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Extensions and the irreducibilities of induced
characters of some 2-groups
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Abstract. Let Q_{n} and D_{n} denote the generalized quaternion group and the dihedral
group of order 2^{n+1}(n\geq 2) , respectively. Let SD_{n} denote the semidihedral group of
order 2^{n+1}(n\geq 3) . Let \phi be a faithful irreducible character of H , where H=Q_{n} or D_{n}

or SD_{n} . The purpose of this paper is to determine all 2-groups G such that H\subset G and
the induced character \phi^{G} is also irreducible.
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1. Introduction

Let Q_{n} and D_{n} denote the generalized quaternion group and the di-
hedral group of order 2^{n+1}(n\geq 2) , respectively. Let SD_{n} denote the
semidihedral group of order 2^{n+1}(n\geq 3) .

As is stated in [4], these groups have remarkable properties among all
2-gr0ups.

Moreover, Yamada and Iida [5] proved the following interesting result:
Let Q denote the rational field. Let G be a 2-group and \chi a complex

irreducible character of G . Then there exist subgroups H\triangleright N in G and
the complex irreducible character \phi of H such that \chi=\phi^{G} , Q(\chi)=Q(\phi) ,
N=Ker\phi and

H/N\cong Q_{n}(n\geq 2) , or D_{n}(n\geq 3) , or SD_{n}(n\geq 3) ,

or C_{n}(n\geq 0) ,

where C_{n} is the cyclic group of order 2^{n} , and Q(\chi)=Q(\chi(g), g\in G) .
In [4], Yamada and Iida considered the case when N=1 , or equivalently

\phi is faithful. They studied the following problem:

Problem Let \phi be a faithful irreducible character of H , where H=Q_{n}

or D_{n} or SD_{n} . Determine the 2-group G such that H\subset G and the induced
character \phi^{G} is also irreducible.
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It is well-known that the groups Q_{n} , D_{n} and SD_{n} have faithful irre-
ducible characters. It is also known that they are algebraically conjugate to
each other. Hence the irreducibility of \phi^{G} , where \phi is a faithful irreducible
character of H=Q_{n} or D_{n} or SD_{n} , does not depend on the particular
choice of \phi , but depends only on these groups.

This problem has been solved in each of the following cases:
(1) When [G : H]=2 or 4 ([4]),
(2) When [G : H]=8([6]) ,
(3) When H is a normal subgroup of G([3]) ,

for all H=Q_{n} or D_{n} or SD_{n} .
The purpose of this paper is to give a complete answer to this problem

for all H=Q_{n} or D_{n} or SD_{n} .
For other results concerning this problem, see [2].
In this paper, we will frequently use the word “respectively” so it is

abbreviated to “resp.”

2. Statements of the results

We use the following notation throught this paper.
\circ The dihedral group D_{n}=\langle a, b\rangle(n\geq 2) with

a^{2^{n}}=1 , b^{2}=1 , bab^{-1}=a^{-1} .

\circ The generalized quaternion group Q_{n}=\langle a, b\rangle(n\geq 2) with

a^{2^{n}}=1 , b^{2}=a^{2^{n-1}} , bab^{-1}=a^{-1}

\circ The semidihedral group SD_{n}=\langle a, b\rangle(n\geq 3) with

a^{2^{n}}=1 , b^{2}=1 , bab^{-1}=a^{-1+2^{n-1}}

To state our results, we have to introduce the following groups:
(1) D(n, m)=\langle a, b, u_{m}\rangle(\triangleright D_{n}=\langle a, b\rangle)(1\leq m\leq n-2) with

a^{2^{n}}=b^{2}=u_{m}^{2^{m}}=1 , bab^{-1}=a^{-1} , u_{m}au_{m}^{-1}=a^{1+2^{n-m}} ,
u_{m}b=bu_{m} .

(2) Q(n, m)=\langle a, b, u_{m}\rangle(\triangleright Q_{n}=\langle a, b\rangle)(1\leq m\leq n-\sim\cap) with

a^{2^{n}}=u_{m}^{2^{m}}=1 , b^{2}=a^{2^{n-1}} bab^{-1}=a^{-1}.
,

u_{m}au_{m}^{-1}=a^{1+2^{n-m}} ,
u_{m}b=bu_{m} .
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(3) D_{0}(n, 1,1)=\langle a, b, u_{1}, x\rangle(\triangleright D(n, 1)=\langle a, b, u_{1}\rangle) with

a^{2^{n}}=b^{2}=u_{1}^{2}=x^{2}=1 , bab^{-1}=a^{-1} , u_{1}au_{1}^{-1}=a_{J}^{1+2^{n-1}}.
u_{1}b=bu_{1} , xax^{-1}=au_{1} , xbx^{-1}=bu_{1} , u_{1}x=xu_{1} .

(4) Q_{0}(n, 1,1)=\langle a, b, u_{1}, x\rangle(\triangleright Q(n, 1)=\langle a, b, u_{1}\rangle) with

a^{2^{n}}=u_{1}^{2}=x^{2}=1 , b^{2}=a^{2^{n-1}} , bab^{-1}=a^{-1} , u_{1}au_{1}^{-1}=a^{1+2^{n-1}} ,
u_{1}b=bu_{1} , xax^{-1}=au_{1} , xbx^{-1}=a^{2^{n-1}}bu_{1} , u_{1}x=xu_{1} .

