Absolute continuity of analytic measures

Hiroshi Yamaguchi

(Received February 21, 2002)

Abstract. We give an extension of a result due to Asmar, Montgomery-Smith and Saeki, which is concerned with absolute continuity of analytic measures. We also discuss the relation between the space $N(\sigma)$ and absolute continuity of analytic measures.

Key words: LCA group, measure, Fourier transform, absolute continuity.

1. Introduction

Let G be a LCA group with dual group \hat{G} . Let $L^1(G)$ and M(G) be the group algebra and the measure algebra, respectively. Let ψ be a nontrivial continuous homomorphism from \hat{G} into \mathbb{R} , and let $\phi: \mathbb{R} \to G$ be the dual homomorphism of ψ . Defining an action of \mathbb{R} on G by $t \cdot x = \phi(t) + x$ ($t \in \mathbb{R}$, $x \in G$), we get a transformation group (\mathbb{R}, G) . Let σ be a quasi-invariant, (positive) Radon measure on G, and set $N(\sigma) = \{\mu \in M(G) : \phi(h) * \mu \ll \sigma \forall h \in L^1(\mathbb{R}) \}$. Then $N(\sigma)$ is an $L^1(\mathbb{R})$ -module and an L-subspace of M(G). In general, we have

$$L^1(\sigma) \subset N(\sigma) \subset M(G)$$
.

According to choice of G and σ , it may happen that $N(\sigma) = M(G)$ and $L^1(\sigma) \subsetneq N(\sigma) \subsetneq M(G)$ (cf. [6] and [14]). Any analytic measure in $N(\sigma)$ is absolutely continuous with respect to σ (Corollary 2.1 or [14, Corollary 2.1]). We show that $N(\sigma)$ is the largest $L^1(\mathbb{R})$ -module, L-subspace of M(G) such that any its analytic measure is necessarily absolutely continuous with respect to σ (Corollary 2.3). Recently, Asmar, Montgomery-Smith and Saeki obtained a new version of Bochner's generalization of the F. and M. Riesz theorem ([3, Theorem 4.5]). We also give another proof of it (Theorem 2.2).

2. Notation and results

Let G be a LCA group with dual group \hat{G} . We denote by $\mathfrak{B}(G)$ the σ -algebra of Borel sets in G. For $x \in G$, δ_x denotes the point mass at x. We

denote by $\operatorname{Trig}(G)$ the set of trigonometric polynomials on G. Let $C_o(G)$ be the Banach space of continuous functions on G which vanish at infinity. Then M(G) is identified with the dual space of $C_o(G)$. Let $M^+(G)$ be the set of nonnegative measures in M(G). For $\mu \in M(G)$ and $f \in L^1(|\mu|)$, we often use the notation $\mu(f)$ as $\int_G f(x)d\mu(x)$. For $\lambda \in M(G)$, $\hat{\lambda}$ denotes the Fourier-Stieltjes transform of λ , i.e., $\hat{\lambda}(\gamma) = \int_G (-x, \gamma)d\lambda(x)$ for $\gamma \in \hat{G}$. For a closed subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transform vanish off E, and E is called a Riesz set if $M_E(G) \subset L^1(G)$. Obviously, compact subsets of \hat{G} are Riesz sets.

Let ψ be a nontrivial continuous homomorphism from \hat{G} into \mathbb{R} (the reals). We may assume that there exists $\chi_o \in \hat{G}$ such that $\psi(\chi_o) = 1$ by considering a multiplication of ψ if necessary. Let $\phi : \mathbb{R} \to G$ be the dual homomorphism of ψ , i.e., $(\phi(t), \gamma) = \exp(i\psi(\gamma)t)$ for $t \in \mathbb{R}$ and $\gamma \in \hat{G}$.

