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Abstract. Let (X, L) be a polarized surface defined over the complex number field (C.

If h^{0}(L)>0 , then g(L)\geq q(X) holds, where g(L) is the sectional genus of (X, L) and
q(X) is the irregularity of X . In previous papers, we have studied polarized surfaces
(X, L) with h^{0}(L)>0 and g(L)=q(X) . In this paper, we study a classification of (X, L)
with \kappa(X)\geq 0 , h^{0}(L)\geq 2 , and g(L)=q(X)+1 .
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Introduction

Let X be a smooth projective variety over the complex number field \mathbb{C} ,
and let L be an ample line bundle on X . Then we call the pair (X, L) a
polarized manifold. The sectional genus g(L) of (X, L) is defined as follows:

g(L)=1+ \frac{1}{2}(K_{X}+(n-1)L)L^{n-1} .

where K_{X} is the canonical line bundle of X and n=\dim X . A classification
of (X, L) with small value of sectional genus was obtained by several au-
thors. On the other hand, Fujita proved the following theorem (see Theorem
(2.13.1) in [Fj5] ) .

Theorem Let (X, L) be a polarized manifold. Then for any fifixed n=
\dim X and g(L) , there are only fifinitely many deformation type of (X, L)
unless (X, L) is a scroll over a smooth curve.

(For a definition of the deformation type of (X, L) , see \S 13 of Chapter II
in [Fj5].) By this theorem, Fujita proposed the following conjecture (see
(II.13.7) in [Fj5], Question 7.2.11 in [BS] ) ;

Conjecture (Fujita) Let (X, L) be a polarized manifold. Then g(L)\geq

q(X) , where q(X)=h^{1}(O_{X}) : the irregularity of X.
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This conjecture is very difficult and it is unsolved even for the case in
which X is a surface.

In this paper we consider the case in which dim X=2 . If dim X=2 ,
then we can prove that g(L)\geq q(X) under one of the following conditions;

(A) \kappa(X)\leq 1 ,
(B) \kappa(X)=2 and h^{0}(L)>0 .

In [Fk2] and [Fk3], we obtained a classification of (X, L) with g(L)=q(X)
under one of the following cases;

(0-1) \kappa(X)\leq 1 ,
(0-2) \kappa(X)=2 and h^{0}(L)>0 .

Furthermore in [Fk4], we obtained a classification of (X, L) with g(L)=
q(X)+1 under one of the following cases;

(1-1) \kappa(X)=-\infty ,
(1-2) \kappa(X)\geq 0 and h^{0}(L)>0 .

In particular if (X, L) is the case (1-2) above, then we determined a type
of the divisor L , but we were not able to classify the type (X, L) in detail.
So in this paper, we consider this case under the condition that h^{0}(L)\geq 2 ,
and we get the following theorem;

Theorem 2.1 Let (X, L) be a polarized surface with \kappa(X)\geq 0 and
h^{0}(L)\geq 2 . If g(L)=q(X)+1 , then (X, L) is one of the following types.
(1) X is birationally equivalent to an Abelian surface and g(L)=3 .
(2) X=F\cross C , L\equiv 2F+C , where F and C are smooth curves such that

g(F)=1 and g(C)\geq 2 . (Here \equiv denotes the numerical equivalence
of divisors.)

(3) X is the relatively minimal elliptic fifibration which is a quasi-bundle
and has two multiple fifibers, and L\equiv F_{1}+N with g(L)=3 and
q(X)=2 , where F_{1} is an irreducible component of some multiple fifiber
and N is a smooth irreducible curve of g(N)=2 with NF_{1}=1 .

(4) X is minimal with \kappa(X)=2 , L^{2}=1 , g(L)=3 , and q(X)=2 . Then
there exists a smooth projective surface X’ , a birational morphism \mu :
X’ – X and a fifiber space f : X’ –

P^{1} such that \mu is a one point
blowing up of X and the (-1)-curve E is a section of f , any fifiber of
f is irreducible and reduced, L=\mu_{*}(F) , and g(F)=3 for a general
fifiber F of f .
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At present unfortunately we don’t know whether an example of the
case (4) in Theorem 2.1 exists or not. But the above result is very useful to
classify (X, L) of \dim X=n\geq 3 with g(L)=q(X)+1 and dim Bs |L|=0 .
We study these (X, L) in a forthcoming paper.

Here we remark that the method in this paper is different from that in
[Fk4].

We use the customary notation in algebraic geometry.
The author would like to thank the referee for giving some useful com-

ments and suggestions, which made this paper more readable than in pre-
vious version.

