A characterization of dense vector fields in $\mathcal{G}^{1}(M)$ on $\mathbf{3}$-manifolds

Takeharu Yamanaka
(Received June 5, 2000; Revised October 30, 2000)

Abstract

Recently Morales-Pacfico-Pujals introduced the new concept of singular hyperbolicity and showed that C^{1} robust transitive sets of 3-flows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall characterize a dense subset of $\mathcal{G}^{1}(M)$ with $\operatorname{dim} M=3$.

Key words: $\mathcal{G}^{1}(M)$, singular hyperbolic set, Axiom A.

1. Introduction

The purpose of this paper is to study the space of vector fields known as $\mathcal{G}^{1}(M)$. Let M be a compact smooth manifold without boundary. We denote by $\chi^{1}(M)$ the set of C^{1} vector fields on M, endowed with the C^{1} topology and by $X_{t}(t \in \mathbb{R})$ the C^{1} flow on M generated by $X \in \chi^{1}(M)$. $\Omega(X), \operatorname{per}(X), \operatorname{Sing}(X)$ are the sets of nonwandering, periodic and singular points of X respectively. Recall that a set $\Lambda \subset M$ is called a hyperbolic set of X if compact, invariant and there exists a continuous splitting $T M / \Lambda=$ $E^{s} \oplus E^{X} \oplus E^{u}$, invariant under the derivative of flow $X_{t}, D X_{t}$, where E^{s} and E^{u} are exponentially contracted and expanded respectively by $D X_{t}$ and E^{X} is tangent to X. We say that $X \in \chi^{1}(M)$ satisfies Axiom A if $\Omega(X)$ is a hyperbolic set of X and $\Omega(X)=\overline{\operatorname{Sing}(X) \cup \operatorname{per}(X)}$ (We denote by \bar{A} the closure of A in $M)$. Let $\mathcal{G}^{1}(M)$ be the interior of the set of vector fields in $\chi^{1}(M)$ whose critical elements (singularities and periodic orbits) are hyperbolic.

In [3], Hayashi showed that diffeomorphisms in $\mathcal{F}^{1}(M)$ satisfy Axiom A where $\mathcal{F}^{1}(M)$ is the diffeomorphism version of $\mathcal{G}^{1}(M)$ and this naturally give rise to the following question: Do vector fields in $\mathcal{G}^{1}(M)$ satisfy Axiom A? Unfortunately this does not hold generally and the geometric Lorenz attractor in [2] is well-known as one of the counter examples. Vector field generating this attractor is an element of $\mathcal{G}^{1}(M)$ but has singularities accu-
mulated by the periodic orbits, hence its nonwandering set cannot be the hyperbolic set. So we hope for the other characterization of $\mathcal{G}^{1}(M)$, or at least dense subset of $\mathcal{G}^{1}(M)$, replacing Axiom A but until now no such a characterization exists for any dimension ≥ 3.

Recently Morales-Pacifico-Pujals introduced the notion of singular hyperbolic set by generalizing both the geometric Lorenz attactor and the concept of hyperbolic set, and showed that C^{1} robust transitive sets of 3 flows are singular hyperbolic sets $([8],[9])$. Based on their papers, we shall characterize a dense subset of $\mathcal{G}^{1}(M)$ on 3 -manifold in this paper. Throughout the rest of this paper, we assume $\operatorname{dim} M=3$.

Before stating our theorem, we need the following definiton.
Definition 1.1 ([8], Definition 1) A compact invariant set Λ is a singular hyperbolic set of $X \in \chi^{1}(M)$ if it has singularities, all of them hyperbolic and there is a continuous splitting $T M / \Lambda=E^{s} \oplus E^{c u}$ invariant under $D X_{t}$ such that $E^{c u}$ contains the direction of the flow X_{t}, E^{s} is one-dimensional and there exist two numbers $\lambda>0$ and $C>0$ satisfying

$$
\begin{aligned}
& \left\|D X_{t} / E_{x}^{s}\right\| \cdot\left\|D X_{-t} / E_{X_{t}(x)}^{c u}\right\| \leq C e^{-\lambda t} \\
& \left\|D X_{t} / E_{x}^{s}\right\| \leq C e^{-\lambda t} \\
& \left|\operatorname{det}\left(D X_{t} / E_{x}^{c u}\right)\right| \geq C e^{\lambda t}
\end{aligned}
$$

