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On the univalence of an integral on a subclass of
meromorphic convex univalent functions

I. R. NEZHMETDINOV and S. PONNUSAMY
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Abstract. A nonlinear integral operator is studied on the class of convex meromorphic
functions in the exterior of the unit disk. In this paper, we improve a sufficient condition
for univalency of the operator obtained earlier by the first author.
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1. Introduction and main results

Let S be the class of normalized functions f(z)=z+a_{2}z^{2}\ldots . analytic
and univalent in the unit disk E=\{z\in \mathbb{C} : |z|<1\} . In [5] an integral
operator P_{\lambda}[f] defined by

P_{\lambda}[f](z)= \int_{0}^{z}(f’(t))^{\lambda}dt

was shown to map S into itself, provided that |\lambda|\leq(\sqrt{5}-2)/3=0.078 . .
Becker [3] established the univalence of P_{\lambda}[f] for |\lambda|\leq 1/6 whereas Royster
[10] gave an example implying that, unless \lambda=1 , for any \lambda outside of
the disk |\lambda|\leq 1/3 a function f_{0}\in S can be found such that P_{\lambda}[f_{0}]\not\in S .
Pfaltzgraff [8] improved the range of \lambda to |\lambda|\leq 1/4 . The question, whether
the operator P_{\lambda} preserves univalency for 1/4<|\lambda|\leq 1/3 still remains open.

A similar problem is completely solved for the subclass \mathcal{K}\subseteq S of uni-
valent convex functions. Namely, the inclusion P_{\lambda}[\mathcal{K}]\subset S holds if and only
if either |\lambda|\leq 1/2 or \lambda is real with 1/2\leq\lambda\leq 3/2 (see [2, 8]). More results
of the similar type for other subclasses of S are obtained in [6, 9] .

Counterparts of these problems for the case of meromorphic functions
were studied by a number of authors (see [1, 2, 11]), however, the relevant
constants are smaller than in the regular case. Denote by \Sigma be the class of
function

f( \zeta)=\zeta+\sum_{k=0}^{\infty}\alpha_{k}(^{-k} ,
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regular and univalent in E^{-}=\{\zeta : 1<|\zeta|<\infty\} and having a simple pole
at \zeta=\infty . Let \Sigma_{\mathcal{K}} be its subclass consisting of convex univalent functions.
Define the following integral operator

P_{\lambda}[f]( \zeta)=\int_{\zeta_{0}}^{\zeta}(f’(t))^{\lambda}dt , (1.1)

with \lambda\in \mathbb{C} , \zeta_{0}\in E^{-}

Recently the first author [7] applied a condition for univalency by
J. Becker [4] to show that P_{\lambda}[\Sigma]\subset\Sigma for all |\lambda|\leq 1/4 . The following
result regarding the set

\Lambda(\Sigma_{\mathcal{K}}, \Sigma)=\{\lambda\in \mathbb{C} : P_{\lambda}[\Sigma_{\mathcal{K}}]\subset\Sigma\}

was established in [7].

Theorem 1.2 We have

\{\lambda=\mu e^{i_{lJ}} : |\lambda|\leq\tilde{\mu}_{0}(\nu)\}\subset\Lambda(\Sigma_{\mathcal{K}}, \Sigma) ,

with

\tilde{\mu}_{0}(\nu)=\{

(3+\cos u)/4 for \nu_{0}\leq|\nu|\leq\pi ,

(1+| sin l/|)^{-1} for 0\leq|u|\leq u_{0} .

Here \iota/_{0}=\arccos t_{0}=0.9633 . ., where t_{0}=0.5707 is the unique positive
real root of the equation

47-52t-46t^{2}-12t^{3}-t^{4}=0

in the interval (0, 1) .

The function \tilde{\mu}_{0}(\nu) appears to have a jump at lJ =U_{0} which is only
due to the method of proof. In the present paper we improve the result
by removing the discontinuity. However, the second expression for \tilde{\mu}0(u) is
unsuperseded albeit in a small neighborhood of lJ =0 . Our main result is
as follows.