1. Preliminaries

Lemma 1.1 (Debarre) Let X be a minimal surface of general type with
q(X)\geq 1 . Then K_{X}^{2}\geq 2p_{g}(X) . (Hence K_{X}^{2}\geq 2q(X) for any minimal
surface of general type.)

Proof See Th\’eor\‘eme 6.1 in [De]. \square

Theorem 1.2 ([Fkl]) Let (X, L) be an L-minimal quasi-polarized surface
with \kappa(X)\geq 0 . If h^{0}(L)\geq 2 , then (X, L) satisfifies one of the following
conditions:
(1) g(L)\geq 2q(X)-1 .
(2) For any linear pencil \Lambda\subseteq|L| , the fifixed part Z(\Lambda) of \Lambda is not zero and

Bs \Lambda_{M}=\phi , where \Lambda_{M} is movable part of \Lambda . Let f : X – C be the
fifiber space induced by \Lambda_{M} . Then g(L)\geq g(C)+2g(F)\geq q(X)+g(F) ,
g(C)\geq 2 and LF=1 for a general fifiber F of f .

Proof See Theorem 3.1 in [Fkl]. \square

Definition 1.3 (See Definition 1.1 in [Sel].) Let X (resp. C) be a smooth
projective surface (resp. a smooth curve). A fibration f : X – C is called
a quasi-bundle if all smooth fibers are pairwise isomorphic, and the only
singular fibers are multiples of smooth curves.

Proposition 1.4 Let X be a smooth projective surface. Assume that X
is minimal and X has an elliptic fifibration f : X – C over a smooth curve
C. If q(X)=g(C)+1 , then \chi(O_{X})=0 and f is a quasi-bundle.

Proof See Lemma 1.5 and Lemma 1.6 in [Sel]. \square
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Lemma 1.5 Let f : X – C be a relatively minimal elliptic fifibration with
q(X)=g(C)+1 . If f has a section, then X\cong F\cross C , where F is a general

fifiber of f .

Proof. (See [Fj4].) By Proposition 1.4, f is a quasi-bundle. Let C’ be
a section of f . Let \Sigma\subset C be the singular locus of f and U=C-\Sigma .
We fix an elliptic curve E\cong f^{-1}(x) for x\in U . Then by [Fj4], we have a
map \varphi : \pi_{1}(U) – Aut(E, C_{E}’ ). Since q(X)=g(C)+1 , \pi_{1}(U) acts on E
as translations. Since deg C_{E}’=1 , the translation part of Aut(E, C_{E}’ ) is
trivial. Hence \varphi is trivial and we get the assertion. \square

Lemma 1.6 Let (X, L) be a polarized surface with \kappa(X)\geq 0 , L^{2}=1 ,
g(L)=2 , and \triangle(L)=1 , where \triangle(L) is the delta genus of (X, L) (See
[Fj 1], [Fj2] or [Fj4] ) . Then q(X)=0 .

Proof. By hypothesis, h^{0}(L)=2 . Since L^{2}=1 , any element of |L| is
an irreducible reduced curves and Bs |L|=\{p\} . Let \varphi : X–*P^{1} be a
rational map defined by |L| . Then by blowing up at p , we have a fiber
space f : X’ –

P^{1} where \mu : X’ – X is blowing up at p . Let D\in|L|

be an irreducible reduced smooth curve. (This D exists since L^{2}=1 and
Bs |L|=\{p\}.) Then \mu^{*}D-E is a fiber of f , where E is a (-1)-curve with
\mu(E)=p . On the other hand K_{X’}=\mu^{*}K_{X}+E . Hence

g(F)=1+ \frac{1}{2}(K_{X’}+F)F

=1+ \frac{1}{2}(\mu^{*}(K_{X}+D))(\mu^{*}D-E)

=1+ \frac{1}{2}(K_{X}+D)D

=g(L)=2

Therefore F is a hyperelliptic curve. Hence q(X)=0 by Fujita’s result [Fj 1]
(see also (1.6.18) in [Fj5]). This completes the proof of Lemma 1.6. \square

