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Abstract. Let Qn and D, denote the generalized quaternion group and the dihedral
group of order 2"+ (n > 2), respectively. Let SD, denote the semidihedral group of
order 2"*1 (n > 3). Let ¢ be a faithful irreducible character of H, where H = Qn or Dy
or SD,,. The purpose of this paper is to determine all 2-groups G such that H C G and
the induced character ¢ is also irreducible.
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1. Introduction

Let @, and D,, denote the generalized quaternion group and the di-
hedral group of order 2"*! (n > 2), respectively. Let SD, denote the
semidihedral group of order 2"*! (n > 3).

As is stated in [4], these groups have remarkable properties among all
2-groups.

Moreover, Yamada and Iida [5] proved the following interesting result:

Let Q denote the rational field. Let G be a 2-group and x a complex
irreducible character of G. Then there exist subgroups H > N in G and
the complex irreducible character ¢ of H such that x = ¢%, Q(x) = Q(¢),
N = Ker ¢ and

H/N 2Q, (n>2), or D, (n>3), or SD, (n>3),
or C, (n>0),
where C,, is the cyclic group of order 2", and Q(x) = Q(x(9), g € G).

In [4], Yamada and Iida considered the case when N = 1, or equivalently
¢ is faithful. They studied the following problem:

Problem Let ¢ be a faithful irreducible character of H, where H = Q,
or D,, or SD,,. Determine the 2-group G such that H C G and the induced
character ¢€ is also irreducible.
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It is well-known that the groups @Q,, D, and SD,, have faithful irre-
ducible characters. It is also known that they are algebraically conjugate to
each other. Hence the irreducibility of ¢©, where ¢ is a faithful irreducible
character of H = @, or D,, or SD,, does not depend on the particular
choice of ¢, but depends only on these groups.

This problem has been solved in each of the following cases:

(1) When [G: H] =2 or 4 ([4)]),

(2) When [G: H] =8 ([6]),

(3) When H is a normal subgroup of G ([3]),
for all H = Q,, or D, or SD,,

The purpose of this paper is to give a complete answer to this problem
forall H = @, or D,, or SD,,.

For other results concerning this problem, see .

In this paper, we will frequently use the word “respectively” so it is
abbreviated to “resp.”.

2. Statements of the results

We use the following notation throught this paper.
e The dihedral group D,, = (a, b) (n > 2) with

=1, ¥=1, babl=qaL

e The generalized quaternion group @, = (a, b) (n > 2) with
¥ =1, b= aQn_l, bab~! = a7 1.

e The semidihedral group SD,, = (a, b) (n > 3) with

" =1, =1, babt=qg 1t

To state our results, we have to introduce the following groups:
(1) D(n,m) = (a, b, um) (> D, = (a, b)) (1 <m < n - 2) with

n m _ _ _ n—m
" =b*=ur" =1, babl=a 1 umaum1 = q!t?

Um b = buyy,.

bl

(2) Q(n,m)=/{(a, b, um) (>Qn={a, b)) (1 <m < n-2) with

n m n—1 _ _ _ n—m
a? :uib =1, ¥¥=a*"", babl=0a"!, umaum1 = qgl*?

Umb = buy,.
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(3) Do(n,1,1) = (a, b, u1, z) (>D(n,1) = (a, b, uy)) with

n _ — _ n-—1
a? :b2:u%=x2:1, bab™l = a7t ulau11:a1+2
urb = buy, zazr™!=au;, zbr !

)

=buy, u1T = zU].

(4) Qo(n,1,1)=(a, b, u1, z) (>Q(n,1) = (a, b, uy)) with

n n—1 _ _ _ n—1
a? =u%:x2:1, b2 =a?", bab™! = a1, ulau11=a1+2 ,
—_ _ n—1
urh = buy, zazr~!=auy, xbr ! =q? bui, w1 = zu;.

(5) D(n,m,1)=(a, b, um, z) (>D(n,m) = (a, b, up)) (2<m < n-3)

with
" _ 32 _ om -1_ -1 -1 _ _142n—m
o =b"=u, =1, bab™ =a7", upau =a :
— n—m-—1 m-—1 _ m-—1
Umb = buy,, zaz™! = alt? u,2n . zhr! = bu?n ,
TUMT L = Uy, T2 = urm,

where e, is an odd integer defined by the relation,
(I427™)m = (14 2"™ 12 (mod 2M).