for all $t \geq 0$ and $x \in \Lambda$. Here $\operatorname{det}(A)$ means the determinant of A.
Singular hyperbolic set is as sort of "partially" hyperbolic set which has volume expanding central direction. Here partially hyperbolicity implies that $T M / \Lambda$ can be decomposed into $E^{s} \oplus E^{c u}, E^{s}$ being a uniformly contracting one-dimensional bundle that dominates $E^{c u}$. Definiton 1.1 requires the additional condition that $E^{c u}$ is volume expanding. It is easy to see that if singular hyperbolic set Λ has a compact invariant subset which is isolated from singularities in Λ, then this subset is hyperbolic. Hence we see that singular hyperbolicity is a generalized concept of hyperbolicity for 3 -flows which can handle the invariant sets with singularities.

Now we state our result.
Theorem There exists a dense subset $\mathcal{U} \subset \mathcal{G}^{1}(M)$ such that for any $X \in$ \mathcal{U}, replacing X by $-X$ if necessary, X satisfies Axiom A or exhibits a singular hyperbolic set.

By above Theorem, any vector field in $\mathcal{G}^{1}(M)$ can be approximated by the vector fields which satisfy Axiom A or have the structure like the geometric Lorenz attractor.

2. Some Preliminaries

In this section we will state several results needed for the proof of Theorem. Let S be any vector field in $\mathcal{G}^{1}(M)$ and σ be any singularity of S. Since σ is hyperbolic, there exist neighborhoods $\mathcal{N}(S) \subset \mathcal{G}^{1}(M), U_{\sigma} \subset M$ of S and σ respectively and a continuous function $\rho: \mathcal{N}(S) \rightarrow U_{\sigma}$ which to each vector field $X \in \mathcal{N}(S)$ associates the unique singularity of X in U_{σ}. We call $\rho(X)$ the continuaton of σ for X. By ρ and compactness of M, S has finite number of singularities, denoted by $\sigma_{1}(S), \ldots, \sigma_{l}(S)$ respectively, and next lemma is immediate.

Lemma 2.1 For any $S \in \mathcal{G}^{1}(M)$, there exists a neighborhood $\mathcal{U}_{0}=\mathcal{U}_{0}(S)$ of S in $\mathcal{G}^{1}(M)$ such that singularities of each $X \in \mathcal{U}_{0}$ are only $\sigma_{1}(X), \ldots$, $\sigma_{l}(X)$, which are the continuations of $\sigma_{1}(S), \ldots, \sigma_{l}(S)$ for X respectively.

It is well-known that each element of $\mathcal{G}^{1}(M)$ has finitely many attracting and repelling periodic orbits $([10])$. Denote the number of these periodic orbits of $S \in \mathcal{G}^{1}(M)$ by $a(S)$ and $r(S)$ respectively.

Lemma 2.2 Any $S \in \mathcal{G}^{1}(M)$ can be approximated by neighborhood $\mathcal{U}_{1}=$ $\mathcal{U}_{1}(S)$ in $\mathcal{G}^{1}(M)$ such that $a(X)=a(Y), r(X)=r(Y)$ for all $X, Y \in \mathcal{U}_{1}$.

Proof. By contradiction, suppose that there exists a vector field S_{0} and its neighborhood $\mathcal{B}_{0} \subset \mathcal{G}^{1}(M)$ such that each $X \in \mathcal{B}_{0}$ is approximated by Y satisfying $a(X)+r(X)<a(Y)+r(Y)$. Let $\mathcal{B}_{n}=\left\{X \in \mathcal{B}_{0}: a(X)+\right.$ $r(X) \geq n\}(n \geq 1)$ and then \mathcal{B}_{n} is open and dense in \mathcal{B}_{0}. Since \mathcal{B}_{0} is a Baire space, we can take $X_{0} \in \bigcap_{n} \mathcal{B}_{n}\left(\subset \mathcal{B}_{0}\right)$. But clearly $a\left(X_{0}\right)+r\left(X_{0}\right)=\infty$, i.e., X_{0} has infinite number of attracting or repelling periodic orbits. This is a contradiction to [10].