(5) D(n, m, 1)=\langle a, b, u_{m}, x\rangle(\triangleright D(n, m)=\langle a, b, u_{m}\rangle)(2\leq m\leq n-3)

with

a^{2^{n}}=b^{2}=u_{m}^{2^{m}}=1 , bab^{-1}=a^{-1} , u_{m}au_{m}^{-1}=a^{1+2^{n-m}} ,
u_{m}b=bu_{m} , xax^{-1}=a^{1+2^{n-m-1}}u_{m}^{2^{m-1}} , xbx^{-1}=bu_{m}^{2^{m-1}} ,
xu_{m}x^{-1}=u_{m} , x^{2}=u_{m}^{e_{m}} ,

where e_{m} is an odd integer defined by the relation,
(1+2^{n-m})^{e_{m}}\equiv(1+2^{n-m-1})^{2} (mod 2^{n} ).

(6) Q(n, m, 1)=\langle a, b, u_{m}, x\rangle(\triangleright Q(n, m)=\langle a, b, u_{m}\rangle)(2\leq m\leq n-3)

with

a^{2^{n}}=u_{m}^{2^{m}}=1 , b^{2}=a_{!}^{2^{n-1}}. bab^{-1}=a^{-1} , u_{m}au_{m}^{-1}=a^{1+2^{n-m}} ,
u_{m}b=bu_{m} , xax^{-1}=a^{1+2^{n-m-1}}u_{m}^{2^{m-1}}.

,
xbx^{-1}=bu_{m}^{2^{m-1}} ,

xu_{m}x^{-1}=u_{m} , x^{2}=u_{m}^{e_{m}} ,
where e_{m} is an odd integer defined by the relation,
(1+2^{n-m})^{e_{m}}\equiv(1+2^{n-m-1})^{2} (mod 2^{n} ).

Remark (1) Later, in the proof of Theorem 1, Case II , we will note that
the elements u_{m}^{e_{m}} defined in (5) and (6) are uniquely determined, so the
groups D(n, m, 1) and Q(n, m, 1) are uniquely determined for each integers
n and m

(2) Note that some of the notations used in this paper are different
from those used in [4] and [6]. For example, we use the notation D_{0}(n, 1,1)

and Q_{0}(n, 1,1) instead of G_{2}^{(2)}(D_{n}) and G_{2}^{(2)}(Q_{n}) in [4].

For a finite group G, we denote by Irr(G) the set of complex irreducible
characters of G and by Flrr(G) (\subset Irr(G)) the set of faithful irreducible
characters of G .
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Yamada and Iida ([4]) proved the following

Theorem 0.1 ([4, Theorems 5 and 6]) (1) Let n\geq 4 and \phi\in FIrr(Dn) .
Let G be a 2-group such that D_{n}\subset G and [G : D_{n}]=2^{2} . Suppose that
\phi^{G}\in Irr(G) , then G\cong D(n, 2) or D_{0}(n, 1,1) .

(2) Let n\geq 4 and \phi\in FIrr(Q_{n}) . Let G be a 2-group such that Q_{n}\subset

G and [G : Q_{n}]=2^{2} . Suppose that \phi^{G}\in Irr(G) , then G\cong Q(n, 2) or
Q_{0}(n, 1,1) .

(3) Let n\geq 4 and \phi\in FIrr(SD_{n}) . Let G be a 2-group such that
SD_{n}\subset G and [G:SD_{n}]=2^{2} . Suppose that \phi^{G}\in Irr(G) , then G\cong Q(n, 2)

or Q_{0}(n, 1,1) or D(n, 2) or D_{0}(n, 1,1) .

Further, Iida ([3]) proved the following

Theorem 0.2 ([3, Theorem 7]) (1) Let \phi\in FIrr(Dn) . Let G be a 2-
group such that D_{n}\subset\neq G and D_{n}\triangleleft G . Suppose that \phi^{G}\in Irr(G) , then
G\cong D(n, m) for some integer m, 1\leq m\leq n-2 .

(2) Let \phi\in FIrr(Qn) . Let G be a 2-group such that Q_{n}\subset\neq G and
Q_{n}\triangleleft G . Suppose that \phi^{G}\in Irr(G) , then G\cong Q(n, m) for some integer
m, 1\leq m\leq n-2 .

(3) Let \phi\in FIrr(SD_{n}) . Let G be a 2-group such that SD_{n}\subset\neq G and
SD_{n}\triangleleft G . Suppose that \phi^{G}\in Irr(G) , then G\cong Q(n, m) or D(n, m) for
some integer m, 1\leq m\leq n-2 .

On the other hand, we have shown the following

Proposition 0.3 ([6, Theorems 1 and 2, Case II] )
(1) Let \phi\in FIrr(D_{n}) , and let G be a 2-group such that D_{0}(n, 1,1)\neq\subset

G. then \phi^{G}\not\in Irr(G) .
(2) Let \phi\in FIrr(Qn) , and let G be a 2-group such that Q_{0}(n, 1,1)\subset\neq

G. then \phi^{G}\not\in Irr(G) .

Our main theorems are the following

Theorem 1 Let \phi\in FIrr(L)n) . Suppose that G is a 2-group such that
D_{n}\subset G , \phi^{G}\in Irr(G) and [G : D_{n}]=2^{m} . then

(1) m\leq n-2 ,
(2) G\cong D(n, 1) if m=1 .
(3) G\cong D(n, 2) or D_{0}(n, 1,1) if m=2 .
(4) G\cong D(n, m) or D(n, m-1,1) if 3\leq m\leq n-2 .
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Theorem 2 Let \phi\in FIrr(Qn) . Suppose that G is a 2-group such that
Q_{n}\subset G , \phi^{G}\in Irr(G) and [G : Q_{n}]=2^{m} . Then

(1) m\leq n-2 ,
(2) G\cong Q(n, 1) if m=1 .
(3) G\cong Q(n, 2) or Q_{0}(n, 1,1) if m=2 .
(4) G\cong Q(n, m) or Q(n, m-1,1) if 3\leq m\leq n-2 .