(6) Q(n,m,1)=(a, b, um, z) (> Q(n,m) = (a, b, uy)) 2<m<n-— 3)

with
2n __ om 2 on—1 . | —1 _ 142n-m
a® =u, =1, b"=a , bab™ =a™7, unau, =a ,
- n—-—m-—1 m—1 _ m—1
Umb = bUy,, zaz™! = alt? u,2n , zbr~l = ;?n ,
TUNT L = Uy, T° = u;m

where e, is an odd integer defined by the relation,
(1+2"™)°m = (142" 12 (mod 2M).

Remark (1) Later, in the proof of Theorem 1l, Case II, we will note that
the elements u;7 defined in (5) and (6) are uniquely determined, so the
groups D(n,m, 1) and Q(n, m, 1) are uniquely determined for each integers
n and m

(2) Note that some of the notations used in this paper are different
from those used in [4] and @ For example, we use the notation Dy(n,1,1)

and Qo(n,1,1) instead of GgQ)(Dn) and ng)(Qn) in [4].

For a finite group G, we denote by Irr(G) the set of complex irreducible
characters of G and by FIrr(G) (C Irr(G)) the set of faithful irreducible
characters of G.
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Yamada and lida ([4]) proved the following

Theorem 0.1 ([4, Theorems 5and 6]) (1) Letn >4 and ¢ € FIrr(D,).
Let G be a 2-group such that D, C G and [G : Dy] = 22. Suppose that
¢ € Irr(G), then G = D(n,2) or Dy(n,1,1).

(2) Letn >4 and ¢ € FIrr(Qy). Let G be a 2-group such that Qn C
G and [G : Qn] = 22. Suppose that ¢ € Irr(G), then G = Q(n,2) or
QO(n’ 1, 1)

(3) Let n > 4 and ¢ € FIrr(SD,). Let G be a 2-group such that
SD, C G and [G : SD,] = 22. Suppose that ¢© € Irr(G), then G = Q(n, 2)
or Qo(n,1,1) or D(n,2) or Do(n,1,1).

Further, Iida ([3]) proved the following

Theorem 0.2 ([3, Theorem 7]) (1) Let ¢ € Flrr(Dy). Let G be a 2-
group such that Dn G G and D, < G. Suppose that % € Irr(G), then
G = D(n,m) for some integerm, 1 <m <n —2.

(2) Let ¢ € FIrr(Q,). Let G be a 2-group such that Q, & G and
Qn < G. Suppose that ¢¢ € Irr(G), then G = Q(n,m) for some integer
m, 1<m<n-2.

(3) Let ¢ € FIrr(SD,,). Let G be a 2-group such that SD, G G and
SD, < G. Suppose that ¢C € Irr(G), then G = Q(n,m) or D(n,m) for
some integer m, 1 <m <n—2.

On the other hand, we have shown the following

Proposition 0.3 ([6, Theorems 1 and 2, Case II))

(1) Let ¢ € FIrr(D,,), and let G be a 2-group such that Do(n,1,1) G
G. Then ¢ ¢ Irr(G).

(2) Let ¢ € FIrr(Qy), and let G be a 2-group such that Qo(n,1,1) G
G. Then ¢© ¢ Irr(G).

Our main theorems are the following

Theorem 1 Let ¢ € Flrr(D,,). Suppose that G is a 2-group such that
D, C G, ¢¢ € Irr(G) and [G : Dy] = 2™. Then
(1) m<n-2,
(2) G=D(n,1) if m=1.
(3) G = D(n,2) or Dy(n,1,1) if m=2.
(4) G=D(n,m) or D(n,m—1,1) if 3<m<n-2.
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Theorem 2 Let ¢ € Flrr(Qy). Suppose that G is a 2-group such that
Qn C G, ¢¢ € Irr(G) and [G : Q] = 2™. Then

(1) m<n-2,

(2) G=Q(n,1) if m=1.

(3) G=Q(n,2) or Qo(n,1,1) if m=2.

4) G=Q(n,m)or Qn,m—-1,1) if 3<m<n-2.