Theorem 1.3 Given any real lJ such that |\nu|\leq U_{0} , where U_{0} is defined in
the previous theorem, we have \{\lambda=\mu e^{i\iota/} : |\lambda|\leq\mu 0(u)\}\subset\Lambda(\Sigma \mathcal{K}, \Sigma) , with

\mu_{0}(\nu)=\frac{2\cos\theta_{\iota/}-1-\cos\nu}{2(1-\cos(\nu-\theta_{\nu}))} , (1.4)
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\theta_{\nu} being the unique positive real root of the equation

F(\theta):=7-5 cos2 U+ ( 17-6 cos lJ -11 cos2 u) cos \theta

-(4+10 cos lJ -8 cos2 u) cos2 \theta-(12-16 \cos 2 \nu) cos3 \theta

-(8+14 cos \theta ) sin U sin \theta- ( 1-4 cos \theta-8 cos2 \theta ) sin 2\nu sin \theta

=0 (1.5)

in the interval 0<\theta<\theta_{l}’, =2\arctan[\sin\nu/(3+\cos u)] .

Proof. By reasoning as in [7] we can conclude that the inclusion P_{\lambda}[\Sigma_{\mathcal{K}}]\subset

\Sigma holds for a given \lambda=\mu e^{ilJ} if there exists some c , |c|\leq 1 , such that

H( \rho, \lambda, c)=\frac{2\mu|\rho-c|}{|1-c|(\rho+1)}+\frac{1}{\rho}|\frac{2\lambda(\rho-c)}{(1-c)(\rho+1)}+c|

\leq 1 for all \rho>1 . (1.6)

In particular, we have

H(1, \lambda, c)=\mu+|\lambda+c|\leq 1 (1.7)

and

H(\infty, \lambda, c)=2\mu/|1-c|\leq 1 . (1.8)

Assume that the two bounds are attained and we try to determine the
largest value of \mu for which (1.6) holds. Set c=1-2\mu e^{i\theta} . whence |c|\leq 1 is
equivalent to the inequality \mu\leq\cos\theta . On the other hand, if the estimate
in (1.7) is attained, then we have

\mu=\frac{2\cos\theta-1-\cos\nu}{2(1-\cos(\nu-\theta))} . (1.9)

Due to the previous studies it suffices to consider the case when 0<
lJ <\iota/_{0} and |\theta|<\pi/2 . Since it is of interest only to find \mu>1/2 , we get
from (1.9) that

0<\theta<2\arctan(\sin u/(2+\cos\iota/)) .

Note that from (1.9) it also follows that |c|\leq 1 .
By using a standard method of computation, we find that \mu is an in-

creasing function of \theta on [0, \theta_{\iota}’,] , besides, there is also some numerical evi-
dence that the global maximum for \mu(\nu) is to be found here than on the
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remaining part of the previous interval. So, in what follows we shall confine
ourselves to considering of (1.9) on the interval [0, \theta_{I}’,] .

It can be easily seen that (1.6) is equivalent to the following condition

|(\rho-c)e^{i(\iota/-\theta)}+c(\rho+1)|\leq\rho(\rho+1-|\rho-c|) , \rho\geq 1 , (1.10)

where the right-hand side is positive if |c|\leq 1 . Therefore, we can square
both sides of the inequality (1.10) without violating it. Thus,

\rho^{2}|\rho-c|\leq\rho^{3}-\rho^{2} Re c+A_{1}\rho+A_{0} , \rho\geq 1 , (1.11)

where

A_{1}={\rm Re}(c-\overline{c}e^{i(\nu-\theta)}) , A_{0}=-|c|^{2} ( 1- cos (\nu-\theta) ). (1.12)

Clearly, both sides in (1.11) are positive for all \rho\geq 1 , so we may square
it again. After some elementary transformations, we write the resulting
inequality as

a_{4}\rho^{4}+a_{3}\rho^{3}+a_{2}\rho^{2}+a_{1}\rho+a_{0}\geq 0 , \rho\geq 1 , (1.13)

where the coefficients are defined by the relations

a_{4}=2A_{1}-({\rm Im} c)^{2} , a_{3}=-2 ( A_{1} Re c-A_{0} ), (1.10)

a_{2}=-2A_{0} Re c+A_{1}^{2} , a_{1}=2A_{0}A_{1} , a_{0}=A_{0}^{2} . (1.16)

We recall that in [7] it was possible to prove that a_{4}\geq 0 for \theta=\theta_{\iota}’, ,
provided that u_{0}\leq|u|\leq\pi . However, when 0\leq|u|<\nu_{0} , \theta=\theta_{\iota}’, , we get
a_{4}<0 , so that the inequality (1.13) fails for sufficiently large \rho . Now, let
us choose \theta so that a_{4}=0 , and prove that (1.13) is still valid.