Let Λ be a discrete subgroup of \hat{G} generated by χ_o , and let $K = \Lambda^{\perp}$, the annihilator of Λ . We define a continuous homomorphism $\alpha : \mathbb{R} \oplus K \to G$ by

$$\alpha(t, u) = \phi(t) + u. \tag{2.1}$$

Then $\ker(\alpha) = \{(2\pi n, -\phi(2\pi n)) : n \in \mathbb{Z}\}\ \text{and}\ \ker(\alpha)^{\perp} = \{(\psi(\gamma), \gamma|_K) : \gamma \in \hat{G}\} \cong \hat{G}.$ For $0 < \epsilon < \frac{1}{6}$, we define a function $\Delta_{\epsilon}(t, \omega)$ on $\mathbb{R} \oplus \hat{K}$ by

$$\Delta_{\epsilon}(t,\omega) = egin{cases} \max\Big(1-rac{1}{\epsilon}|t|,0\Big) & (\omega=0), \ 0 & (\omega
eq 0). \end{cases}$$

For $\mu \in M(G)$, define a function $\Phi_{\mu}^{\epsilon}(t,\omega)$ on $\mathbb{R} \oplus \hat{K}$ by

$$\Phi_{\mu}^{\epsilon}(t,\omega) = \sum_{\gamma \in \hat{G}} \hat{\mu}(\gamma) \Delta_{\epsilon}((t,\omega) - (\psi(\gamma), \gamma \mid_{K})).$$

Then $\Phi_{\mu}^{\epsilon} \in M(\mathbb{R} \oplus K)^{\wedge}$, $\|(\Phi_{\mu}^{\epsilon})^{\vee}\| = \|\mu\|$ and $\alpha((\Phi_{\mu}^{\epsilon})^{\vee}) = \mu$ for $\mu \in M(G)$ (cf. [14]), where " \vee " denotes the inverse Fourier transform. We define an isometry $T_{\psi}^{\epsilon}: M(G) \to M(\mathbb{R} \oplus K)$ by

$$T_{\psi}^{\epsilon}(\mu) = (\Phi_{\mu}^{\epsilon})^{\vee}. \tag{2.2}$$

Defining an action of \mathbb{R} on G by $t \cdot x = \phi(t) + x$, we get a transformation

group (\mathbb{R}, G) . For $\lambda \in M(\mathbb{R})$ and $\mu \in M(G)$, we define $\lambda * \mu \in M(G)$ by

$$\lambda*\mu(f) = \int_G \int_{\mathbb{R}} f(t\cdot x) d\lambda(t) d\mu(x)$$

for $f \in C_o(G)$. When there is a possibility of confusion, we may use the the notation $\lambda *_{\mathbb{R}} \mu$ instead of $\lambda * \mu$. We note that $\lambda *_{\mathbb{R}} \mu = \phi(\lambda) * \mu$ (cf. [14, Proposition 4.1]), where $\phi(\lambda) * \mu$ is the usual convolution in M(G). For $\mu \in M(G)$, its spectrum $\mathrm{sp}(\mu)$ is defined by $\mathrm{sp}(\mu) = \bigcap_{h \in J(\mu)} \hat{h}^{-1}(0)$, where $J(\mu) = \{h \in L^1(\mathbb{R}) : h *_{\mathbb{R}} \mu = 0\}$. For $\mu \in M(G)$ and a closed set E in \mathbb{R} , we note that $\mathrm{sp}(\mu) \subset E$ if and only if $\mathrm{supp}(\hat{\mu}) \subset \psi^{-1}(E)$ (cf. [14, Remark 4.1]).

A (positive) Radon measure σ on G is said to be quasi-invariant if $\sigma(F)=0$ implies $\sigma(t\cdot F) (=\sigma(\phi(t)+F))=0$ for all $t\in\mathbb{R}$. For a quasi-invariant Radon measure σ on G, let $N(\sigma)=\{\mu\in M(G): h*\mu\ll\sigma\;\forall h\in L^1(\mathbb{R})\}$. $N(\sigma)$ is a closed subspace of M(G), and $L^1(\sigma)\subset N(\sigma)\subset M(G)$ (cf. [9]). Moreover, $N(\sigma)$ is an $L^1(\mathbb{R})$ -module and an L-subspace of M(G) (cf. [10, Corollary 5]). For $\epsilon>0$, V_ϵ and V_ϵ denote a closed interval $[-\epsilon,\epsilon]$ and an open interval $(-\epsilon,\epsilon)$, respectively. We state our first result.

Theorem 2.1 Let $0 < \epsilon < \frac{1}{6}$, and let E be a closed set in \mathbb{R} such that $E + \bar{V}_{\epsilon}$ is a Riesz set in \mathbb{R} . Let μ be a measure in M(G) with $\operatorname{sp}(\mu) \subset E$. Then $\lim_{t\to 0} \|\mu - \delta_{\phi(t)} * \mu\| = 0$.