Theorem 3 Let ¢ € FIrr(SD,,). Suppose that G is a 2-group such that
SD,, C G, ¢¢ € Irr(G) and [G : SD,] = 2™. Then
(1) m S n— 27
(2) G=D(n,1) or Q(n,1) if m=1.
(3) G=D(n,2) or Q(n,2) or Dy(n,1,1) or Qo(n,1,1) if m=2.
(4) G = D(n,m) or Q(n,m) or D(n,m —1,1) or Q(n,m —1,1)
if 3<m<n-2.

To prove the theorems, we need some results concerning the criterion
of the irreducibility of induced characters.

We denote by ¢ = (o a primitive 2"th root of unity. It is known that,
for H = Q, or D, there are 2"~ — 1 irreducible characters ¢, (1<v<
2"~1) of H, which are not linear:

$u(@) =C"+C, $,(a'h) =0 (1<i<2).

For H = SD,, there are 2"~ — 1 irreducible characters oy (—2”‘2 <rv<
22 for odd v, 1 < v < 2" for even v) of H, which are not linear:

du(a’) = ¢ + ¢V 4 (ah) =0 (1<i<2m).

Each irreducible character ¢, of Q,, or D,, or SD,, is induced from a linear
character 1, of the maximal normal cyclic subgroup (a):

m(a’) =¢" (1<i<2m).

Therefore, for a group G D H = D, or Q,, or SD,, ¢S is irreducible if and
only if n¢ = (nH)C is irreducible. For H = Q,, or D,, or SD,, an irreducible
character ¢, of H is faithful if and only if v is odd. The faithful irreducible
characters ¢, of H are algebraically conjugate to each other.

We need the following result of Shoda (cf. [1, p.329]):

Proposition 0.4 Let G be a group and H be a subgroup of G. Let ¢ be
a linear character of H. Then the induced character ¢© of G is irreducible
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if and only if, for eachx € G— H = {g € G | g ¢ H}, there exists h €
cHz "N H such that ¢(h) # ¢(x~ hz). In particular, when ¢ is faithful,
the condition ¢(h) # ¢(x~'hz) is equivalent to that of h # x~1hz.

Using this result, we have the following:

Proposition 0.5 Let (a) C H C G, where H = Dy, or Qn or SD,, and
(a) is a mazimal normal cyclic subgroup of H. Let ¢ be a faithful irreducible
character of H. Then the following conditions are equivalent

(1) ¢€ is irreducible.

(2) For each x € G — (a), there exists y € (a) Nx{a)z™! such that
ryr~! £ y.
Definition When the condition (2) of Proposition 0.5 holds, we say that
G satisfies (EX, H), where H = D,, or @, or SD,,.

Remark It is easy to see that the groups Dg(n,1,1), D(n,m) and
D(’I’L, m, 1) (resp. QO(TL? ]-a 1)7 Q(na m) and Q(na m, 1)) SatiSfy (EX, Dn)
(resp. (EX,Qy)). It is also easy to see that Dy(n,1,1), D(n,m), D(n,m, 1),
Qo(n,1,1), Q(n,m) and Q(n,m, 1) satisty (EX, SDy,).

3. Proof of Theorem 1

Let G be a 2-group, satisfying the conditions of Theorem 1. As usual,
we denote by Ng(H), the normalizer of H in G for a subgroup H of G. We
define the subgroups N;, i = 1,2, of G as follows:

Ny = Ng(D,), N3 = Ng(Ny).
By [I’heorem 0.2, we have
Ny =D(n,z) = {a, b, u,),

for some integer z, 1 < z < n — 2, and it is easy to see that D(n, z)/D, =
C,. Hence we have only to consider the case where N; g G. In this case,
we have N1 G Ng(N1) = Ny, since G is a 2-group.

First, we show the following

Claim I Suppose that N; = D(n,2) G G, then z <n — 3.

Proof of Claim 1. Suppose that N; ; Ny and 2z =n — 2.
Let £ € Ny — N;. Then, by the condition (EX, D,,), there exist an integer



Irreducibilities of induced characters of some 2-groups 85

t,0<t<n-1,and y € (a2t>, such that the following conditions hold:
(@) Nz(a)z™' = (a®) and zyz! #+ y.