2. Polarized surfaces with h^{0}(L)\geq 2 , \kappa(X)\geq 0 and g(L)=
q(X)+1
In this section, we classify polarized surfaces with h^{0}(L)\geq 2 , \kappa(X)\geq 0

and g(L)=q(X)+1 .
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Theorem 2.1 Let (X, L) be a polarized surface with \kappa(X)\geq 0 and
h^{0}(L)\geq 2 . If g(L)=q(X)+1 , then (X, L) is one of the following types.
(1) X is birationally equivalent to an Abelian surface and g(L)=3 .
(2) X=F\cross C , L\equiv 2F+C , where F and C are smooth curves such that

g(F)=1 and g(C)\geq 2 . (Here \equiv denotes the numerical equivalence

of divisors.)
(3) X is the relatively minimal elliptic fifibration which is a quasi-bundle

and has two multiple fifibers, and L\equiv F_{1}+N with g(L)=3 and
q(X)=2 , where F_{1} is an irreducible component of some multiple fifiber
and N is a smooth irreducible curve of g(N)=2 with NF_{1}=1 .

(4) X is minimal with \kappa(X)=2 , L^{2}=1 , g(L)=3 , and q(X)=2 . Then
there exists a smooth projective surface X’ . a birational morphism \mu :
X’ – X and a fifiber space f : X’arrow P^{1} such that \mu is a one point
blowing up of X and the (-1)-curve E is a section of f , any fifiber of
f is irreducible and reduced, L=\mu_{*}(F) , and g(F)=3 for a general
fifiber F of f .

Proof By Theorem 1.2, we have the following two cases. (We use the
notation in Theorem 1.2.)

Case (A) g(L)\geq 2q(X)-1 .
Case (B) Z(\Lambda)\neq 0 , Bs \Lambda_{M}=\phi , g(C)\geq 2 and LF=1 . Then g(L)\geq

g(C)+2g(F) .

(I) First we consider the case (B). Then q(X)+1=g(L)\geq g(C)+
2g(F)\geq q(X)+g(F) . Hence g(F)\leq 1 . Since \kappa(X)\geq 0 , then g(F)=1
and q(X)=g(C)+1 , that is, f : X – C is an elliptic fibration with
\chi(O_{X})=0 by Proposition 1.4. Since LF=1 , we obtain that any fiber
of f is irreducible, f has no multiple fiber, and K_{X}L=(2g(C)-2)LF=
2g(C)-2 . Hence g(C)+2=q(X)+1=g(L)=1+ \frac{1}{2}L^{2}+g(C)-1 . So
we have L^{2}=4 . Furthermore since h^{0}(L)\geq 2 and LF=1 , there exists
an irreducible and reduced curve C’ such that h^{0}(L-C’)>0 and C’ is a
section of f . Hence X\cong F\cross C by Lemma 1.5, and there exists an effective
divisor D’ on X such that C’+D’\in|L| . Since K_{X}C’=(2g(C)-2)C’F=

2g(C)-2=2g(C’)-2 , we have (C’)^{2}=0 . Since LF=1 for any fiber F
of f , we obtain that f has no multiple fiber, any fiber of f is irreducible,
and D’ is a sum of fibers of f . Because L^{2}=4 and (C’)^{2}=0 , we get that
D’=F_{1}+F_{2} , where F_{1} and F_{2} are fibers of f . For any t\in C , we put
(u(t), t)=C’\cap f^{-1}(t)\subset F\cross C . Next we consider the following morphism
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\theta : F\cross C – F\cross C;\theta(x, t)=(x-u(t), t) . Then \theta is an isomorphism and
L\cong C+F_{1}+F_{2} by this isomorphism. Therefore L\equiv 2F+C . This is the
type (’2) in Theorem 2.1.

(II) Next we consider the case (A). Then q(X)+1=g(L)\geq 2q(X)-1 .
Hence q(X)\leq 2 . On the other hand 2\leq g(L)=q(X)+1 . So we have
q(X)=1 or 2. Hence we get the following two types:

Case (A-1) The case in which q(X)=1 and g(L)=2 .
Case (A-2) The case in which q(X)=2 and g(L)=3 .
We study these cases by the value of the Kodaira dimension of X .

(II.1) First we consider the case in which \kappa(X)=0 .

Claim 2.2 If \kappa(X)=0 , then (X, L) is the type (1) in Theorem 2.1.

Proof. (i) First we consider the case (A-1).
(i-1) If X is minimal, then K_{X}L=0 and L^{2}=2 . Furthermore since

q(X)=1 , by the classification theory of surfaces we have \chi(O_{X})=0 . But
by the Riemann-Roch theorem and the Kodaira vanishing theorem, h^{0}(L)=

\chi(O_{X})+\frac{1}{2}(L^{2}-K_{X}L)=1 . So this case cannot occur.
(i-2) If X is not minimal, then K_{X}L=1 and L^{2}=1 . Let \mu : X – X_{1}

be the minimal model of X and L_{1}=\mu_{*}L . Then L_{1}^{2}=2 and K_{X_{1}}L_{1}=0 .
But this (X_{1}, L_{1}) does not occur by the same argument as the case (i-1).