Theorem 3 Let \phi\in FIrr(SD_{n}) . Suppose that G is a 2-group such that
SD_{n}\subset G , \phi^{G}\in Irr(G) and [G : SD_{n}]=2^{m} . Then

(1) m\leq n-2 ,
(2) G\cong D(n, 1) or Q(n, 1) if m=1 .
(3) G\cong D(n, 2) or Q(n, 2) or D_{0}(n, 1,1) or Q_{0}(n, 1,1) if m=2 .
(4) G\cong D(n, m) or Q(n, m) or D(n, m-1,1) or Q(n, m-1,1)

if 3\leq m\leq n-2 .

To prove the theorems, we need some results concerning the criterion
of the irreducibility of induced characters.

We denote by ( =\zeta_{2^{n}} a primitive 2^{n}th root of unity. It is known that,
for H=Q_{n} or D_{n} , there are 2^{n-1} –1 irreducible characters \phi_{\nu}(1\leq\nu<

2^{n-1}) of H., which are not linear:

\phi_{\nu}(a^{i})=\zeta^{\nu i}+\zeta_{\backslash }^{-\nu i}

,
\phi_{\nu}(a^{i}b)=0 (1 \leq i\leq 2^{n}) .

For H=SD_{n} , there are 2^{n-1}-1 irreducible characters \phi_{\nu} (-2^{n-2}\leq\nu\leq

2^{n-2} for odd \nu , 1\leq\nu<2^{n-1} for even \nu ) of H , which are not linear:

\phi_{\nu}(a^{i})=(^{\iota/i}+\zeta^{\nu i(-1+2^{n-1})}, \phi_{\nu}(a^{i}b)=0 (1 \leq i\leq 2^{n}) .

Each irreducible character \phi_{1/} of Q_{n} or D_{n} or SD_{n} is induced from a linear
character \eta_{\nu} of the maximal normal cyclic subgroup \langle a\rangle :

\eta_{I/}(a^{i})=\zeta^{\iota/i} (1\leq i\leq 2^{n}) .

Therefore, for a group G\supset H=D_{n} , or Q_{n} or SD_{n}\phi_{\nu}^{G} is irreducible if and
only if \eta_{\nu}^{G}=(\eta_{\nu}^{H})^{G} is irreducible. For H=Q_{n} or D_{n} or SD_{n} , an irreducible
character \phi_{\nu} of H is faithful if and only if \nu is odd. The faithful irreducible
characters \phi_{\nu} of H are algebraically conjugate to each other.

We need the following result of Shoda (cf. [1, p.329]):

Proposition 0.4 Let G be a group and H be a subgroup of G. Let \phi be
a linear character of Ht Then the induced character \phi^{G} of G is irreducible
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if and only if for each x\in G-H=\{g\in G|g\not\in H\} , there exists h\in

xHx^{-1}\cap H such that \phi(h)\neq\phi(x^{-1}hx) . In particular, when \phi is faithful,
the condition \phi(h)\neq\phi(x^{-1}hx) is equivalent to that of h\neq x^{-1}hx .

Using this result, we have the following:

Proposition 0.5 Let \langle a\rangle\subset H\subset G , where H=D_{n} or Q_{n} or SD_{n} and
\langle a\rangle is a maximal normal cyclic subgroup of H. Let \phi be a faithful irreducible
character of Hr Then the following conditions are equivalent

(1) \phi^{G} is irreducible.
(2) For each x\in G-\langle a\rangle , there exists y\in\langle a\rangle\cap x\langle a\rangle x^{-1} such that

xyx^{-1}\neq y .

Definition When the condition (2) of Proposition 0.5 holds, we say that
G satisfies (EX, H) , where H=D_{n} or Q_{n} or SD_{n} .

Remark It is easy to see that the groups D_{0}(n, 1,1) , D(n, m) and
D(n, m, 1) (resp. Q_{0} (n , 1, 1), Q(n, m) and Q(n, m, 1)) satisfy (EX, D_{n})

(resp. (EX, Q_{n})). It is also easy to see that D_{0}(n, 1,1) , D(n, m) , D(n, m, 1) ,
Q_{0}(n, 1,1) , Q(n, m) and Q(n, m, 1) satisfy (EX, SD_{n}) .

3. Proof of Theorem 1

Let G be a 2-group, satisfying the conditions of Theorem 1. As usual,
we denote by N_{G}(H) , the normalizer of H in G for a subgroup H of G . We
define the subgroups N_{i} , i=1,2 , of G as follows:

N_{1}=N_{G}(D_{n}) , N_{2}=N_{G}(N_{1}) .

By Theorem 0.2, we have

N_{1}=D(n, z)=\langle a, b, u_{z}\rangle ,

for some integer z , 1\leq z\leq n-2 , and it is easy to see that D(n, z)/D_{n}\cong

C_{z} . Hence we have only to consider the case where N_{1}\subset\neq G . In this case,
we have N_{1}\subset\neq N_{G}(N_{1})=N_{2} , since G is a 2-gr0up.