We take $\mathcal{U}_{1} \subset \mathcal{U}_{0}$ in the following. Next we will characterize singularities of vector fields in \mathcal{U}_{1} accumulated by the periodic orbits. To do this, we need the following definition.
Definition 2.3 ($[8]$, Definition 3) Let $X \in \chi^{1}(M)$. We say that $\sigma \in$ $\operatorname{Sing}(X)$ is Lorenz-like if the eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ of the derivative $D_{\sigma} X$ are real and satisfy

$$
\lambda_{2}<\lambda_{3}<0<-\lambda_{3}<\lambda_{1}
$$

In the following we denote by $\operatorname{per}_{1}(X)$ and $\overline{\operatorname{per}_{1}}(X)$ the sets of saddle periodic points of X and its closure respectively. We also denote by ind σ the index of σ, i.e., the dimension of stable subspace of $D_{\sigma} X$.

Proposition 2.4 Let $X \in \mathcal{U}_{1}$ and $\sigma_{X} \in \operatorname{Sing}(X) \cap \overline{\operatorname{per}_{1}}(X)$ be given. Assume that ind $\sigma_{X}=2$. Then σ_{X} is Lorenz-like and satisfies

$$
W^{s s}\left(\sigma_{X}\right) \cap \overline{\operatorname{per}_{1}}(X)=\left\{\sigma_{X}\right\}
$$

where $W^{s s}\left(\sigma_{X}\right)$ is the stable manifold associated to the strong contracting eigenvalue λ_{2}.

Proof. Proposition 2.4 is obtained by using the methods in the proof of [9, Lemmas 4.1 and 4.2] and the following lemma.

Lemma 2.5 ([4], the C^{1} Connecting Lemma) Let $X \in \chi^{1}(M)$ and p, q be two points which are not periodic. Assume that for all neighborhood U and V of p and q respectively, there is $x \in U$ such that $X_{t}(x) \in V$ for some $t \geq 0$. Then $\forall \epsilon>0, \exists L>0$ such that for any $\delta>0$, there is $Y C^{1} \epsilon$-close to X satisfying

- $Y=X$ on $M-B_{\delta}\left(X_{[0, L]}(p) \cup X_{[-L, 0]}(q)\right)$
- q is on the forward Y-orbit of p.

Here $X_{[a, b]}(x)$ denotes the segment of orbit $\left\{X_{t}(x) \mid a \leq t \leq b\right\}$ and $B_{\delta}(A)$ is δ-neighborhood of A in M.

By Lemma 2.5, we can perturb X to Y so that $Y \in \mathcal{U}_{1}$ and Y exhibits a homoclinic loop associated to σ_{Y} (continuation of σ_{X} for Y). We can further perturb Y to obtain C^{∞} vector field $Z \in \mathcal{U}_{1}$ such that Z still has a homoclinic loop associated to σ_{Z}.

Assume that there exists $X \in \mathcal{U}_{1}$ with $\sigma_{X} \in \operatorname{Sing}(X) \cap \overline{\operatorname{per}_{1}}(X)$ having a complex eigenvalue. Then σ_{Z} also has a complex eigenvalue. The argument of [14, p.247] shows that we can perturb Z to Z_{1}, arbitrarily C^{1} close to Z, to generate a new attracting periodic orbit. This contradicts $Z \in \mathcal{U}_{1}$, proving that the eigenvalues of σ_{X} are real.

We can arrange the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $D_{\sigma} X$ such that

$$
\lambda_{2} \leq \lambda_{3} \leq \lambda_{1}
$$

Then $X \in \mathcal{U}_{1}$ implies that $\lambda_{3}<0$ and $\lambda_{1}>0$. So if σ_{X} is not Lorenz-like, we
have that $\left|\lambda_{2}\right|,\left|\lambda_{3}\right|>\lambda_{1}$. Since the eigenvalues of σ_{Z} satisfy this inequality, [14, Theorem 3.2.12] enable us to perturb Z to generate a new attracting periodic orbit. This contradicts $Z \in \mathcal{U}_{1}$, proving σ_{X} is Lorenz-like. For the rest of Propotition, we can perturb X as in the proof of [9, Lemma 4.2] to generate an attracting periodic orbit again, which contradicts $X \in \mathcal{U}_{1}$.