Proof. Since supp $(\hat{\mu}) \subset \psi^{-1}(E)$ and $T_{\psi}^{\epsilon}(\mu)^{\wedge} = \Psi_{\mu}^{\epsilon}$, we have

(1)
$$\operatorname{supp}(T_{\psi}^{\epsilon}(\mu)^{\wedge}) \subset (E + \bar{V}_{\epsilon}) \times \hat{K}.$$

Let $\pi_K : \mathbb{R} \oplus K \to K$ be the projection, and put $\eta = \pi_K(|T_{\psi}^{\epsilon}(\mu)|)$. It follows from [13, Corollary 1.6] that there exists a family $\{\lambda_u\}_{u \in K} \subset M(\mathbb{R})$ with the following properties:

- (2) $u \to (\lambda_u \times \delta_u)(f)$ is η -measurable for each bounded Borel function f on $\mathbb{R} \oplus K$,
- (3) $\|\lambda_u\| = 1$, and
- (4) $T_{\psi}^{\epsilon}(\mu)(f) = \int_{K} (\lambda_{u} \times \delta_{u})(f) d\eta(u) \text{ for each bounded}$ Borel function f on $\mathbb{R} \oplus K$.

Then, by (1) and [13, Lemma 2.1], we have

$$\lambda_u \in M_{E+\bar{V}_{\epsilon}}(\mathbb{R}) \quad \eta$$
-a.a. $u \in K$,

which, together with the fact that $E + \bar{V}_{\epsilon}$ is a Riesz set, yields

(5)
$$\lambda_u \in L^1(\mathbb{R}) \quad \eta$$
-a.a. $u \in K$.

We note that

$$\alpha((\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu)) = \delta_{\phi(t)} * \mu.$$

Hence

(6)
$$\|\delta_{\phi(t)} * \mu - \mu\| = \|\alpha((\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu) - T_{\psi}^{\epsilon}(\mu))\|$$
$$\leq \|(\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu) - T_{\psi}^{\epsilon}(\mu)\|.$$

By (4), we have

(7)
$$(\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu)(f) = \int_K \{ (\delta_t * \lambda_u) \times \delta_u \}(f) d\eta(u)$$

for each bounded Borel function f on $\mathbb{R} \oplus K$. For $f \in C_o(\mathbb{R})$, we have $\lambda_u(f) = (\lambda_u \times \delta_u)(f)$, where, on the right hand side, f is considered as a bounded continuous function on $\mathbb{R} \oplus K$. Let \mathcal{A} be a countable dense set in $C_o(\mathbb{R})$. Then

$$\|\delta_t * \lambda_u - \lambda_u\| = \sup_{\substack{f \in \mathcal{A} \\ \|f\|_{\infty} \le 1}} |(\delta_t * \lambda_u - \lambda_u)(f)|,$$

which, together with (2), yields that $u \to ||\delta_t * \lambda_u - \lambda_u||$ is η -measurable. It follows from (4) and (7) that

$$\|(\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu) - T_{\psi}^{\epsilon}(\mu)\| \le \int_K \|\delta_t * \lambda_u - \lambda_u\| \, d\eta(u).$$

On the other hand, (5) implies

$$\lim_{t\to 0} \|\delta_t * \lambda_u - \lambda_u\| = 0 \quad \eta\text{-a.a. } u \in K.$$

Thus, by the Lebesgue convergence theorem, we have

$$\lim_{t\to 0} \|(\delta_t \times \delta_0) * T_{\psi}^{\epsilon}(\mu) - T_{\psi}^{\epsilon}(\mu)\| = 0,$$

which, combined with (6), yields

$$\lim_{t \to 0} \|\delta_{\phi(t)} * \mu - \mu\| = 0.$$

This completes the proof.

When $E = [0, \infty)$, Theorem 2.1 is already known (cf. [7] or [2]). We give another example.

Definition 2.1 Let 0 . A subset <math>E of \mathbb{Z} is called a $\Lambda(p)$ -set if for some 0 < q < p, there exists a constant C > 0 such that

$$|| f ||_p \le C || f ||_q$$

for all $f \in \operatorname{Trig}_E(\mathbb{T})$, where $\operatorname{Trig}_E(\mathbb{T})$ is the set of trigonometric polynomials on \mathbb{T} whose Fourier transforms vanish off E.