Note that for \rho=1 both sides of the inequality (1.10) are equal to 2\mu ,
therefore \rho=1 is a root of the polynomial in (1.13). Hence, it suffices to
prove that

a_{3}\rho^{2}+(a_{3}+a_{2})\rho-a_{0}\geq 0 , \rho\geq 1 . (1.16)

This is implied by the following inequalities

a_{3}\geq 0 and 2a_{3}+a_{2}-a_{0}\geq 0 . (1.10)

Now we proceed to check (1.17). By substituting (1.9) into c=1-2\mu e^{i\theta}

and then into (1.12) we obtain
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Re c= \frac{(1-\cos\theta)(1+2\cos\theta)-\sin u\sin\theta}{1-\cos(\nu-\theta)} , (1.18)

A_{1}= \frac{1-\cos\theta}{1-\cos(\nu-\theta)}[3+\cos\theta+2(1-\cos\theta-2\cos^{2}\theta) cos lJ

-2 ( 1+2 cos \theta ) sin lJ sin \theta], (1.19)

and

A_{0}=- \frac{1-\cos\theta}{1-\cos(\nu-\theta)}[2+3\cos\theta+(1-2\cos\theta-4\cos^{2}\theta) cos lJ

-2 ( 1+2 cos \theta ) sin lJ sin \theta]. (1.20)

After lengthy computations the equation a_{4}=0 can be written in an
equivalent form as (1.5). Clearly,

F(0)=8(1- cos \nu)^{2}\geq 0 .

On the other hand, we note that

F( \theta_{\iota}’,)=\frac{(1-\cos\nu)^{2}(47-52\cos\nu-46\cos^{2}\nu-12\cos^{34}\nu-\cos^{7}U)}{(5+3\cos\nu)^{3}}<0 ,

whenever 0<|\nu|<U_{0} . So, (1.5) has at least one root \theta_{1/} in the interval
(0, \theta_{1}’,) .

To prove the uniqueness of the root, let us verify that F(\theta) is a convex
function. We obtain

F’(\theta)=-8-20 cos \nu+16 cos2 lJ - (89-6 cos 1J -107\cos^{2}\backslash u ) cos \theta

+ ( 16+40 cos lJ -32 cos2 \iota/ ) cos2 \theta+(108-144 \cos 2 \iota\nearrow) cos3 \theta

+ (8 sin \mathfrak{l}J+17\sin 2\nu ) sin \theta+ ( 56 sin lJ -16 sin 2\nu ) sin \theta cos \theta

-72 \sin 2u sin \theta cos2 \theta . (1.21)

By substituting t=\tan(\theta/2) into this expression we can show that F’(\theta)

has the same sign as the polynomial

P(t)= \sum_{j=0}^{6}b_{j}t^{j}\equiv 27+26 cos v -53 cos2 U

+ ( 128 sin lJ -142 \sin 2\nu )t- (453+94 cos U -619 cos2_{U} ) t^{2}

+ (32 sin U+356\sin 2\nu ) t^{3}+ (373–106 cos U -459 \cos^{2}’\nu ) t^{4}

-(96 sin lJ+78\sin 2u ) t^{5}-(11-14\cos\nu+21 \cos 2 \nu)t^{6} . (1.22)
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where 0<t<\tau=\sin u/(3+\cos\nu) . Obviously,

b_{0}= ( 1 –cos \nu ) (27+53 cos u) >0 .

Therefore,

b_{0}+b_{1}t\geq t(b_{0}+b_{1}\tau)/\tau .

and we see that

b_{0}+b_{1}\tau= ( 1 –cos u) (209+30 cos U -231 cos2 \nu ) /(3+\cos\nu)

is positive. Furthermore, it follows that

b_{0}+b_{1}t+b_{2}t^{2}\geq t^{2}(b_{0}+b_{1}\tau+b_{2}\tau^{2})\tau^{-2} .