3. Proof of Theorem

In this section we complete the proof of Theorem. For this let us state two key results. In [6], it was shown that on 2-manifolds compact invariant sets of diffeomorphisms in $\mathcal{F}^{1}(M)$ which have dense periodic orbits are hyperbolic. By applying the same method, we can immediately obtain the corresponding result for 3 -flows as in the following (see also [12]).
Proposition 3.1 Let $X \in \mathcal{G}^{1}(M)$ and Λ is a compact invariant set of X which has dense periodic orbits. Then if $\Lambda \cap \operatorname{Sing}(X)=\phi, \Lambda$ is a hyperbolic set of X.

If $\Lambda \cap \operatorname{Sing}(X) \neq \phi, \Lambda$ cannot be a hyperbolic set of X. However the following result holds in parallel with above Proposition.
Proposition 3.2 Let $X \in \mathcal{G}^{1}(M)$ and Λ is a compact invariant set of X which has dense periodic orbits. Suppose that X has a neighborhood \mathcal{U}_{X} such that $a\left(Y_{1}\right)=a\left(Y_{2}\right)$ and $r\left(Y_{1}\right)=r\left(Y_{2}\right)$ for all $Y_{1}, Y_{2} \in \mathcal{U}_{X}$. Then if $\Lambda \cap \operatorname{Sing}(X) \neq \phi$ and every singularity in Λ is Lorenz-like, Λ is a singular hyperbolic set of X.

Proposition 3.2 is obtained from the methods in the proof of [9, Theorem C]. Let \mathcal{P}_{Λ} be the set of periodic orbits contained in Λ. Then we have the hyperbolic splitting $T M / \mathcal{P}_{\Lambda}=E^{s} \oplus E^{X} \oplus E^{u}$, where E^{s} is the stable bundle, E^{u} is the unstable bundle and E^{X} is tangent to the flow direction. We set $E^{c u}=E^{X} \oplus E^{u}$ and define over \mathcal{P}_{Λ} the splitting

$$
\begin{equation*}
T M / \mathcal{P}_{\Lambda}=E^{s} \oplus E^{c u} . \tag{1}
\end{equation*}
$$

Suppose that we can extend this splitting continuously to the closure $\overline{\mathcal{P}_{\Lambda}}=$ Λ, denoted by $T M / \Lambda=\tilde{E}^{s} \oplus \tilde{E}^{c u}$, and \tilde{E}^{s} dominates $\tilde{E}^{c u}$. Then we can show that \tilde{E}^{s} and $\tilde{E}^{c u}$ is actually uniformly contracting and volume expanding bundle respectively. In fact if \tilde{E}^{s} (resp. $\tilde{E}^{c u}$) is not contracting (resp. volume
expanding), we can perturb X to generate a new repelling (resp. attracting) periodic orbit by $[9, \S 5.3$ and 5.4$]$, the argument similar to [$6, \mathrm{pp} .521-524]$. But this contradicts $X \in \mathcal{U}_{1}$. Thus we see that Λ is a singular hyperbolic set of X.

The proof of the continuous extension of (1) to Λ and the domination property of ($\tilde{E}^{s}, \tilde{E}^{c u}$) is rather technical, but the basic idea follow from [6] substantially. In fact it is primarily proved that ($E^{s}, E^{c u}$) has the domination property, then by this property and [7, Proposition 1.3], (1) can be extended continuously to Λ. To prove the domination property of $\left(E^{s}, E^{c u}\right)$, roughly speaking, it is enough to show that the angle between E^{s} and $E^{c u}$ is uniformly bounded away from 0 over \mathcal{P}_{Λ}, which corresponds to the result of [6, Lemma II.9].

The hypothesis of robust transitivity is necessary to prove these facts for two reasons: to utilize the property of the periodic orbits of [9, Theorem 3.11] and prohibit the generation of new attracting or repelling periodic orbit by small C^{1} perturbation. But our situation that $X \in \mathcal{U}_{1}$ satisfies these properties, hence we can directly use the proof of $[9$, Theorem C$]$ to show Proposition 3.2.

To complete the proof of Theorem, we shall show that there exists a vector field in \mathcal{U}_{1} of Lemma 2.2 which satisfies Axiom A or has a compact invariant subset satisfying the condition of Proposition 3.2. At first we state a well-known generic property without proof.