Example 2.1 Let \mathbb{Z}_{-} and \mathbb{R}^{+} be the set of nonpositive integers and the set of nonnegative real numbers, respectively. Let $F \subset \mathbb{Z}_{-} \setminus \{0\}$ be a $\Lambda(2)$ -set in \mathbb{Z} , and put $E = (F + \overline{V}_{\frac{1}{6}}) \cup \mathbb{R}^{+}$. Then, for $0 < \epsilon < \frac{1}{6}$, $E + \overline{V}_{\epsilon}$ is a Riesz set in \mathbb{R} .

In fact, let $\mu \in M_{E+\bar{V}_{\epsilon}}(\mathbb{R})$. Let $\pi : \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z} \cong \mathbb{T}$ be the natural homomorphism. Put $F_n(x) = \frac{1}{\pi} \cdot \frac{1-\cos nx}{nx^2}$ $(n \in \mathbb{N})$. Then $\pi(F_n * \mu) \in \mathrm{Trig}(\mathbb{T})$. We note that $\hat{F}_n(s) = \int_{\mathbb{R}} F_n(x) e^{-isx} dx = \max \left(1 - \frac{1}{n}|s|, 0\right)$. Let $P_- : \mathrm{Trig}(\mathbb{T}) \to \mathrm{Trig}(\mathbb{T})$ be a projection defined by

$$P_{-}(u)(x) = \sum_{k < 0} \hat{u}(k)e^{ikx}.$$

Let $0 . It follows from [12, Theorem 8.7.6] that there exists a constant <math>A_p > 0$ such that

$$||P_{-}(\pi(F_n * \mu))||_p \le A_p ||\pi(F_n * \mu)||_1.$$

Since $P_{-}(\pi(F_n * \mu)) \in \operatorname{Trig}_F(\mathbb{T})$ and F is a $\Lambda(2)$ set, there exists a constant $C_F > 0$ such that

$$||P_{-}(\pi(F_n * \mu))||_2 \le C_F ||P_{-}(\pi(F_n * \mu))||_p.$$

Hence

$$||P_{-}(\pi(F_n * \mu))||_2 \le A_p C_F ||\pi(F_n * \mu)||_1$$

$$\le A_p C_F ||\mu||,$$

which yields

$$\sum_{k \in F} |(F_n * \mu)^{\wedge}(k)|^2 \le A_p^2 C_F^2 \|\mu\|^2.$$

Letting $n \to \infty$, we have

$$\sum_{k \in F} |\hat{\mu}(k)|^2 \le A_p^2 C_F^2 \|\mu\|^2.$$

Let $x \in \bar{V}_{\frac{1}{6}} + \bar{V}_{\epsilon} = \bar{V}_{\frac{1}{6} + \epsilon}$. Considering $e^{-ix} F_n * \mu$, we similarly get

$$\sum_{k \in F} |\hat{\mu}(x+k)|^2 \le A_p^2 C_F^2 \|\mu\|^2.$$

Thus

$$\int_{(-\infty,0]} |\hat{\mu}(x)|^2 dx = \sum_{k \in F} \int_{\bar{V}_{\frac{1}{6} + \epsilon}} |\hat{\mu}(k+x)|^2 dx$$

$$\leq \left(\frac{1}{3} + 2\epsilon\right) A_p^2 C_F^2 \|\mu\|^2 < \infty,$$

which, together with [5, Main Theorem], yields $\mu \in L^1(\mathbb{R})$. This shows that $E + \bar{V}_{\epsilon}$ is a Riesz set in \mathbb{R} .

Set $A = \{ \mu \in M(G) : \lim_{t\to 0} \|\delta_{\phi(t)} * \mu - \mu\| = 0 \}$. The following theorem is due to Liu and van Rooij.

Theorem A (cf. [9, Therem 9]) Let σ be a quasi-invariant Radon measure on G. Then $A \cap N(\sigma) = L^1(\sigma)$.

By Theorem 2.1 and Theorem A, we get the following corollary, which was obtained in [14], by a different method.

Corollary 2.1 (cf. [14, Corollary 2.1]) Let σ be a quasi-invariant Radon measure on G. Let E be as in Theorem 2.1, and let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu \ll \sigma$.

Recently, Asmar, Montgomery-Smith and Saeki ([3]) got significant results concerned with analytic measures, and they gave the following theorem as an application.