It is well-known that
Aut(a) = (Z/2"Z)" = (—1) x (5) = C} x Cp_y

where (Z/Q”Z)* is the unit group of the factor ring Z/2"Z and (—1) and (5)
are the cyclic subgroups of (Z / 2"Z)* generated by —1 and 5 respectively.
Notice that C; is the cyclic group of order 2. Hence, when z = n — 2, we
have

Aut(a) = D(n,n —2)/{a) 2 N, /(a)
Therefore there exists the element v € Ny, such that

() N (vz)(a)(vz) ™! = (a*)

and vz acts trivially on (azt) by conjugation. This contradicts the condition
(EX, D). Hence the proof of Claim I is completed. O

Hereafter we may assume that D(n, z) = N; g Ny and 2 <n—3.

Let H be a group. For a normal subgroup N of H, and any g, h € H,
we write

g=h (mod N)

when g~ 'h € N.
For an element g € H we denote by | g| the order of g.

Now, we show the following
Claim II N2/N1 = NQ/D(TI, Z) ~ (.

Proof of Claim II. For the sake of simplicity, we write u instead of w,.
Note that any element in D(n, z) is represented as a’u’/b* where 1, J, keZ,
0<:1<2"-1,0<5j<2°-1,0<k<1.

We need the following

Lemma 1 For integers ¢, j and a positive integer s, the following equali-
ties and inequality hold.

(1) (a'w)? =a*?tsu?’  for some odd integer ts.

(2) (aiu2z—1)2 — a2i(1+2"‘2)'
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3) (aw® )2 =a2" for2<s.
(4) |aw’b| < 2L,
(5) au? " =u? " at (mod (a"7)).

Proof of Lemma 1. (1) can be shown by induction on s.

(2), (3) and (5) can be shown by direct calculations. So we omit the proof.
(4) Since (a‘ub)? = a™" "1y for some j, € Z, we have (a'ub)¥ " =1
by (1). O

Let x € Ny — N;.
First, we consider the element zaz~!. Since z < n — 3, by Claim I, and
|a'uib| < 27+, by (4), we must have
raz~! = a'? ,
for some integers ¢, j. Further, since

(zaz™1)?" = (a'w)¥ = a* %,

where t, is an odd integer defined in (1), ¢ must be an odd integer.
If i € (—1) x (5) — (5), then (bz)a(bz)™! = a~*w/ and —i € (5). Hence we
may assume that,

i € (5). (1)

Write ap = zaz™! and by = xbz~!. Taking the conjugate of both sides of
the equality, bab~! = a~1, by z, we get

bo(a*u)by! = uda™"
Since
Ni/{a) = D(n,z)/{a) 2 C; x C,
is the abelian group, we have
bo(a'w? )by = a'w?!  (mod (a)).
Hence we have
a'w! =u e (mod (a)).
Therefore 4%’ = 1. This means that we can write j = 2714y, and

_ . 2_1 .
zar ! = a'u? %,
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where jo =0 or 1. If jo = 0, then

and
boa'byt = a™".
Since i is odd, we get
boab, =g L,
So, by must be written as
bo = a’b, (2)
for some t € Z. Thus
tDpr! = z{a, bz~ = (a, b) = D,.

This contradicts the hypothesis that £ € Ny — N;. Hence we must have
zaz~! = atu® .

Next, consider the element zuz ™. Write ug = zuz~!. Taking the conjugate

of both sides of the equality, ua* u™! = a?’, by z, we get

ai-2z -1 ai-2z‘tz

Ug .tzuO -

where t, is the odd integer defined in [Lemma 1/ (1). Since i is also odd, we
can see that

z z
upa® uyt = a*’.