Lemma 3.3 There exists a residual subset \mathcal{R} of $\chi^{1}(M)$ such that, for any $X \in \mathcal{R}$, if K is a compact subset in M satisfying $\overline{\operatorname{per}_{1}}(X) \cap K=\phi$, then $\overline{\operatorname{per}_{1}}(Y) \cap K=\phi$ for all Y sufficiently C^{1} close to X.

Since we now take $\mathcal{U}_{1} \subset \mathcal{U}_{0}$, each $X \in \mathcal{U}_{1}$ has l singularities, $\sigma_{1}(X), \ldots, \sigma_{l}(X)$. By using Lemma 3.3 and arranging the subscript of these singularities appropriately, we obtain the following lemma.

Lemma 3.4 There exist a neighborhood $\mathcal{U}_{2} \subset \mathcal{U}_{1}$ and number k with $0 \leq$ $k \leq l$ such that

1) $X \in \mathcal{U}_{2} \Rightarrow \sigma_{1}(X), \ldots, \sigma_{k}(X)$ are not accumulated by the periodic orbits of X.
2) $X \in \mathcal{U}_{2} \cap \mathcal{R} \Rightarrow \sigma_{k+1}(X), \ldots, \sigma_{l}(X)$ are accumulated by the periodic orbits of X.

Proof. First assume that there exist $X_{1} \in \mathcal{U}_{1} \cap \mathcal{R}$ and $\sigma_{1}\left(X_{1}\right) \in \operatorname{Sing}\left(X_{1}\right)$ such that $\overline{p e r_{1}}\left(X_{1}\right) \cap\left\{\sigma_{1}\left(X_{1}\right)\right\}=\phi$, otherwise the lemma is proved by setting $\mathcal{U}_{2}=\mathcal{U}_{1}$ and $k=0$. Then by Lemma 3.3, there exists a neighborhood \mathcal{V}_{1} of X_{1} in \mathcal{U}_{1} such that $\overline{p e r_{1}}(Y) \cap\left\{\sigma_{1}(Y)\right\}=\phi$ for any $Y \in \mathcal{V}_{1}$. Next assume that there exist $X_{2} \in \mathcal{V}_{1} \cap \mathcal{R}$ and $\sigma_{2}\left(X_{2}\right) \in \operatorname{Sing}\left(X_{2}\right)$ such that $\overline{\text { per }_{1}}\left(X_{2}\right) \cap$ $\left\{\sigma_{2}\left(X_{2}\right)\right\}=\phi$, otherwise the lemma is proved by setting $\mathcal{U}_{2}=\mathcal{V}_{1}$ and $k=1$. Again by Lemma 3.3, there exists a neighborhood \mathcal{V}_{2} of X_{2} in \mathcal{V}_{1} such that $\overline{\operatorname{per}_{1}}(Y) \cap\left\{\sigma_{2}(Y)\right\}=\phi$ for any $Y \in \mathcal{V}_{2}$. Since the number of singularities of vector fields in \mathcal{U}_{1} is l, we can prove the lemma by continuing this process at most l times.

Remark After continuing this process, suppose that we have reached the situation such that $\operatorname{Sing}\left(X_{0}\right) \cap \overline{p e r_{1}}\left(X_{0}\right)=\phi$ for some $X_{0} \in \mathcal{U}_{1} \cap \mathcal{R}$. Then by Proposition 3.1, we have that $\overline{\operatorname{per}_{1}}\left(X_{0}\right)$ (and therefore $\overline{\operatorname{Sing}\left(X_{0}\right) \cup \operatorname{per}\left(X_{0}\right)}$) is a hyperbolic set of X_{0}. Moreover by the general density theorem ([11]), we may assume that $\Omega\left(X_{0}\right)=\overline{\operatorname{Sing}\left(X_{0}\right) \cup \operatorname{per}\left(X_{0}\right)}$. This implies X_{0} satisfies Axiom A, proving our Theorem. So we will assume $k \leqq l$ in the following.
Lemma 3.5 Let $X \in \mathcal{U}_{2} \cap \mathcal{R}$. Then for any $\sigma_{X} \in \operatorname{Sing}(X) \cap \overline{\operatorname{per}_{1}}(X)$ and any $\delta>0$, there exists a neighborhood \mathcal{W} of X in \mathcal{U}_{2} such that each $Y \in \mathcal{W}$ satisfies

$$
W^{u}\left(\sigma_{Y}\right) \subset B_{\delta}\left(\overline{\operatorname{per}_{1}}(X)\right) \quad \text { or } \quad W^{s}\left(\sigma_{Y}\right) \subset B_{\delta}\left(\overline{\operatorname{per}_{1}}(X)\right)
$$

according to ind $\sigma_{X}=2$ or 1 respectively. Here σ_{Y} is the continuation of σ_{X} for Y.