Theorem B ([3, Theorem 4.5]) Let $\mu \in M(G)$, and suppose that, for every $s \in \mathbb{R}$, $\psi^{-1}((-\infty, s]) \cap \operatorname{supp}(\hat{\mu})$ is compact. Then $\mu \ll m_G$.

Next we show that Theorem B follows from Corollary 2.1. It is easy to verify that Therem B and the following Theorem B' are equivalent.

Theorem B' Let $\mu \in M(G)$ be of analytic type, i.e., $\hat{\mu}(\gamma) = 0$ for $\gamma \in \hat{G}$ with $\psi(\gamma) < 0$. Suppose that, for every $s \in \mathbb{R}$, $\psi^{-1}([s-1,s+1]) \cap \operatorname{supp}(\hat{\mu})$ is compact. Then $\mu \ll m_G$.

The following is a slight extension of Theorem B'.

Theorem 2.2 Let E be as in Theorem 2.1. Let μ be a measure in M(G) with $\operatorname{sp}(\mu) \subset E$. Suppose that, for every $s \in \mathbb{R}$, $\psi^{-1}([s-1,s+1]) \cap \operatorname{supp}(\hat{\mu})$ is a Riesz set in \hat{G} . Then $\mu \ll m_G$.

Proof. By Corollary 2.1, it is sufficient to prove that $\mu \in N(m_G)$. Let $h \in L^1(\mathbb{R})$. For any $\epsilon > 0$, it follows from [12, Theorem 2.6.6] that there exists $\nu_{\epsilon} \in L^1(\mathbb{R})$ such that $\hat{\nu}_{\epsilon}$ has a compact support and $\|h - h * \nu_{\epsilon}\|_1 < \epsilon$. Since $(h * \nu_{\epsilon})^{\wedge}$ has a compact support, there exist $g_1, \ldots, g_m \in L^1(\mathbb{R})$ such that

(1)
$$\operatorname{supp}(\hat{g}_i) \subset [s_i - 1, s_i + 1] \text{ for some } s_i \in \mathbb{R} \ (i = 1, 2, \dots, m), \text{ and}$$

(2)
$$h * \nu_{\epsilon} = \sum_{i=1}^{m} h * \nu_{\epsilon} * g_{i}.$$

Since supp $((\phi(h * \nu_{\epsilon} * g_i) * \mu)^{\wedge}) \subset \psi^{-1}([s_i - 1, s_i + 1]) \cap \operatorname{supp}(\hat{\mu})$, we have

(3)
$$\phi(h * \nu_{\epsilon}) * \mu = \sum_{i=1}^{m} \phi(h * \nu_{\epsilon} * g_{i}) * \mu \in L^{1}(G).$$

On the other hand,

$$\|\phi(h) * \mu - \phi(h * \nu_{\epsilon}) * \mu\| \le \|\phi(h - h * \nu_{\epsilon})\| \|\mu\|$$

$$\le \|h - h * \nu_{\epsilon}\|_{1} \|\mu\| \le \epsilon \|\mu\|.$$

Since ϵ is any positive real number, we have, by (3),

$$\phi(h) * \mu \in L^1(G)$$
,

which shows that $\mu \in N(m_G)$. This completes the proof.

As we pointed out before, $N(\sigma)$ is an $L^1(\mathbb{R})$ -module and an L-subspace of M(G). Moreover, by Corollary 2.1, every analytic measure in $N(\sigma)$ is absolutely continuous with respect to σ . Finally, we show that $N(\sigma)$ is the largest $L^1(\mathbb{R})$ -module, L-subspace of M(G) with this property.

Theorem 2.3 Let σ be a quasi-invariant, Radon measure on G. Let V be an open set in \mathbb{R} with $V \cap \psi(\hat{G}) \neq \emptyset$. Let $\mathcal{L}(G)$ be an $L^1(\mathbb{R})$ -module, L-subspace of M(G) such that $\mathcal{L}(G) \not\subset N(\sigma)$. Then there exists $\mu \in \mathcal{L}(G) \backslash N(\sigma)$ with $\operatorname{sp}(\mu) \subset V$.