(ii) Next we consider the case (A-2). Then X is birationally equivalent
to an Abelian surface X and g(L)=3 . If X is an Abelian surface, then this
(X, L) is known (See (1.2) in [Ba] or [LB] P. 317 Ex (1)). This completes
the proof of Claim 2.2. \square

(II.2) Next we consider the case in which \kappa(X)\geq 1 .

Claim 2.3 If \kappa(X)\geq 1 , then the case (A-1) cannot occur.

Proof. Assume that (g(L), q(X))=(2,1) . Then we get that L^{2}=1 and
K_{X}L=1 . Since h^{0}(L)\geq 2 and \kappa(X)\geq 1 , we get that \triangle(L)=1 . By
Lemma 1.6, we obtain that q(X)=0 and this is a contradiction. \square

By Claim 2.3 we assume that (X, L) is the case (A-2).
(II.2.1) We consider the case in which \kappa(X)=2 .

Claim 2.4 If \kappa(X)=2 , then (X, L) is the type (4) in Theorem 2.1.

Proof. Let \mu : X – X’ be the minimal model of X and L’=\mu_{*}L . Then
K_{X}L\geq K_{X’}L’ . Since q(X)=q(X’)=2 , we have K_{X}^{2}, \geq 4 by Lemma 1.1.
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Hence K_{X}L\geq K_{X’}L’\geq 2 by the Hodge index theorem. Because g(L)=3 ,
we have the following two types.
(a) L^{2}=2 , K_{X}L=2 .
(b) L^{2}=1 , K_{X}L=3 .

(a) The case in which L^{2}=2 , K_{X}L=2 .
Then X is minimal by the above argument. So we have (LK_{X})^{2}\geq L^{2}K_{X}^{2}\geq

8 by the Hodge index theorem. But this case cannot occur.
(b) The case in which L^{2}=1 , K_{X}L=3 .

First we prove that X is minimal. Assume that X is not minimal. Let
\delta : X – Y be its minimalization and A=\delta_{*}(L) , where Y is a smooth
projective surface. Here we remark that A is ample. Then 1=L^{2}<A^{2}

and 0<K_{Y}A<K_{X}L=3 . In this case (A^{2}, K_{Y}A)=(2,2) , (3, 1) or (5, 1) .
By the Hodge index theorem, we get that (A^{2}, K_{Y}A)=(2,2) . In this case
g(A)=3=q(Y)+1 . But this is impossible by the same argument as in
the case (a). Therefore X is minimal.

Next we prove that dim H^{0}(L)=2 and dim Bs |L|=0 . If h^{0}(L)\geq 3 ,
then \triangle(L)=0 and this is impossible because \kappa(X)=2 . So we get that
h^{0}(L)=2 and \triangle(L)=1 . By \triangle-genus inequality, we get that dim Bs |L|<
\triangle(L)\leq 1 . Since L is ample with h^{0}(L)=2 , we get that dim Bs |L|=0 . Let
\Phi_{|L|} : X–arrow P^{1} be a rational map which is defined by |L| . Since L^{2}=1 and
dim Bs |L|=0 , we get that there exist a smooth surface X’ and a birational
morphism \mu : X’ – X such that \mu is one point blowing up of X at the
base point of |L| . Then there exists a fiber space f : X’arrow P^{1} and f has a
section E of f such that E is the (-1)-curve with dim \mu(E)=0 . Here we
remark that any fiber of f is irreducible and reduced since L is ample with
L^{2}=1 . For a general fiber F of f . g(F)=3 and q(X’)=2 . This is the
type (4) of this theorem. This completes the proof of Claim 2.4. \square

(II.2.2) We consider the case in which \kappa(X)=1 .

Claim 2.5 If \kappa(X)=1 , then (X, L) is the type (3) in Theorem 2.1.

Proof. Let f : X – C be an elliptic fibration. Then g(C)\leq q(X)\leq

g(C)+1 . So g(C)=1 or 2.
(\alpha) The case in which f is relatively minimal.
(\alpha.1) The case in which g(C)=1 .