At the same time, we get

b_{0}+b_{1}\tau+b_{2}\tau^{2}= ( 1 -cos U) ( 174–248 cos lJ -138\cos^{2}\urcorner\nu

+388 cos3 u) (3+\cos\nu)^{-2}

where the latter expression is positive for 0<|u|<\nu_{0}=0.9633 . .
The rest of the proof is^{\urcorner} done by the same token, just taking into account

the following equalities

b_{0}+b_{1}\tau+b_{2}\tau^{2}+b_{3}\tau^{3}

= ( 1 -cos \nu ) (554+174 cos lJ+18 cos2 U+282 cos3 U

-324 \cos^{4}u ) (3+\cos\nu)^{-3}-

b_{0}+b_{1}\tau+b_{2}\tau^{2}+b_{3}\tau^{3}+b_{4}\tau^{4}

= ( 1 -cos U) (2035+1343 cos U –710 \cos^{2}\urcorner u+138^{3}cob^{1}l/

-125 cos4 U+135 cos5 u) (3+\cos\nu)^{-4}\sim

b_{0}+b_{1}\tau+b_{2}\tau^{2}+b_{3}\tau^{3}+b_{4}\tau^{4}+b_{5}\tau^{5}

= ( 1 -cos u) (6009+5812 cos \mathfrak{l}/-751\cos^{\tau}\iota/2+208_{COi_{3^{1}}l^{y}}^{3}

-21 COi_{3}\urcorner U4+28 cos5 U –21 cos6 \iota/ ) (3+\cos\nu)^{-5}

b_{0}+b_{1}\tau+b_{2}\tau^{2}+b_{3}\tau^{3}+b_{4}\tau^{4}+b_{5}\tau^{5}+b_{6}\tau^{6}

=(18016+23448 cos U+3616\cos^{1}\nu-2112 cos3 U+64\cos^{1}u4

+24\cos^{5}\nu) ( 1- cos \nu ) (3+\cos\nu)^{-6}
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So, for any lJ, 0<|l/|<\nu_{0} , there exists a unique \theta_{\iota/} , 0<\theta_{\iota/}<\theta_{\nu}’ , such that
F(\theta_{\iota/})=0 . Equivalently, there exists a unique d_{\nu} , 3<d_{\mathfrak{l}J}<\infty , such that

\theta_{1/}=2\arctan[\sin_{l^{y}}/(d_{I/}+\cos u)] .

However, to prove the required inequalities we need to further specify
the location of d_{\nu} . To this end, let us substitute \theta=2\arctan(\sin u/(d+

cos \iota/ )) in (1.5) and write this equation in the equivalent form

p(d , cos u) =-4(d-2)^{2} cos4 \nu-(12d^{3}-40d^{2}+20d+24) cos3 U

-(9d^{4}-12d^{3}-50d^{2}+76d+1) cos2 U

+(2d^{5}-30d^{4}+88d^{3}-68d^{2}-1Od+2) cos lJ

+(4d^{6}-22d^{5}+39d^{4}-16d^{3}-14d^{2}+6d-1)

=0, (1.23)

where p(d, x) is a polynomial with respect to both d and x .
Now, it is possible to verify the required estimates. From (1.14)-(1.20)

we get

[1-\cos(\nu-\theta)]^{2}(1- cos \theta)^{-1}a_{3}

=-18-6 cos U+8 cos2 U+ (-28+12 cos U+20 cos2 \nu ) cos \theta

+ ( 10+26 cos U -12 cos2 u) cos2 \theta+(28-24 \cos 2 \nu) cos3 \theta

-16 cos l/\cos^{4}\theta+6(3+\cos u) sin \nu sin \theta

+4(7 –3 cos u) sin lJ sin \theta cos \theta-24 sin lJ cos lJ sin \theta cos2 \theta

-16 sin lJ sin \theta cos3 \theta

and

[1-\cos(\nu-\theta)]^{2}(1- cos \theta)^{-1}(2a_{3}+a_{2}-a_{0})

=-31-16 cos lJ+9 cos2 U+ ( -29+38 cos lJ+39 cos2 u) cos \theta

+ (8+26 cos U -16 cos2 \nu ) cos2 \theta

+ (36 –16 cos v -48 cos2 \nu ) cos3 \theta+6 (5+2 cos \nu ) sin lJ sin \theta

+2(19-8 cos u) sin U sin \theta cos \theta-16 ( 1+3 cos u) sin U sin \theta cos2 \theta .