Proof. This Lemma corresponds to [9, Corollary 3.5], for which the property of robust transitivity is essential. The proof here is, however, the conseqence from Lemma 3.3 .

Suppose that on the contrary, there exist $\sigma_{X} \in \operatorname{Sing}(X) \cap \overline{\operatorname{per}_{1}}(X), \delta_{0}>$ 0 and Y_{0} arbitrarily C^{1} close to X such that the lemma is false. Replacing X by $-X$ if necessary, we may assume ind $\sigma_{X}=2$, i.e., σ_{X} is Lorenz-like. So we assume that

$$
W^{u}\left(\sigma_{Y_{0}}\right) \not \subset B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right) .
$$

Then there exists a neighborhood $\mathcal{V}\left(Y_{0}\right)$ of Y_{0} in \mathcal{U}_{2} such that for each $Z \in$ $\mathcal{V}\left(Y_{0}\right), \sigma_{Z}$ is Lorenz-like and

$$
\begin{equation*}
W^{u}\left(\sigma_{Z}\right) \not \subset B_{\delta_{0}}\left(\overline{p_{1} r_{1}}(X)\right) . \tag{2}
\end{equation*}
$$

Shrinking $\mathcal{V}\left(Y_{0}\right)$ if necessary, we may also assume that

$$
\begin{equation*}
\overline{\operatorname{per}_{1}}(Z) \subset B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right) \tag{3}
\end{equation*}
$$

from Lemma 3.3. Now we carry out the following sequence of pertubations of Y_{0}.

1. By Lemma 3.4 and (2), we can perturb Y_{0} to Y_{1}, arbitrarily C^{1} close to Y_{0}, so that $\sigma_{Y_{1}} \in \operatorname{Sing}\left(Y_{1}\right) \cap \overline{\operatorname{per}_{1}}\left(Y_{1}\right)$ and $W^{u}\left(\sigma_{Y_{1}}\right) \not \subset B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right)$.
2. Then by using Lemma 2.5, we can perturb Y_{1} to Y_{2}, arbitrarily C^{1} close to Y_{1}, so that Y_{2} exhibits a homoclinic loop Γ associated to $\sigma_{Y_{2}}$ and still $W^{u}\left(\sigma_{Y_{2}}\right) \not \subset B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right)$.
3. Since $W^{u}\left(\sigma_{Y_{2}}\right) \not \subset B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right)$, there are orbits which are through points arbitrarily near Γ and leave $B_{\delta_{0}}\left(\overline{\overline{p e r}_{1}}(X)\right)$ along one branch of $W^{u}\left(\sigma_{Y_{2}}\right)$. So we can perturb Y_{2} to Y_{3}, arbitrarily C^{1} close to Y_{2}, so that both branches of $W^{u}\left(\sigma_{Y_{3}}\right)$ leave $B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right)$.
4. Again by Lemma 3.4 we can perturb Y_{3} to Y_{4}, arbitrarily C^{1} close to Y_{3}, so that $\sigma_{Y_{4}} \in \operatorname{Sing}\left(Y_{4}\right) \cap \overline{\operatorname{per}}\left(Y_{4}\right)$ and both branches of $W^{u}\left(\sigma_{Y_{4}}\right)$ still leave $B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right)$. Clearly we have $\overline{\operatorname{per}_{1}}\left(Y_{4}\right)-B_{\delta_{0}}\left(\overline{\operatorname{per}_{1}}(X)\right) \neq$ ϕ.

As we can perturb Y_{0} to Y_{4} arbitrarily C^{1} close to Y_{0}, this is a contradiction to (3). Thus we have completed the proof of Lemma 3.5.