First, we show the following

Claim I Suppose that N_{1}=D(n, z)\neq\subset G, then z \leq n -3.

Proof of Claim I. Suppose that N_{1}\neq\subset N_{2} and z=n-2 .
Let x\in N_{2}-N_{1} . Then, by the condition (EX, D_{n}) , there exist an integer
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t , 0\leq t\leq n-1 , and y\in\langle a^{2^{t}}\rangle , such that the following conditions hold:
\langle a\rangle\cap x\langle a\rangle x^{-1}=\langle a^{2^{t}}\rangle and xyx^{-1}\neq y .

It is well-known that

Aut \langle a\rangle\cong(Z/2^{n}Z)^{*}=\langle-1\rangle\cross\langle 5\rangle\cong C_{1}\cross C_{n-2}

where (Z/2^{n}Z)^{*} is the unit group of the factor ring Z/2^{n}Z and \langle-1\rangle and \langle 5\rangle

are the cyclic subgroups of (Z/2^{n}Z)^{*} generated by -1 and 5 respectively.
Notice that C_{1} is the cyclic group of order 2. Hence, when z=n-2 , we
have

Aut\langle a\rangle\cong D(n, n-2)/\langle a\rangle\cong N_{1}/\langle a\rangle

Therefore there exists the element v\in N_{1} , such that

\langle a\rangle\cap(vx)\langle a\rangle(vx)^{-1}=\langle a^{2^{t}}\rangle

and vx acts trivially on \langle a^{2^{t}}\rangle by conjugation. This contradicts the condition
(EX, D_{n}) . Hence the proof of Claim I is completed. \square

Hereafter we may assume that D(n, z)=N_{1}\neq\subset N_{2} and z\leq n-3 .

Let H be a group. For a normal subgroup N of H , and any g , h\in H ,
we write

g\equiv h (mod N)

when g^{-1}h\in N .
For an element g\in H we denote by |g| the order of g .

Now, we show the following

Claim II N_{2}/N_{1}=N_{2}/D(n, z)\cong C_{1} .

Proof of Claim II . For the sake of simplicity, we write u instead of u_{z} .
Note that any element in D(n, z) is represented as a^{i}u^{j}b^{k} where i , j , k\in Z ,
0\leq i\leq 2^{n}-1 , 0\leq j\leq 2^{z}-1 , 0\leq k\leq 1 .

We need the following

Lemma 1 For integers i , j and a positive integer s , the following equali-
ties and inequality hold.

(1) (a^{i}u^{j})^{2^{s}}=a^{i\cdot 2^{s}\cdot t_{s}}u^{2^{s}j} , for some odd integer t_{s} .

(2) (a^{i}u^{2^{z-1}})^{2}=a^{2i(1+2^{n-2})} .
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(3) (a^{i}u^{2^{z-1}})^{2^{s}}=a^{2^{s}i} for 2\leq s .
(4) |a^{i}u^{j}b|\leq 2^{z+1} .
(5) a^{i}u^{2^{z-1}}\equiv u^{2^{z-1}}a^{i} (mod \langle a^{2^{n-1}}\rangle ).

Proof of Lemma 1. (1) can be shown by induction on s .
(2), (3) and (5) can be shown by direct calculations. So we omit the proof.
(4) Since (a^{i}u^{j}b)^{2}=a^{-i2^{n-z}j_{1}}u^{2j} for some j_{1}\in Z , we have (a^{i}u^{j}b)^{2^{z+1}}=1

by (1). \square

Let x\in N_{2}-N_{1} .
First, we consider the element xax^{-1} . Since z\leq n-3 , by Claim I, and

|a^{i}u^{j}b|\leq 2^{z+1} , by Lemma 1 (4), we must have

xax^{-1}=a^{i}u^{j} ,

for some integers i , j . Further, since

(xax^{-1})^{2^{z}}=(a^{i}u^{j})^{2^{z}}=a^{i\cdot 2^{z}\cdot t_{z}} ,

where t_{z} is an odd integer defined in Lemma 1 (1), i must be an odd integer.
If i\in\langle-1\rangle\cross\langle 5\rangle-\langle 5\rangle , then (bx)a(bx)^{-1}=a^{-i}u^{j} and -i\in\langle 5\rangle . Hence we
may assume that,

i\in\langle 5\rangle . (1)

Write a_{0}=xax^{-1} and b_{0}=xbx^{-1} . Taking the conjugate of both sides of
the equality, bab^{-1}=a^{-1} , by x , we get

b_{0}(a^{i}u^{j})b_{0}^{-1}=u^{-j}a^{-i}

Since

N_{1}/\langle a\rangle=D(n, z)/\langle a\rangle\cong C_{1}\cross C_{z}

is the abelian group, we have

b_{0}(a^{i}u^{j})b_{0}^{-1}\equiv a^{i}u^{j} (mod \langle a\rangle ).

Hence we have

a^{i}u^{j}\equiv u^{-j}a^{-i} (mod \langle a\rangle ).

Therefore u^{2j}=1 . This means that we can write j=2^{z-1}j_{0} , and
xax^{-1}=a^{i}u^{2^{z-1}j_{0}} ,
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where j_{0}=0 or 1. If j_{0}=0 , then

xax^{-1}=a^{i}

and

b_{0}a^{i}b_{0}^{-1}=a^{-i}-

Since i is odd, we get

b_{0}ab_{0}^{-1}=a^{-1} .