Proof. We choose $\gamma_o \in \hat{G}$ and a symmetric open neighborhood U of 0 in \mathbb{R} , with compact closure, so that $\psi(\gamma_o) + \bar{U} \subset V$. Since $\mathcal{L}(G)$ is an L-subspace of M(G), there exists a nonzero measure $\nu \in (\mathcal{L}(G) \cap M^+(G)) \setminus N(\sigma)$. Then there exists a quasi-invariant measure σ_{ν} in $M^+(G)$ and a σ -compact subset X_{ν} of G such that

- (1) $\sigma_{\nu} \ll \sigma$,
- (2) $\phi(\mathbb{R}) + X_{\nu} = X_{\nu} \text{ (i.e., } \mathbb{R} \cdot X_{\nu} = X_{\nu}),$
- (3) $\nu(X_{\nu}^{c}) = \sigma_{\nu}(X_{\nu}^{c}) = 0$, and
- (4) $\sigma_{\nu}|_{X_{\nu}}$ and $\sigma|_{X_{\nu}}$ are mutually absolutely continuous.
- (cf. [14, Proposition 4.2]). Then
- (5) $\nu \notin N(\sigma_{\nu}).$

It follows from [14, Theorem 5.1] that $\pi_K(T_{\psi}^{\epsilon}(\nu))$ is not absolutely continuous with respect to $\pi_K(T_{\psi}^{\epsilon}(\sigma_{\nu}))$, where $\pi_K : \mathbb{R} \oplus K \to K$ is the projection. Let $\pi_K(T_{\psi}^{\epsilon}(\nu)) = \eta_a + \eta_s$ be the Lebesgue decomposition of $\pi_K(T_{\psi}^{\epsilon}(\nu))$ with respect to $\pi_K(T_{\psi}^{\epsilon}(\sigma_{\nu}))$. Then $\eta_s \neq 0$. There exists a Borel set $K_s \subset K$ such that $\pi_K(T_{\psi}^{\epsilon}(\sigma_{\nu}))(K_s) = 0$ and $\eta_s(K_s^c) = 0$. Put $B = \mathbb{R} \times K_s$, and define a measure $\omega_B \in M^+(\mathbb{R} \oplus K)$ by

$$\omega_B(F) = T_{\psi}^{\epsilon}(\nu)(B \cap F)$$

for $F \in \mathfrak{B}(\mathbb{R} \oplus K)$. Then $\pi_K(\omega_B) = \eta_s \neq 0$. In particular, $\omega_B \neq 0$. Since $\omega_B \ll T_{\psi}^{\epsilon}(\nu)$,

$$\alpha(\omega_B) \ll \alpha(T_{\psi}^{\epsilon}(\nu)) = \nu.$$

It follows from the facts that $\nu \in \mathcal{L}(G)$ and $\mathcal{L}(G)$ is an L-subspace of M(G) that $\alpha(\omega_B) \in \mathcal{L}(G)$. Let $h \neq 0$ be a nonngative function in $L^1(\mathbb{R})$ such that $\sup(\hat{h}) \subset \bar{U}$. Then $\phi(h) * \alpha(\omega_B) \neq 0$, and

(6)
$$\operatorname{sp}(\phi(h) * \alpha(\omega_B)) = \operatorname{sp}(h *_{\mathbb{R}} \alpha(\omega_B)) \subset \bar{U}.$$

Since $\mathcal{L}(G)$ is an $L^1(\mathbb{R})$ -module and $\alpha(\omega_B) \in \mathcal{L}(G)$, we have

(7)
$$\phi(h) * \alpha(\omega_B) \in \mathcal{L}(G).$$

For any nonnegative, nonzero $g \in L^1(\mathbb{R})$,

$$g *_{\mathbb{R}} (\phi(h) * \alpha(\omega_B)) = \phi(g * h) * \alpha(\omega_B)$$
$$= \alpha((g * h) \times \delta_0) * \alpha(\omega_B).$$

On the other hand, we have

$$\pi_K(((g * h) \times \delta_0) * \omega_B) = \pi_K((g * h) \times \delta_0) * \pi_K(\omega_B)$$

= $||g * h||_1 \pi_K(\omega_B) = ||g * h||_1 \eta_s$,

hence $\pi_K(((g*h)\times\delta_0)*\omega_B)\perp\pi_K(T_{\psi}^{\epsilon}(\sigma_{\nu}))$. Thus

$$((g*h)\times\delta_0)*\omega_B\perp T^{\epsilon}_{\psi}(\sigma_{\nu}),$$

which, combined with [14, Lemma 4.1], yields

$$0 \neq g *_{\mathbb{R}} (\phi(h) * \alpha(\omega_B)) = \alpha(((g * h) \times \delta_0) * \omega_B) \perp \sigma_{\nu}.$$

This shows that $\phi(h) * \alpha(\omega_B) \notin N(\sigma_{\nu})$. Since $\phi(h) * \alpha(\omega_B)$ is concentrated on X_{ν} and $\sigma_{\nu}|_{X_{\nu}}$ and $\sigma|_{X_{\nu}}$ are mutually absolutely continuous, we have

(8)
$$\phi(h) * \alpha(\omega_B) \notin N(\sigma)$$
.