Suppose that ug = a%utb for some dy, t € Z. Then

a?” = (a®ulb)(a®)(a%ulb)™! = a2

z

So, a2 = 1, which contradicts the fact that z + 3 < n. Thus we must

have ug = a®u! for some dy, t € Z.
But again by (1),

z z z
1= ug = (adout)2 = q%27tz

So we have dy = 0 (mod 2"~ #). Therefore we may write dp = 2"*d, and

_ n—z
U™ 1 = a2 dut

I
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for some d € Z. Taking the conjugate of both sides of the equality, uau™! =
alt?"™* by z, we get
(a2”“dut) (aiu22_1 )(a2"‘zdut)—-1

. (aiu2z—1)1+2n—z _ (aiu2z—1)(aiu2z—l)2n—z — ai(1+2n——z)u22—l-

Hence, we have

n—z\t z—1 : n—z z—1
142n=7)t, 2 i(1+2n-7), 2571

al =a

Therefore,
i(1+2"*)! =i(1+2"%) (mod 2").

Since 4 is odd, we get t =1 (mod 2%), and hence

_ n—z
Tux 1 = 0,2 du.

Therefore, for any x;, o € Ny — N7, we can write as follows:

: z—1
1 l1u2

r10x] =a 1

_ n—z
and zjuzy! =a?" hu,

z—1 n—z
2 2 d2’U,,

113'2_10,1132 = a"?u and :L‘2—1u.’132 =a

where 41, 49, d1, do € Z and i; and iy are odd. Using these relations, we
have
(2125 )a(@r23") ™" = z1(a?u® a7
— (ailu2z_1)i2(a2n_zd1u)22_1 — (ai1u2z_l)1:2(a2n_1d1t1_1u22_1)
for some t,_;, by (1).

Therefore
(T1zy Na(ziz;) P =1 (mod (a)).

This means that

L ¢ (a).

(w123 )a(mrzy )
But, in this case, we also have

(z1251)b(z125 1) 7! € (a, b) = D,
by the same argument as in (2). Hence, we have shown that

.’131I2_1 € Ny,
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for any z1, £o € Ny — N;. Thus the proof of Claim II is completed. O

Now, we will determine the group structure of Ny (2 Ny = D(n, 2)).
We show the following

Claim Il (1) Np = Do(n,1,1) (2 D(n,1)) if z=1.
(2) No=D(n,2,1) (2 D(n,2)) if 2<z<n-3.

Proof of Claim III. (1) When z = 1, the group Ny has been considerd in
[4], and the isomorphism of (1) follows from [Theorem 0.1.
(2) Let z € Ny — N;j. Then

zaz™! = au? ¢ (a),

and
raly~l = (aiuzz—l)z — g2i(+277?) € (a).
Recall that we may assume
i € (5),
by (1). Suppose that ¢ € (1 + 2"7%), then there exists v € Ny, such that

(vz)a(vz) ™" ¢ (a),
and

(vz)a®(ve)™! = a®.

This contradicts the condition (EX, D,).
Hence we must have
i¢ (1+2"7%). (3)

On the other hand, we have

22az~? = 2(a'u? )zl = (@ )i (a?T 1T

for some t,_1 by (1). Hence we have
,1:2 22—12' 22-——1 -2

2z ? = a u? tu =a" (mod (azn—l)),

by using (5). So we can write

_ ;2 on—1
2ar—2 = g t82
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where 3 =0 or 1.
Since 2 € D(n, z) = N, we have

i? € (1+2772), (4)

where (1 +2"7%) is the cyclic subgroup of (Z / 2”Z)* generated by 1+ 2772,
By (1), (3) and (4), we may write as

i=1+k-2"*1

and

_ on—z—1 z—1
raxr 1 = a1+k2 u2

I

for some odd integer k. In this case, we have

’i2 +ﬂ Lon—1 _ (1 +k- 2n——z—1)2 +ﬁ .on—1
— 1 + (k + k2 . 2n—z—2 +,B . 2z—1) . 277,—2'
If we set ky = k+ k? - 277?72 + 3.2%71 then k; is the odd integer, since
3 <n-z. And we have
rlaz™? = o tR27 (5)

2

Now, we consider the element 22 (€ D(n, z)). By (5), z° must be written

as

for some tq, I1 € Z. Since

n—z _ _ n—z\l
a1+k12 — 3720",1: 2 _ (at1ul1)a(at1ul1) 1 _ a(1+2 ) :

1 must be odd. On the other hand, since

ah'ult = 2% = zalz7 = g(aMut)z !

(a1+k'2"_z_1u2z_l )tl (a2"_zdu)l1

Y

we have

b= 2 Mtk (mod (a)).