So, b_{0} must be written as

b_{0}=a^{t}b , (2)

for some t\in Z . Thus

xD_{n}x^{-1}=x\langle a, b\rangle x^{-1}=\langle a, b\rangle=D_{n} .

This contradicts the hypothesis that x\in N_{2}-N_{1} . Hence we must have

xax^{-1}=a^{i}u^{2^{z-1}}

Next, consider the element xux^{-1} . Write u_{0}=xux^{-1} . Taking the conjugate
of both sides of the equality, ua^{2^{z}}u^{-1}=a^{2^{z}} , by x , we get

u_{0}a^{i\cdot 2^{z}\cdot t_{z}}u_{0}^{-1}=a^{i\cdot 2^{z}\cdot t_{z}} ,

where t_{z} is the odd integer defined in Lemma 1 (1). Since i is also odd, we
can see that

u_{0}a^{2^{z}}u_{0}^{-1}=a^{2^{z}}

Suppose that u_{0}=a^{d_{0}}u^{t}b for some d_{0} , t\in Z . Then

a^{2^{z}}=(a^{d_{0}}u^{t}b)(a^{2^{z}})(a^{d_{0}}u^{t}b)^{-1}=a^{-2^{z}}

So, a^{2^{z+1}}=1 , which contradicts the fact that z+3\leq n . Thus we must
have u_{0}=a^{d_{0}}u^{t} for some d_{0} , t\in Z .

But again by Lemma 1 (1),

1=u_{0}^{2^{z}}=(a^{d_{0}}u^{t})^{2^{z}}=a^{d_{0}2^{z}t_{z}} .

So we have d_{0}\equiv 0 (mod 2^{n-z} ). Therefore we may write d_{0}=2^{n-z}d , and

xux^{-1}=a^{2^{n-z}d}u^{t} ,
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for some d\in Z . Taking the conjugate of both sides of the equality, uau^{-1}=
a_{:}^{1+2^{n-z}} by x , we get

(a^{2^{n-z}d}u^{t})(a^{i}u^{2^{z-1}})(a^{2^{n-z}d}u^{t})^{-1}

=(a^{i}u^{2^{z-1}})^{1+2^{n-z}}=(a^{i}u^{2^{z-1}})(a^{i}u^{2^{z-1}})^{2^{n-z}}=a^{i(1+2^{n-z})}u^{2^{z-1}}

Hence, we have

a^{i(1+2^{n-z})^{t}}u^{2^{z-1}}=a^{i(1+2^{n-z})}u^{2^{z-1}}

Therefore,

i(1+2^{n-z})^{t}\equiv i(1+2^{n-z}) (mod 2^{n} ).

Since i is odd, we get t\equiv 1 (mod 2^{z} ), and hence

xux^{-1}=a^{2^{n-z}d}u .

Therefore, for any x_{1} , x_{2}\in N_{2}-N_{1} , we can write as follows:
x_{1}ax_{1}^{-1}=a^{i_{1}}u^{2^{z-1}} and x_{1}ux_{1}^{-1}=a^{2^{n-z}d_{1}}u ,

x_{2}^{-1}ax_{2}=a^{i_{2}}u^{2^{z-1}} and x_{2}^{-1}ux_{2}=a^{2^{n-z}d_{2}}u ,

where i_{1} , i_{2} , d_{1} , d_{2}\in Z and i_{1} and i_{2} are odd. Using these relations, we
have

(x_{1}x_{2}^{-1})a(x_{1}x_{2}^{-1})^{-1}=x_{1}(a^{i_{2}}u^{2^{z-1}})x_{1}^{-1}

=(a^{i_{1}}u^{2^{z-1}})^{i_{2}}(a^{2^{n-z}d_{1}}u)^{2^{z-1}}=(a^{i_{1}}u^{2^{z-1}})^{i_{2}}(a^{2^{n-1}d_{1}t_{z-1}}u^{2^{z-1}})

for some t_{z-1} , by Lemma 1 (1).
Therefore

(x_{1}x_{2}^{-1})a(x_{1}x_{2}^{-1})^{-1}\equiv 1 (mod \langle a\rangle ).

This means that

(x_{1}x_{2}^{-1})a(x_{1}x_{2}^{-1})^{-1}\in\langle a\rangle .

But, in this case, we also have

(x_{1}x_{2}^{-1})b(x_{1}x_{2}^{-1})^{-1}\in\langle a, b\rangle=D_{n} ,

by the same argument as in (2). Hence, we have shown that

x_{1}x_{2}^{-1}\in N_{1} ,
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for any x_{1} , x_{2}\in N_{2}-N_{1} . Thus the proof of Claim II is completed. \square

Now, we will determine the group structure of N_{2}(_{\neq}\supset N_{1}=D(n, z)) .
We show the following

Claim III (1) N_{2}\cong D_{0}(n, 1,1)(_{\neq}^{\supset}D(n, 1)) if z=1 .
(2) N_{2}\cong D(n, z, 1)(_{\neq}^{\supset}D(n, z)) if 2\leq z\leq n-3 .

Proof of Claim III. (1) When z=1 , the group N_{2} has been considerd in
[4], and the isomorphism of (1) follows from Theorem 0.1.

(2) Let x\in N_{2}-N_{1} . Then

xax^{-1}=a^{i}u^{2^{z-1}}\not\in\langle a\rangle ,

and

xa^{2}x^{-1}=(a^{i}u^{2^{z-1}})^{2}=a^{2i(1+2^{n-2})}\in\langle a\rangle .