Lemma 3.6 Let $X \in \mathcal{U}_{2} \cap \mathcal{R}$. Then we have the following:
Let σ_{1}, σ_{2} be any two singularities of X. If there are points $p_{n} \in$ $\operatorname{per}_{1}(X)$ and numbers $t_{n}>0$ such that $\lim _{n \rightarrow \infty} p_{n}=\sigma_{1}$ and $\lim _{n \rightarrow \infty} X_{t_{n}}\left(p_{n}\right)=$ σ_{2}, then ind $\sigma_{1}=\operatorname{ind} \sigma_{2}$.

Proof. Suppose that X has two singularities $\sigma_{1}(X), \sigma_{2}(X)$ such that the lemma is false. Let ind $\sigma_{1}(X)=1$ and ind $\sigma_{2}(X)=2$ respectively. By Proposition 2.4, we have $W^{u u}\left(\sigma_{1}(X)\right) \not \subset V$ for a small neighborhood V of $\overline{\operatorname{per}_{1}}(X)$. Then using the argument in the proof of [9, Lemma 4.3], we can perturb X to Y, arbitrarily C^{1} close to X so that $W^{u}\left(\sigma_{2}(Y)\right) \not \subset V$. This contradicts Lemma 3.5.

Now we conclude the proof of Theorem. Let S be any vector field in $\mathcal{G}^{1}(M)$. Then S can be C^{1} approximated by $X \in \mathcal{U}_{2} \cap \mathcal{R}$. By Lemma 3.4 and Remark after it, X has singularities accumulated by the periodic orbits, so we can take a sequence of saddle periodic orbits of $X,\left\{\gamma_{n}\right\}_{n \geq 1}$, such that
$\overline{\bigcup_{n=1}^{\infty} \gamma_{n}} \cap \operatorname{Sing}(X) \neq \phi$. Set $K=\overline{\bigcup_{n=1}^{\infty} \gamma_{n}}$. Since all the singularities in K have the same index by Lemma 3.6, replacing X by $-X$ if necessary, we may assume that those index is two. So given $\sigma \in K \cap \operatorname{Sing}(X), \sigma$ is Lorenz-like by Proposition 2.4. Then Propositon 3.2 implies that K is a singular hyperbolic set of X. We have completed the proof of Theorem.

Acknowledgement The author would like to appreciate R. Ito for his useful comments.

References

[1] Doering C., Persistently transitive vector fields on three-dimensional manifolds. Dynamical Systems and Bifurcation Theory (M.I. Camacho, M.J. Pacifico and F. Takens, eds.), Pitman Res. Notes Math. 160, Longman, 1987, 59-89.
[2] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its application, Applied Mathmatical Series 19, Springer-Verleg, 1976, 368-381.
[3] Hayashi S., Diffeomorphisms in $\mathcal{F}^{1}(M)$ satisfy Axiom A. Erg. Th. \& Dyn. Sys. 12 (1992), 233-253.
[4] Hayashi S., Connecting invariant manifolds and the solution of the C^{1} stability and Ω-stability Conjecture for flows. Ann. of Math. 145 (1997), 81-137.
[5] Liao S.T., On the stability conjecture. Chinese Ann. of Math. 1 (1980), 9-30.
[6] Mañé R., An ergodic closing lemma. Ann. of Math. 116 (1982), 503-540.
[7] Mañé R., Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc. 246 (1978), 261-283.
[8] Morales C.A., Pacifico M.J. and Pujals E.R., On C^{1} robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Ser. I Math. 326 (1998), 81-86.
[9] Morales C.A., Pacifico M.J. and Pujals E.R., Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Preprint.
[10] Pliss V.A., On a conjecture due to Smale. Diff. Uravenyia 8 (1972), 268-282.
[11] Pugh C., An improved closing lemma and a general density theorem. Amer. J. Math. 89 (1967), 1010-1021.
[12] Toyoshiba H., Nonsingular vector fields in $\mathcal{G}^{1}\left(M^{3}\right)$ satisfy Axiom A and no cycle: a new proof of Liao's theorem. Hokkaido Math. J. 29 (2000), 45-58.
[13] Wen L., On the C^{1} stability conjecture for flows. J. Diff. Eq. 129 (1996), 334-357.
[14] Wiggins S., Grobal bifurcations and chaos: analytical methods. Applied Math. Sci. 73, Springer-Verlag, New York-Berlin, 1988.

Department of Medical Informatics Kyushu University Maidashi, Higashi-ku, Fukuoka 812-8582 Japan
E-mail: takeharu@info.med.kyushu-u.ac.jp