Uu

Therefore we can write as t; = 2¢5, and

CE2 — a2t2ul1
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for some integer t2. For any integer s, we have

(a°z)? = GS(a1+k-2"—z—1u2z—1)s$2 — a.S(aUQZ_l)Sak-s-2n_z_1a2t2ul1’
since a” " u? T =u¥ a2, But

(au2z_1)s _ as(1+2“‘2), (resp. (G,’UJQZ_I)S — as(1+2"”2)—2"’2u2z_1),

when s is even (resp. s is odd), by direct calculations. Therefore

s(1+2"_2)ak-s-2”'z"1a2t2 23(1+2"_3+k-2"_“_2)+2t2ull

W =gq
s(1+2"‘2)—2"_2ak-s-Q"_z_la2t2ull+2z”1

(a°z)? = a°a
(resp. (a°z)% = a®a
_ a2s(1+2n—3+k-2n—2-2)+2t2—2"—2u11+22-1)

when s is even (when s is odd). Take the integer s; which satisfies the
following equality

s1(1+2" 3+ k-2 2) 44, =0 (mod 2"71),
(resp. s1(1+2"2 +£k-2"7*72) 44, 272 =0 (mod 2"71)),

when t5 is even (resp. when ¢ is odd).
Set 1 = a’'z. Then

22 = (a®1z)? = u'  (resp. 22 = ul1+2z"1)

)

when t9 is even (resp. t3 is odd). For any cases, we can write
a:% = yk

for some odd integer 5. Since u is a power of z?, we have rjuz]' = u.
On the other hand, we can write as

_ on—z—1 z—1
ziaz]t = qltke2 w2

for some odd integer ko. Since 2 < n — z — 1, we have

n—z—1 _ n—z—1 z—1,9n—2z2—1 n—z—1yon—z—1
331(12 mll — (a1+k22 u2 )2 — a(1+k22 )2

by (3). Hence

2 2

_ n—z—1 z—1 _
riax] 1+ko2 u2 ) 1

=z1(a x]
n—z—1 z—1 n—z—1lyoyn—z—1 z—1
— (al+k22 u2 )a(1+k22 )2 ko u2

_ a(1+k22n—z—1)2 (6)
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Therefore, for any integer s, we have

_ n—z—1\2s
x%saxl 2s _ a(1+k22 )
and

x%s-l—la

=2s-1 __ 2s( 14+ko2n~*~1 22=1\ _2g
] =z7%(a u? )z = af

Lkpon#=l)2otl, 921
Take the integer so which satisfies the following equality

(14 kg - 2" 12024l = 4 gn—z-1 (mod 2%),
and set 73 = z7°2%!. Then

n—z—1 z—1
1 _ 142 w2t

2Ty
Further we have zouz,’ = u, and
2(2s2+1
m% — ml( sa+1) — ul2(232+1) — ulg,

where we set l3 = [3(2s2 + 1), which is an odd integer. By the same way as
in (6), we have

2

_ n—z—1\2
50X, 2 = gl1+2 )

= uBau s = o(1+2"7)"

Hence
(142" %) = (14 2"* 12 (mod 27).

It is easy to see that such an integer l3 is uniquely determined mod 2.
Hence the element u’® is uniquely determined by this relation. In the defi-
nition of D(n, m, 1) in Section 2, (5), we write l3 = e,,, when m = 2. So we
may write as

a:%zuz.

In particular, when 2z 42 < n, we have e, = 1 (mod 27). Hence 73 = u, in
this case.

Finally, we consider the element by = zobx; 1. Taking the conjugate of
both sides of the equality, ba?b~! = a2, by x5, we get

b0a2(1+2n—z—1)(1+2n—2)bal — a_2(1+2n—z—1)(1+2n—2).