Recall that we may assume

i\in\langle 5\rangle ,

by (1). Suppose that i\in\langle 1+2^{n-z}\rangle , then there exists v\in N_{1} , such that

(vx)a(vx)^{-1}\not\in\langle a\rangle ,

and

(vx)a^{2}(vx)^{-1}=a^{2} .

This contradicts the condition (EX, D_{n}) .
Hence we must have

i\not\in\langle 1+2^{n-z}\rangle . (3)

On the other hand, we have

x^{2}ax^{-2}=x(a^{i}u^{2^{z-1}})x^{-1}=(a^{i}u^{2^{z-1}})^{i}(a^{2^{n-1}\cdot d\cdot t_{z-1}}u^{2^{z-1}})

for some t_{z-1} by Lemma 1 (1). Hence we have

x^{2}ax^{-2}\equiv a^{i^{2}}u^{2^{z-1}i}u^{2^{z-1}}=a^{i^{2}} (mod \langle a^{2^{n-1}}\rangle ),

by using Lemma 1 (5). So we can write

x^{2}ax^{-2}=a^{i^{2}+\beta\cdot 2^{n-1}}
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where \beta=0 or 1.
Since x^{2}\in D(n, z)=N_{1} , we have

i^{2}\in\langle 1+2^{n-z}\rangle , (4)

where \langle 1+2^{n-z}\rangle is the cyclic subgroup of (Z/2^{n}Z)^{*} generated by 1+2^{n-z} .
By (1), (3) and (4), we may write as

i=1+k\cdot 2^{n-z-1} ,

and

xax^{-1}=a^{1+k\cdot 2^{n-z-1}}u^{2^{z-1}} ,

for some odd integer k . In this case, we have

i^{2}+\beta\cdot 2^{n-1}=(1+k\cdot 2^{n-z-1})^{2}+\beta 2^{n-1}

=1+(k+k^{2}2^{n-z-2}+\beta\cdot 2^{z-1})2^{n-z}-

If we set k_{1}=k+k^{2} 2^{n-z-2}+\beta 2^{z-1} , then k_{1} is the odd integer, since
3\leq n-z . And we have

x^{2}ax^{-2}=a^{1+k_{1}2^{n-z}} (5)

Now, we consider the element x^{2}(\in D(n, z)) . By (5), x^{2} must be written
as

x^{2}=a^{t_{1}}u^{l_{1}}

for some t_{1} , l_{1}\in Z . Since

a^{1+k_{1}2^{n-z}}=x^{2}ax^{-2}=(a^{t_{1}}u^{l_{1}})a(a^{t_{1}}u^{l_{1}})^{-1}=a^{(1+2^{n-z})^{l_{1}}}
,’

l_{1} must be odd. On the other hand, since

a^{t_{1}}u^{l_{1}}=x^{2}=xx^{2}x^{-1}=x(a^{t_{1}}u^{l_{1}})x^{-1}

=(a^{1+k\cdot 2^{n-z-1}}u^{2^{z-1}})^{t_{1}}(a^{2^{n-z}d}u)^{l_{1}} ,

we have
u^{l_{1}}\equiv u^{2^{z-1}t_{1}}u^{l_{1}} (mod \langle a\rangle ).

Therefore we can write as t_{1}=2t_{2} , and

x^{2}=a^{2t_{2}}u^{l_{1}}
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for some integer t_{2} . For any integer s , we have

(a^{s}x)^{2}=a^{s}(a^{1+k\cdot 2^{n-z-1}}u^{2^{z-1}})^{s}x^{2}=a^{s}(au^{2^{z-1}})^{s}a^{k\cdot s\cdot 2^{n-z-1}}a^{2t_{2}}u^{l_{1}} ,

since a^{2^{n-z-1}}u^{2^{z-1}}=u^{2^{z-1}}a^{2^{n-z-1}} But

(au^{2^{z-1}})^{s}=a^{s(1+2^{n-2})} , (resp. (au^{2^{z-1}})^{s}=a^{s(1+2^{n-2})-2^{n-2}}u^{2^{z-1}} ),

when s is even (resp. s is odd), by direct calculations. Therefore

(a^{s}x)^{2}=a^{s}a^{s(1+2^{n-2})}a^{k\cdot s\cdot 2^{n-z-1}}a^{2t_{2}}u^{l_{1}}=a^{2s(1+2^{n-3}+k\cdot 2^{n-z-2})+2t_{2}}u^{l_{1}}

(resp. (a^{s}x)^{2}=a^{s}a^{s(1+2^{n-2})-2^{n-2}}a^{k\cdot s\cdot 2^{n-z-1}}a^{2t_{2}}u^{l_{1}+2^{z-1}}