Then q(X)=g(C)+1 . Hence \chi(X)=0 and f is a quasi-bundle by
Proposition 1.4. By Lemma 1.6 (ii) in [Sel] we get that (R^{1}f_{*}O_{X})^{\vee}\cong O_{C} ,



546 Y. Fukuma

so by the canonical bundle formula for an elliptic fibration,

K_{X}=f^{*}(K_{C} \otimes(R^{1}f_{*}O_{X})^{\vee})\otimes O(\sum_{i}(m_{i}-1)F_{i})

=O( \sum_{i}(m_{i}-1)F_{i}) ,

where m_{i}F_{i} is a multiple fiber of f for any i .
Since \kappa(X)=1 , by Proposition 1.3 in [Se2], f has at least 2 multiple

fibers. Since L is ample and g(L)=3 , we have the following two types.
(\alpha.1.1)L^{2}=1 , LK_{X}=3 .
(\alpha.1.2)L^{2}=2 , LK_{X}=2 .
First we consider the case (\alpha.1.1) . Then 3=K_{X}L= \sum_{i}(m_{i}-1)LF_{i} ,

where m_{i}F_{i} is a multiple fiber of f and m_{i} is its multiplicity. If m_{k}\geq 3 for
some k , then m_{k}=3 because f has at least two multiple fibers. But then
LF_{k}=1 because (m_{k}-1)LF_{k}=2LF_{k}\geq 2 and LK_{X}=3 . Therefore LF=
3 for any fiber F . Let m_{j}F_{j} be another multiple fiber. Since K_{X}L=3 , we
obtain that (m_{j}-1)F_{j}L=1 . Therefore m_{j}=2 and LF_{j}=1 . But this is a
contradiction because LF=3 for any fiber F . Therefore m_{i}=2 for any i .
Moreover LF_{i}=LF_{j} for any i\neq j and (m_{i}-1)LF_{i}=LF_{i} for any i . Hence
f has three multiple fibers, each multiplicity is 2, and LF=2 for a general
fiber F of f because K_{X}L=3 . Then L^{2}=1 and K_{X}=F_{1}+F_{2}+F_{3} . Since
L^{2}=1 , then Bs |L| is one point. Therefore for some i , Bs |L_{F_{i}}|=\phi . But
since LF_{i}=1 , we obtain F_{i}\cong P^{1} . This is a contradiction.

Next we consider the case (\alpha.1.2) . Since K_{X}L=2 , we obtain that
f has just two multiple fibers whose multiplicities are 2. We write these
multiple fibers as 2F_{1} and 2F_{2} . Here we remark that F_{1} and F_{2} are smooth
elliptic curves because f is a quasi-bundle. Since 2=K_{X}L=(F_{1}+F_{2})L ,
we get that LF_{1}=1 . Hence h^{0}(L|_{F_{1}})=1 . By the following exact sequence

0arrow L-F_{1}arrow Larrow L|_{F_{1}}arrow 0 ,

we get that

0arrow H^{0}(L-F_{1}) – H^{0}(L) – H^{0}(L|_{F_{1}})

is exact. Because h^{0}(L)\geq 2 and h^{0}(L|_{F_{1}})=1 , we get that h^{0}(L-F_{1})\neq 0 .
Since F_{1} is not ample, there exists an effective divisor N such that N+
F_{1}\in|L| . Since L^{2}=2 and LF_{1}=1 , N is an irreducible and reduced
curve with N^{2}=0 and N is a double covering of C . Here we remark that
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K_{X}N=K_{X}L=2 . Hence g(N)=2 . Let \tilde{N} be a normalization of N and
let \pi : \tilde{N}arrow N be its morphism. We note that f|_{N}\circ\pi : \tilde{N}arrow N

– C is
a surjective morphism. Let x_{j}=N\cap F_{j} for j=1,2 . Since NF_{j}=1 for
j=1,2 , N is smooth at x_{j} . On the other hand by construction f|_{N}\circ\pi is
ramified at x_{j} for j=1,2 . Since g(C)=1 , we get that g(\tilde{N})\geq 2 . Therefore
\tilde{N}\cong N because g(N)=2 . Namely N is a smooth curve. Therefore we get
the type (3) in Theorem 2.1.