After substituting \theta=2\arctan(\sin u/(d+\cos\nu)) into the last two ex-
pressions, we can see that it suffices to prove that the following two expres-
sions are positive:
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\sum_{k=0}^{8}q_{k}d^{k}\equiv-2d^{8}+ ( 15 -cos u) d^{7}- (46–29 cos lJ -19 cos2 \nu ) d^{6}

+ (65 –131 cos u-46 cos2 U+38 cos3 \nu ) d^{5}

-(32-215 cos lJ+71 cos2 lJ+150 cos3 \nu-28 cos4 \nu ) d^{4}

-(11+123 cos U -264 cos2 U -128 cos3 U+128 cos4 \nu-8 cos5 \nu ) d^{3}

+ (10-9 cos lJ -183 cos2 U+104 cos3 U+172 cos4 U -40 cos5 \nu ) d^{2}

+ (3+23 cos lJ+6 cos2 u–134 cos3 U -40 cos4 U+64 cos5 \nu ) d

-2-3 cos U+11 cos2 U+14 cos3 \nu-32 cos4 \nu-32 cos5 U, (1.24)

and

\sum_{k=0}^{6}r_{k}d^{k}\equiv-8d^{6}+ (52+4 cos \nu ) d^{5}- ( 119 -28 cos U -27 cos2 \nu ) d^{4}

+ (92 –172 cos lJ -76 cos2 U+28 cos3 \nu ) d^{3}

+ ( 18+232 cos \nu-14 cos2 u-96 cos3 lJ+12 cos4 \nu ) d^{2}

-(24+32 cos lJ -148 cos2 lJ -60 cos3 lJ+48 cos4 \nu ) d

- 15 -60 cos U -61 cos2 U+40 cos3 U+48 cos4 u. (1.25)

In order to do this, let us partition the ranges for both d and lJ into
several parts and find the relevant estimates separately. Assuming that
\nu_{1}\leq U\leq\nu_{2} , d_{1}\leq d\leq d_{2} , we can easily notice that

q_{8}d^{8}+q_{7}d^{7}\geq ( 15-2d_{2}- cos u) d^{7}\geq ( 15-2d_{2}- cos u ) d_{1}d^{6} .

the first factor being positive. Similarly, it follows that

q_{8}d^{8}+q_{7}d^{7}+q_{6}d^{6}

\geq [ 15d_{1}-2d_{1}d_{2}-46+(29-d_{1}) cos lJ+19 cos2 \nu] d_{1}d^{5} .

However, in this case, in order to prove that the factor is positive we need
to make the necessary evaluations for each of the following cases separately.

As a result, we can write

q_{8}d^{8}+q_{7}d^{7}+q_{6}d^{6}+q_{5}d^{5}\geq\{

M_{1}d_{1}^{5} if M_{1}\geq 0 ,
M_{1}d_{2}^{5} if M_{1}<0 ,

(1.24)

where

M_{1}=15d_{1}^{2}-2d_{1}^{2}d_{2}-46d_{1}+(29d_{1}-d_{1}^{2}-131) cos \nu_{1}

+(19d_{1}-46) cos2 u_{2}+38 cos3 \nu_{2} . (1.27)
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In a similar way,

q_{4}d^{4}\geq Q_{2}’d_{1}^{4} , if M_{2}\geq 0 , (1.28)

where

M_{2}=-32+215 cos u_{2}-71 cos2 \nu_{1} –150 cos3 \nu_{1}+28 cos4 \nu_{2} ,

(1.29)

otherwise we shall use rather a crude estimate

q_{4}d^{4}\geq ( 215 cos \nu_{2}+28 cos4 \nu_{2} ) d_{1}^{4}

- (32+71 \cos 2 \nu_{1}+150 \cos 3 u_{1})d_{2}^{4} . (1.30)

Since the polynomial

g(x)=-11-123x+264x^{2}+128x^{3}-128x^{4}+8x^{5}

is positive and increases with respect to x on the whole segment 0.5707 \cdots\leq

x\leq 1 , we get

q_{3}d^{3}\geq(-11-123 cos U_{2}+264 cos2 u_{2}+128 cos3 u_{2}

-128 cos4 u_{2}+8 cos5 \nu_{2} ) d_{1}^{3} . (1.31)