=a^{2s(1+2^{n-3}+k\cdot 2^{n-z-2})+2t_{2}-2^{n-2}}u^{l_{1}+2^{z-1}})

when s is even (when s is odd). Take the integer s_{1} which satisfies the
following equality

s_{1}(1+2^{n-3}+k2^{n-z-2})+t_{2}\equiv 0 (mod 2^{n-1} ),

(resp. s_{1}(1+2^{n-3}+k2^{n-z-2})+t_{2}-2^{n-3}\equiv 0 (mod 2^{n-1}) ),

when t_{2} is even (resp. when t_{2} is odd).
Set x_{1}=a^{s_{1}}x . Then

x_{1}^{2}=(a^{s_{1}}x)^{2}=u^{l_{1}} (resp. x_{1}^{2}=u^{l_{1}+2^{z-1}} ),

when t_{2} is even (resp. t_{2} is odd). For any cases, we can write

x_{1}^{2}=u^{l_{2}}

for some odd integer l_{2} . Since u is a power of x_{1}^{2} , we have x_{1}ux_{1}^{-1}=u .
On the other hand, we can write as

x_{1}ax_{1}^{-1}=a^{1+k_{2}\cdot 2^{n-z-1}}u^{2^{z-1}}

for some odd integer k_{2} . Since 2\leq n-z-1 , we have

x_{1}a^{2^{n-z-1}}x_{1}^{-1}=(a^{1+k_{2}2^{n-z-1}}u^{2^{z-1}})^{2^{n-z-1}}=a^{(1+k_{2}2^{n-z-1})2^{n-z-1}}

by Lemma 1 (3). Hence

x_{1}^{2}ax_{1}^{-2}=x_{1}(a^{1+k_{2}2^{n-z-1}}u^{2^{z-1}})x_{1}^{-1}

=(a^{1+k_{2}2^{n-z-1}}u^{2^{z-1}})a^{(1+k_{2}2^{n-z-1})2^{n-z-1}k_{2}}u^{2^{z-1}}

=a^{(1+k_{2}2^{n-z-1})^{2}} (6)
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Therefore, for any integer s , we have

x_{1}^{2s}ax_{1}^{-2s}=a^{(1+k_{2}2^{n-z-1})^{2s}}

and

x_{1}^{2s+1}ax_{1}^{-2s-1}=x_{1}^{2s}(a^{1+k_{2}2^{n-z-1}}u^{2^{z-1}})x_{1}^{-2s}=a^{(1+k_{2}2^{n-z-1})^{2s+1}}u^{2^{z-1}}

Take the integer s_{2} which satisfies the following equality

(1+k_{2}2^{n-z-1})^{2s_{2}+1}\equiv 1+2^{n-z-1} (mod 2^{n} ),

and set x_{2}=x_{1}^{2s_{2}+1} Then

x_{2}ax_{2}^{-1}=a^{1+2^{n-z-1}}u^{2^{z-1}}

Further we have x_{2}ux_{2}^{-1}=u , and

x_{2}^{2}=x_{1}^{2(2s_{2}+1)}=u^{l_{2}(2s_{2}+1)}=u^{l_{3}} ,

where we set l_{3}=l_{2}(2s_{2}+1) , which is an odd integer. By the same way as
in (6), we have

x_{2}^{2}ax_{2}^{-2}=a^{(1+2^{n-z-1})^{2}}=u^{l_{3}}au^{-l_{3}}=a^{(1+2^{n-z})^{l}s}

Hence

(1+2^{n-z})^{l_{3}}\equiv(1+2^{n-z-1})^{2} (mod 2^{n} ).

It is easy to see that such an integer l_{3} is uniquely determined mod 2^{z} .
Hence the element u^{l_{3}} is uniquely determined by this relation. In the defi-
nition of D(n, m, 1) in Section 2, (5), we write l_{3}=e_{m} , when m=z . So we
may write as

x_{2}^{2}=u^{e_{z}} .

In particular, when 2z+2\leq n , we have e_{z}\equiv 1 (mod 2^{z} ). Hence x_{2}^{2}=u , in
this case.

Finally, we consider the element b_{0}=x_{2}bx_{2}^{-1} . Taking the conjugate of
both sides of the equality, ba^{2}b^{-1}=a^{-2} , by x_{2} , we get

b_{0}a^{2(1+2^{n-z-1})(1+2^{n-2})}b_{0}^{-1}=a^{-2(1+2^{n-z-1})(1+2^{n-2})} .

Hence

b_{0}a^{2}b_{0}^{-1}=a^{-2} .
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and

bb_{0}a^{2}b_{0}^{-1}b^{-1}=a^{2}-

Therefore we may write as

bb_{0}=a^{-t}u^{2^{z-1}r} ,

and

b_{0}=a^{t}u^{2^{z-1}r}b ,

for some t\in Z , and r=0 or 1. Since x_{2}^{2}=u^{e_{z}} ,

b=u^{e_{z}}bu^{-e_{z}}=x_{2}^{2}bx_{2}^{-2}=x_{2}(a^{t}u^{2^{z-1}r}b)x_{2}^{-1}

=(a^{1+2^{n-z-1}}u^{2^{z-1}})^{t}(u^{2^{z-1}r})(a^{t}u^{2^{z-1}r}b) . (7)

Therefore we have

b\equiv u^{2^{z-1}}{}^{t}b (mod \langle a\rangle ).

So,

t\equiv 0 (mod 2).

Write t=2t_{3} , where t_{3}\in Z . Substituting t=2t_{3} to (7), we get

b=(a^{1+2^{n-z-1}}u^{2^{z-1}})^{2t_{3}}a^{2t_{3}}b=a^{2(1+2^{n-z-1})(1+2^{n-2})t_{3}+2t_{3}}b .

Therefore

2t_{3}\{(1+2^{n-z-1})(1+2^{n-2})+1\}\equiv 0 (mod 2^{n} ).

So

4t_{3}(1+2^{n-z-2}+2^{n-3})\equiv 0 (mod 2^{n} ).

Hence

t=2t_{3}\equiv 0 (mod 2^{n-1} ).