Put $\mu = \gamma_o \phi(h) * \alpha(\omega_B)$. Since $\psi(\gamma_o) + \bar{U} \subset V$, it follows from (6)–(8) that $\operatorname{sp}(\mu) \subset V$ and $\mu \in \mathcal{L}(G) \setminus N(\sigma)$. This completes the proof.

For a quasi-invariant Radon measure σ on G and a closed subset E of \mathbb{R} , let $\mathfrak{F}_E(\sigma)$ be a family of $L^1(\mathbb{R})$ -modules $\mathcal{L}(G)$, which are L-subspaces of M(G), satisfying the following condition:

$$\mu \in \mathcal{L}(G), \quad \operatorname{sp}(\mu) \subset E \implies \mu \ll \sigma.$$
 (2.3)

By Corollary 2.1 and Theorem 2.3, we have the following corollaries.

Corollary 2.2 Let E be as in Theorem 2.1, and suppose that $\psi(\hat{G}) \cap \stackrel{\circ}{E} \neq \emptyset$, where $\stackrel{\circ}{E}$ denotes the interior of E. Then $N(\sigma)$ is the largest $L^1(\mathbb{R})$ -module, L-subspace of M(G) in $\mathfrak{F}_E(\sigma)$. Namely, $\mathcal{L}(G) \subset N(\sigma)$ for every $\mathcal{L}(G) \in \mathfrak{F}_E(\sigma)$.

Corollary 2.3 $N(\sigma)$ is the largest $L^1(\mathbb{R})$ -module, L-subspace of M(G) in $\mathfrak{F}_{[0,\infty)}(\sigma)$

References

- [1] Asmar N.H., A note on analytic measures. Internat. J. Math. and Math. Sci. 13 (1990), 187–188.
- [2] Asmar N.H. and Montgomery-Smith S.J., Analytic measures and Bochner measurability. Bull. Sci. Math. 122 (1998), 39–66.
- [3] Asmar N.H., Montgomery-Smith S.J. and Saeki S., Transference in spaces of measures. J. Funct. Anal. **165** (1999), 1–23.
- [4] DeLeeuw K. and Glicksberg I., Quasi-invariance and analyticity of measures on compact groups. Acta Math. 109 (1963), 179–205.
- [5] Doss R., On measures with small transforms. Pacific J. Math. 26 (1968), 257–263.
- [6] Finet C. and Tardivel-Nachet V., Lacunary sets on transformation groups. Hokkaido Math. J. 23 (1994), 1–19.
- [7] Forelli F., Analytic and quasi-invariant measures. Acta Math. 118 (1967), 33-57.
- [8] Gulick S.L., Liu T.S. and van Rooij A.C.M., Group algebra modules I and II. Canad. J. Math. 19 (1967), 133–150 and 151–173.
- [9] Liu T.S. and van Rooij A.C.M., Transformation groups and absolutely continuous measures. Indag. Math. **30** (1969), 225–231.
- [10] Liu, T.S., van Rooij A.C.M. and Wang J.K., Transformation groups and absolutely continuous measures II. Indag. Math. 32 (1970), 57-61.
- [11] Rudin W., Trigonometric series with gaps. J. Math. and Mech. 9 (1960), 203–228.
- [12] Rudin W., Fourier Analysis on Groups. New York, Interscience, 1962.
- [13] Yamaguchi H., Idempotent multipliers on the space of analytic singular measures. Hokkaido Math. J. 14 (1985), 49–73.
- [14] Yamaguchi H., The space $N(\sigma)$ and the F. and M. Riesz theorem. Hokkaido Math. J. **25** (1996), 567–589.

Department of mathematics Josai University Sakado, Saitama 350-0295 Japan

E-mail: hyama@math.josai.ac.jp