Hence

21-1 -2
bpa“by” =a" ",
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and
bboaby b1 = a?.
Therefore we may write as
—t 2z 1p
bbp = a ‘u ,
and
bo — t 22_17‘b
0o—=au )

for some t € Z, and r = 0 or 1. Since :c% = u®,

b=ubu"® = x3bx,* = :cg(atu2z_lrb)a:2_l
_ (a1+2n—z—1u22—1)t(uzz—lr)(atuzz-lrb)_ (7)
Therefore we have
b=u¥""' (mod (a)).
So,
t=0 (mod 2).
Write t = 2t3, where t3 € Z. Substituting t = 2t3 to (7), we get
b— (a1+2n—z—1u22~1)2t3a2t36 _ 201427 7= ) (142m )t 4 25
Therefore
23{(1+ 2" > H(1+2"2) +1} =0 (mod 2™).
So
4t3(1 42722 42" 3) =0 (mod 2").
Hence
t=2t3=0 (mod 2" 1).
Thus we may write as t = 2"~ 't,, and
ang:cgl = a2n—1t4u22_1rb,

where t4 = 0 or 1. Taking the conjugate of both sides of the equality,
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bab=! = a7, by x5, we get

(a2n—1t4u22—1rb)(a1+2n—z—1u22—1)(a2n—1t4u2z—1rb)_1

. n—z—1 n—1 z—1
_ (142 )(1+277h), 2571

Therefore

o~ (2P (427 o —(12n e ) (1420 )

z—1 z—1
Hence r =1, so u? " =u?" .

Summarizing the results, we get

_ n—z—1 z—1
20X, 1= g142 u?

. n—1 z—1
T2bx, L= g2" a2y,
CEQ’U,ZE2_1 = u,

:c% = u®.

b

If t4 = 0, these relations are the same as that of D(n, z,1). So, the group
Ny = (a, b, u, x2) is clearly isomorphic to D(n, z, 1).

Ifty =1, weset u; = a®" wand 23 = a2
u1b = buy and ujau;’ = a2, So

z2. Then we have u?” =1,

(a, b, u1) = (a, b, u) = D(n, 2).

Further, we have

_ n—z—1 z—1
T30z = a't? ul

-1
r3u1xg = U,

z—1

1173621351 =u] b,
2

x5 = ui®.

Thus, in this case also, the group Ny = (a, b, uj, x3) is isomorphic to

D(n, z,1). Hence the proof of Claim III is completed. O
Finally, we show the following

Claim IV Ng(N3) = Ns.

Proof of Claim IV. When Ny = Dy(n,1,1), we can show Claim IV, by
using [Proposition 0.3
So, we have only to consider the case where Ny = D(n,z,1) =
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(a, b, u, z), 2 < z <n—3. Assume that Ny G Ng(Na). Let y € Ng(Na) —
Nos.

First, consider the elements yby~" and yuy~". Note that any element
in D(n, z,1) is represented as a*u’b*z’ where i, j, k,t € Z, 0 <7 < 2" — 1,
0<j<2°-1,0<k <1,0<t<1. Define the normal subgroup Hy of Ny
as

1 1

Hy = (a, uzz_l).
It is easy to see that No/Hy = D(n, z,1)/Hy is an abelian group. Hence
(a'u/bFz)? = u¥2? = u?*  (mod Hy).
So, we can write as
(a'u/bFz)? = au? " st tes (8)
for some integers r, s. Since e, is odd,
(a'u?bFz)® #1,
by Lemma 1 (1). Since |b| = 2 and | u| = 2%, we must have
yby™! € (a, b, u) = Ny,
and
yuy™! € (a, b, u) = Ny.

1

Next, consider the element yay~". Taking the conjugate of both sides of

the equality, a=! = bab™!, by y, we get
aal = boaobal =ag (mod Hy).
So,
(yay™1)? = a2 € H,.
On the other hand, by (8),
(a*u’b*z)? ¢ Hy.

Hence we must have

yay~' € {(a, b, u) = Ny.
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Thus we have shown that

y € Ng(N1) = Na.

This contradicts the assumption that Ny g Ng(N2) and y € Ng(N3) — Ns.
Therefore the proof of Claim IV is completed. O

Proof of Theorem 1.  Since G is a 2-group, Claim IV means that G = Ns.
Therefore we have G = N; or No. Hence we can get [Theorem 1, by using

'T'heorem 0.2, [Proposition 0.3 and Claim III. O

4.

Proof of Theorems 2 and 3

Proof of Theorems 2 is essentially the same as that of Theorem 1. So

we omit the proof.

Theorem 3 follows from Theorem 0.2, Theorem 1 and Theorem 2.
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