Thus we may write as t =2^{n-1}t_{4} , and

x_{2}bx_{2}^{-1}=a^{2^{n-1}t_{4}}u^{2^{z-1}r}b ,

where t_{4}=0 or 1. Taking the conjugate of both sides of the equality,
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bab^{-1}=a^{-1} , by x_{2} , we get

(a^{2^{n-1}t_{4}}u^{2^{z-1}r}b)(a^{1+2^{n-z-1}}u^{2^{z-1}})(a^{2^{n-1}t_{4}}u^{2^{z-1}r}b)^{-1}

=a^{-(1+2^{n-z-1})(1+2^{n-1})}u^{2^{z-1}}

Therefore

a^{-(1+2^{n-z-1})(1+r2^{n-1})}=a^{-(1+2^{n-z-1})(1+2^{n-1})} .

Hence r=1 , so u^{2^{z-1}r}=u^{2^{z-1}}

Summarizing the results, we get

x_{2}ax_{2}^{-1}=a^{1+2^{n-z-1}}u^{2^{z-1}} ,
x_{2}bx_{2}^{-1}=a^{2^{n-1}t_{4}}u^{2^{z-1}}b ,
x_{2}ux_{2}^{-1}=u ,
x_{2}^{2}=u^{e_{z}} .

If t_{4}=0 , these relations are the same as that of D(n, z, 1) . So, the group
N_{2}=\langle a, b, u, x_{2}\rangle is clearly isomorphic to D(n, z, 1) .

If t_{4}=1 , we set u_{1}=a^{2^{n-1}}u and x_{3}=a^{2^{n-2}}x_{2} . Then we have u_{1}^{2^{z}}=1 ,
u_{1}b=bu_{1} and u_{1}au_{1}^{-1}=a^{1+2^{n-z}} So,

\langle a, b, u_{1}\rangle=\langle a, b, u\rangle\cong D(n, z) .

Further, we have

x_{3}ax_{3}^{-1}=a^{1+2^{n-z-1}}u_{1}^{2^{z-1}}

x_{3}u_{1}x_{3}^{-1}=u_{1} ,
x_{3}bx_{3}^{-1}=u_{1}^{2^{z-1}}b ,
x_{3}^{2}=u_{1}^{e_{z}} .

Thus, in this case also, the group N_{2}=\langle a, b, u_{1}, x_{3}\rangle is isomorphic to
D(n, z, 1) . Hence the proof of Claim III is completed. \square

Finally, we show the following

Claim IV N_{G}(N_{2})=N_{2} .

Proof of Claim IV . When N_{2}=D_{0}(n, 1,1) , we can show Claim IV, by
using Proposition 0.3.

So, we have only to consider the case where N_{2} =D(n, z, 1)=
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\langle a, b, u, x\rangle , 2\leq z\leq n-3 . Assume that N_{2}\subset N_{G}(\neq N_{2}) . Let y\in N_{G}(N_{2})-

N_{2} .
First, consider the elements yby^{-1} and yuy^{-1} . Note that any element

in D(n, z, 1) is represented as a^{i}u^{j}b^{k}x^{t} where i , j , k , t\in Z , 0\leq i\leq 2^{n}-1 ,
0\leq j\leq 2^{z}-1,0\leq k\leq 1,0\leq t\leq 1 . Define the normal subgroup H_{0} of N_{2}

as

H_{0}=\langle a, u^{2^{z-1}}\rangle .

It is easy to see that N_{2}/H_{0}=D(n, z, 1)/H_{0} is an abelian group. Hence

(a^{i}u^{j}b^{k}x)^{2}\equiv u^{2j}x^{2}=u^{2j+e_{z}} (mod H_{0} ).

So, we can write as

(a^{i}u^{j}b^{k}x)^{2}=a^{r}u^{2^{z-1}s+2j+e_{z}} , (8)

for some integers r , s . Since e_{z} is odd,

(a^{i}u^{j}b^{k}x)^{2^{z}}\neq 1 ,

by Lemma 1 (1). Since |b|=2 and |u|=2^{z} , we must have

yby-1\in\langle a, b, u\rangle=N_{1} ,

and

yuy^{-1}\in\langle a, b, u\rangle=N_{1} .

Next, consider the element yay^{-1} . Taking the conjugate of both sides of
the equality, a^{-1}=bab^{-1} , by y , we get

a_{0}^{-1}=b_{0}a_{0}b_{0}^{-1}\equiv a_{0} (mod H_{0} ).

So,

(yay^{-1})^{2}=a_{0}^{2}\in H_{0} .

On the other hand, by (8),

(a^{i}u^{j}b^{k}x)^{2}\not\in H_{0} .

Hence we must have

yay^{-1}\in\langle a, b, u\rangle=N_{1} .
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Thus we have shown that

y\in N_{G}(N_{1})=N_{2} .

This contradicts the assumption that N_{2}\neq\subset N_{G}(N_{2}) and y\in N_{G}(N_{2})-N_{2} .
Therefore the proof of Claim IV is completed. \square

Proof of Theorem 1. Since G is a 2-group, Claim IV means that G=N_{2} .
Therefore we have G=N_{1} or N_{2} . Hence we can get Theorem 1, by using
Theorem 0.2, Proposition 0.3 and Claim III. \square

4. Proof of Theorems 2 and 3

Proof of Theorems 2 is essentially the same as that of Theorem 1. So
we omit the proof.

Theorem 3 follows from Theorem 0.2, Theorem 1 and Theorem 2.
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