Next, we note that

q_{2}d^{2}\geq M_{3}d_{1}^{2} , if M_{3}\geq 0 , (1.32)

where

M_{3}=10-9 cos \nu_{1}-183 cos2 \nu_{1}+104 cos3 \nu_{2}

+172 cos4 u_{2}-40 cos5 u_{1} , (1.33)

otherwise take

q_{2}d^{2}\geq (10+104 \cos 3 U_{2}+172 \cos 4 \nu_{2})d_{1}^{2}

-(9 cos I/_{1}+183 cos2 u_{1}+40 cos5 U_{1} ) d_{2}^{2} . (1.34)

Since the polynomial

h(x)=3+23x+6x^{2}-134x^{3}-40x^{4}+64x^{5}
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is negative and decreases with respect to x for all 0.5707 \leq x\leq 1 , we get

q_{1}d\geq(3+23 cos U_{1}+6 cos2 u_{1} –134 cos3 \nu_{1}

-40 cos4 u_{1}+64 cos5 \nu_{1} ) d_{2} . (1.35)

Finally, we have

q_{0}\geq-2-3 cos u_{1}+11 cos2 u_{1}+14 cos3 u_{1}

-32 cos4 u_{1}-32 cos5 U_{1} . (1.36)

The polynomial expression in (1.25) is estimated quite analogously.
Thus, we have

r_{6}d^{6}+r_{5}d^{5}+r_{4}d^{4}\geq\{

M_{4}d_{1}^{4} if M_{4}\geq 0 ,
M_{4}d_{2}^{4} if M_{4}<0 ,

(1.37)

where

M_{4}=52d_{1}-8d_{1}d_{2}-119+(28+4d_{1}) cos \nu_{2}+27 cos2 U_{2} . (1.38)

Furthermore,

r_{3}d^{3}+r_{2}d^{2}\geq\{

M_{5}d_{1}^{2} if M_{5}\geq 0 ,
M_{5}d_{2}^{2} if M_{5}<0 ,

(1.39)

where

M_{5}=92d_{2}+18+(232-172d_{2}) cos U_{1}-(76d_{2}+14) cos2 u_{1}

+24(d_{2}-4) cos3 U_{1}+4d_{2} cos3 \nu_{2}+12 cos4 U_{2} . (1.40)

The polynomial

\phi(x)=-24-32x+148x^{2}+60x^{3}-48x^{4}

is positive and increases on the segment 0.5707 \cdot . \leq x\leq 1 and hence, we
have

r_{1}d\geq (-24-32 cos \nu_{2}+148 cos2 \nu_{2}+60 cos3 \nu_{2}-48 cos4 l\nearrow_{2} ) d_{1} .

(1.41)

As the relevant expression is not monotonic with respect to lJ on the whole
interval, let us take

r_{0}\geq-15-60 cos \nu_{1}-61 cos2 u_{1}+40 cos3 \nu_{2}+48 cos4 \nu_{2} . (1.42)
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Now, we show how the requested estimates are verified. In the first
case, assume that U_{1}=0 and u_{2}=0.3 . For d=3.91 solve the algebraic
equation p(d, x)=0 , the function p(d, x) being defined in (1.23). Since it
has only one positive root x=1.0034\ldots , we deduce that p(3.91, cos u) >0
for all lJ .

On the other hand, by setting in this equation d=3.81 we find that
its positive root x=0.9529 . is less than \cos 0.3=0.9553 . ., so that
p(3.81, \cos\nu)<0 for all lJ \in[0,0.3] .

Therefore, if 0\leq\nu\leq 0.3 , then the solution of (1.5) corresponds to some
d_{\nu} such that 3.81\leq d_{\nu}\leq 3.91 .

In view of estimates (1.26)-(1.42), we conclude that Q_{+}\geq 8704.9 , and
R_{+}\geq 360.0 , where Q_{+} , R_{+} are lower bounds for the expressions in (1.24)
and (1.25), respectively.

Table 1 includes estimates obtained in each of the remaining cases. We
see that both required expressions are positive, and therefore, the proof of
the Theorem 1.3 is complete. \square

Note that the increment of lJ should be kept steadily decreasing because
cos U changes more rapidly for larger values of \mathfrak{l}J and so does the difference
between the bounds of d .

Table 1.
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