemma is false. Replacing X by -X if necessary, we may assume ind $\sigma_X=2$, i.e., σ_X is Lorenz-like. So we assume that

$$W^{u}(\sigma_{Y_{0}}) \not\subset B_{\delta_{0}}(\overline{per_{1}}(X)).$$

Then there exists a neighborhood $\mathcal{V}(Y_0)$ of Y_0 in \mathcal{U}_2 such that for each $Z \in \mathcal{V}(Y_0)$, σ_Z is Lorenz-like and

$$W^u(\sigma_Z) \not\subset B_{\delta_0}(\overline{per_1}(X)).$$
 (2)

Shrinking $\mathcal{V}(Y_0)$ if necessary, we may also assume that

$$\overline{per_1}(Z) \subset B_{\delta_0}\big(\overline{per_1}(X)\big) \tag{3}$$

from Lemma 3.3. Now we carry out the following sequence of pertubations of Y_0 .

- 1. By Lemma 3.4 and (2), we can perturb Y_0 to Y_1 , arbitrarily C^1 close to Y_0 , so that $\sigma_{Y_1} \in Sing(Y_1) \cap \overline{per_1}(Y_1)$ and $W^u(\sigma_{Y_1}) \not\subset B_{\delta_0}(\overline{per_1}(X))$.
- 2. Then by using Lemma 2.5, we can perturb Y_1 to Y_2 , arbitrarily C^1 close to Y_1 , so that Y_2 exhibits a homoclinic loop Γ associated to σ_{Y_2} and still $W^u(\sigma_{Y_2}) \not\subset B_{\delta_0}(\overline{per_1}(X))$.
- 3. Since $W^u(\sigma_{Y_2}) \not\subset B_{\delta_0}(\overline{per_1}(X))$, there are orbits which are through points arbitrarily near Γ and leave $B_{\delta_0}(\overline{per_1}(X))$ along one branch of $W^u(\sigma_{Y_2})$. So we can perturb Y_2 to Y_3 , arbitrarily C^1 close to Y_2 , so that both branches of $W^u(\sigma_{Y_3})$ leave $B_{\delta_0}(\overline{per_1}(X))$.
- 4. Again by Lemma 3.4 we can perturb Y_3 to Y_4 , arbitrarily C^1 close to Y_3 , so that $\sigma_{Y_4} \in Sing(Y_4) \cap \overline{per_1}(Y_4)$ and both branches of $W^u(\sigma_{Y_4})$ still leave $B_{\delta_0}(\overline{per_1}(X))$. Clearly we have $\overline{per_1}(Y_4) B_{\delta_0}(\overline{per_1}(X)) \neq \phi$.

As we can perturb Y_0 to Y_4 arbitrarily C^1 close to Y_0 , this is a contradiction to (3). Thus we have completed the proof of Lemma 3.5.

Lemma 3.6 Let $X \in \mathcal{U}_2 \cap \mathcal{R}$. Then we have the following:

Let σ_1 , σ_2 be any two singularities of X. If there are points $p_n \in per_1(X)$ and numbers $t_n > 0$ such that $\lim_{n \to \infty} p_n = \sigma_1$ and $\lim_{n \to \infty} X_{t_n}(p_n) = \sigma_2$, then $\operatorname{ind} \sigma_1 = \operatorname{ind} \sigma_2$.

Proof. Suppose that X has two singularities $\sigma_1(X)$, $\sigma_2(X)$ such that the lemma is false. Let $\operatorname{ind} \sigma_1(X) = 1$ and $\operatorname{ind} \sigma_2(X) = 2$ respectively. By Proposition 2.4, we have $W^{uu}(\sigma_1(X)) \not\subset V$ for a small neighborhood V of $\overline{per_1}(X)$. Then using the argument in the proof of [9, Lemma 4.3], we can perturb X to Y, arbitrarily C^1 close to X so that $W^u(\sigma_2(Y)) \not\subset V$. This contradicts Lemma 3.5.

Now we conclude the proof of Theorem. Let S be any vector field in $\mathcal{G}^1(M)$. Then S can be C^1 approximated by $X \in \mathcal{U}_2 \cap \mathcal{R}$. By Lemma 3.4 and Remark after it, X has singularities accumulated by the periodic orbits, so we can take a sequence of saddle periodic orbits of X, $\{\gamma_n\}_{n\geq 1}$, such that

 $\overline{\bigcup_{n=1}^{\infty} \gamma_n} \cap Sing(X) \neq \phi$. Set $K = \overline{\bigcup_{n=1}^{\infty} \gamma_n}$. Since all the singularities in K have the same index by Lemma 3.6, replacing X by -X if necessary, we may assume that those index is two. So given $\sigma \in K \cap Sing(X)$, σ is Lorenz-like by Proposition 2.4. Then Proposition 3.2 implies that K is a singular hyperbolic set of X. We have completed the proof of Theorem.

Acknowledgement The author would like to appreciate R. Ito for his useful comments.

References

- Doering C., Persistently transitive vector fields on three-dimensional manifolds. Dynamical Systems and Bifurcation Theory (M.I. Camacho, M.J. Pacifico and F. Takens, eds.), Pitman Res. Notes Math. 160, Longman, 1987, 59–89.
- [2] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its application, Applied Mathmatical Series **19**, Springer-Verleg, 1976, 368–381.
- [3] Hayashi S., Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A. Erg. Th. & Dyn. Sys. 12 (1992), 233-253.
- [4] Hayashi S., Connecting invariant manifolds and the solution of the C^1 stability and Ω -stability Conjecture for flows. Ann. of Math. 145 (1997), 81–137.
- [5] Liao S.T., On the stability conjecture. Chinese Ann. of Math. 1 (1980), 9–30.
- [6] Mañé R., An ergodic closing lemma. Ann. of Math. 116 (1982), 503–540.
- [7] Mañé R., Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc. 246 (1978), 261–283.
- [8] Morales C.A., Pacifico M.J. and Pujals E.R., On C¹ robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Ser. I Math. **326** (1998), 81–86.
- [9] Morales C.A., Pacifico M.J. and Pujals E.R., Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Preprint.
- [10] Pliss V.A., On a conjecture due to Smale. Diff. Uravenyia 8 (1972), 268-282.
- [11] Pugh C., An improved closing lemma and a general density theorem. Amer. J. Math.
 89 (1967), 1010–1021.
- [12] Toyoshiba H., Nonsingular vector fields in $\mathcal{G}^1(M^3)$ satisfy Axiom A and no cycle: a new proof of Liao's theorem. Hokkaido Math. J. **29** (2000), 45–58.
- [13] Wen L., On the C^1 stability conjecture for flows. J. Diff. Eq. **129** (1996), 334–357.
- [14] Wiggins S., Grobal bifurcations and chaos: analytical methods. Applied Math. Sci. 73, Springer-Verlag, New York-Berlin, 1988.

Department of Medical Informatics Kyushu University Maidashi, Higashi-ku, Fukuoka 812-8582 Japan E-mail: takeharu@info.med.kyushu-u.ac.jp