(\alpha.2) The case in which g(C)=2 .
Then K_{X}L\geq(2g(C)-2+\chi(O_{X}))LF\geq 2LF , where F is a general

fiber of f . Since g(L)=3 , we have K_{X}L\leq 3 . So LF=1 . If L^{2}=1 , then
any element D of |L| is irreducible and smooth. But since g(L)=3 , D is
not a section of f : X – C. Hence LF=DF\geq 2 . This is a contradiction.
If L^{2}\geq 2 , then L^{2}=2 because K_{X}L\geq 2 . Since h^{0}(L)\geq 2 , we have
\triangle(L)\leq 2 and dim Bs |L|\leq 1 . If dim Bs |L|\leq 0 , then |L| has an irreducible
and reduced curve. But this is impossible by the same argument as above.
If dim Bs |L|=1 , then \triangle(L)=2 and the fixed part Z of |L| is P^{1} . (See
(1.14) in [Fj3]. See also (1.10.4) in [Fj5].) Hence Z is contained in a fiber
of f because g(C)=2 . Therefore L_{F} is free for a general fiber F of f . and
LF\geq 2 . But this is a contradiction.

(\beta) The case in which f is not relatively minimal.
Let \mu : X – X_{1} be the relatively minimal model of f : X – C. Then
we have a fiber space f_{1} : X_{1}arrow C such that f_{1} is relatively minimal. Let
L_{1}=\mu_{*}L . Then K_{X}L>K_{X_{1}}L_{1}\geq 1 . Therefore we have the following two
types.

(\beta.1)L^{2}=2 , LK_{X}=2

(\beta.2)L^{2}=1 , LK_{X}=3

If (X, L) satisfy (\beta.1) , then L_{1}^{2}=3 and L_{1}K_{X_{1}}=1 . (We remark that
h^{0}(L_{1})\geq 2.) But by the same argument as the cases (\alpha.1) and (\alpha.2) , we
get that K_{X_{1}}L_{1}\geq 2 and this (X, L) does not exist.

We assume that (X, L) satisfy (\beta.2) . If L_{1}^{2}=2 and L_{1}K_{X_{1}}=2 , then \mu

is one point blowing up and L=\mu^{*}(L_{1})-E_{1} , where E_{1} is the (-1)-curve.
Moreover (X_{1}, L_{1}) is the type (3) in Theorem 2.1 by the above argument.
If h^{0}(L)<h^{0}(L_{1}) , then \triangle(L_{1})\leq 1 because h^{0}(L)\geq 2 . By a Fujita’s result
(see e.g. Corollary 6.13 in [Fj5]) we get that q(X)=0 . Hence g(L)=1 and
this is impossible because \kappa(X)\geq 0 . Hence h^{0}(L)=h^{0}(L_{1}) and \mu(E_{1})\in

Bs |L_{1}| . But this is impossible because L_{1} is the type (3) in Theorem 2.1
and L does not become ample. Therefore L_{1}^{2}=3 or 5 and L_{1}K_{X_{1}}=1 .
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Then g(C)=1 or 2, because q(X)=g(L)-1=2 .
If g(C)=2 , then K_{X_{1}}L_{1}\geq(2g(C)-2+\chi(O_{X}))LF\geq 2 . So this case

cannot occur.
If g(C)=1 , then q(X)=g(C)+1 and \chi(O_{X})=0 by Proposition 1.4.

By the canonical bundle formula, K_{X_{1}} \equiv\sum(m_{i}-1)F_{i} , where m_{i}F_{i} is a
multiple fiber of f_{1} with m_{i}\geq 2 . But since \chi(O_{X})=0 and q(X)=g(C)+
1 , f_{1} is locally trivial or the number of multiple fiber of f_{1} is greater than
one (Proposition 1.3 in [Se2]). But this case cannot occur since L_{1}K_{X_{1}}=1

and L_{1} is ample. This completes the proof of Claim 2.5. \square

By the above, we get the assertion of Theorem 2.1. \square

Remark 2.6 We consider the type (4) in Theorem 2.1. If there exist a
smooth projective surface X’ and a fiber space f : X’arrow P^{1} such that
q(X’)=2 , g(F)=3 for a general fiber F of f . f has a section E of f ,
any fiber of f is irreducible and reduced, and E is a (-1)-curve, then there
exist a smooth projective surface X and a birational morphism \mu : X’arrow X

such that \mu is the blowing down of E . We put L=\mu_{*}(F+E) . Then L is
ample with L^{2}=1 , g(L)=3 , q(X)=2 , and h^{0}(L)=2 . In [C] Cai gets a
classification of a fiber space f : Xarrow C with g(F)=3 and q(X)-g(C)=
2 . But it is unknown whether there is an example of f : Xarrow P^{1} with
\kappa(X)=2 , g(F)=3 , q(X)=2 , any fiber of f is irreducible and reduced,
and f has a section E such that E is a (-1)-curve.
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