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A generalization of the Lieb-Thirring inequalities
in low dimensions

Kazuya TACHIZAWA

(Received February 13, 2002)

Abstract. We give an estimate for the moments of the negative eigenvalues of elliptic
operators on R"™ in low dimensions. The estimate is a generalization of the Lieb-Thirring
inequalities in one or two dimensions. We use the p-transform decomposition of Frazier
and Jawerth.
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1. Introduction

For a real-valued measurable function V on R™ we set
Vi(z) = max(V(z),0) and V_(z)= max(-V(z),0).

The Lieb-Thirring inequalities state

Z ‘)\Z|’Y < Cn,y /Rn V_r_l/2+’yd33 (1)

K3

for suitable v > 0, where A\; < Ay < --- are the negative eigenvalues of the
Schrodinger operator —A + V on L?(R™). The inequality (1) holds if and
only if
> L fi 1
— or n=
Yz 5 )
v >0 for n =2,
v >0 for n > 3.

The case v > 1/2,n =1,y > 0, n > 2 was proved by Lieb and Thirring
([8]). They applied the inequality (1) to the problem of the stability of
matter. The case vy =1/2, n = 1 was proved by Weidl ([18]). The case v =
0, n > 3 was established by Cwikel ([1]), Lieb ([7]) and Rozenbljum ([12],
113]). Some generalizations and variations of the Lieb-Thirring inequalities

2000 Mathematics Subject Classification : 35P15, 42B25, 42C15.



384 K. Tachizawa

are known ([2], [6], [9], [14], [15]). In particular Egorov and Kondrat’ev ([2])
studied the estimate for Ly + V where L is an elliptic operator of order
2m.

In the present paper we give a generalization of a result by Egorov and
Kondrat’ev’s for certain degenerate elliptic partial differential operator in
low dimension, for which the rate of degeneracy is regulated by the weight
w € Ay. A generalization of the higher dimensional cases is given in [17]. In
the proof of our main theorem we use the (p-transform of Frazier-Jawerth
(13])-

First we recall the definition of Ap-weights. By a cube in R™ we mean
a cube of which sides are parallel to coordinate axes. A locally integrable
and nonnegative function w on R" is an Ap-weight for some p € (1, 00) if
there exists a positive constant C such that

IQI/ <IQ| / w(‘””)_l/(p_l)dxy_l =¢

for all cubes @ C R™. The infimum of the constant C' is called the Ap-
constant of w.

We say that w is an A;-weight if there exists a positive constant C such
that

|Q|/ y)dy < Cw(z) ae z€Q

for all cubes Q C R™. We write A, for the class of A,-weights. It turns out
that Ay C A, for p > 1.
For a non-negative and locally integrable function w on R™ we define

LP(w) = {f : f is measurable on R", / | f(x)Pw(x) dx < oo} :

n

Next we consider an elliptic partial differential operator of order 2m.
For m € N and f € C§°(R") let

Lf@) = > (-1)"D* (aas(@)D?f(x)).

|a|=|8|=m
where

N 9lel .
D T 9r0 - Ozl for a=(ai,...,a,) € (NU{0})",
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aap € Hio(R™), and aag = aga.

In the above definition the space H" (R™) denotes the set of all f € LZ (R™)

loc

such that D®f € L2 (R™) for all |a| < m.
Let

/ S aap(z) D f(2)Dg(a) da
la|=|8|=m

for f,g € C°(R™) and || - || be the norm of L%(R™).
For v € Z and k € Z" the cube @ defined by

Q:{(:El,...,:cn):ki§2”:ci<ki+1, z':l,...,n}

is called a dyadic cube in R™. Let O be the set of all dyadic cubes in R".
For any Q € Q there exists a unique Q' € Q such that @ C Q' and the
side-length of @’ is double of that of Q). We call @' the parent of Q.

We have the following theorem.

Theorem 1.1 Letn <2m,q>n/(2m),vy >0 and g+~ > 1. We assume
that there exists a w € Ay such that

(Lof, f) = / )Y 1D f (@) de 2)

la|=m

for all f € C§°(R™) and

/ wd:v§22m/wd:z: (3)
! Q

for all Q € Q and its parent Q'.
For a u € Aqq, we suppose that

1/
\lem/""'l < cl/ wdz (/ ud:c) ’ (4)
Q Q

for all cubes @ C R™, where ¢y is a positive constant not depending on Q.
For a real valued function V on R™ we assume that V. € LZ (R™) and

/ Ve d < oo, (5)
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Let 'H be the completion of C§°(R™) with respect to the norm

1/2
1l = {a(f, N+ /R Vilfftdr | f||2} |

Then we have the following.
(i) There exists a unique self-adjoint operator L in L*(R™) with domain
D C 'H such that

(Lf.q) = a(f.9) + / Vigds

n

forall feD and g e H.
(ii) The negative spectrum of L is discrete.
(iii) There ezists a positive constant c such that

S se [ viuds (6
i R™

where {\;} is the set of all negative eigenvalues of L counting multiplicity
and c depends only on n, m, q, 7, ¢1, Aa-constant of w, and Agqq-constant
of u.

The inequality (6) is a generalization of the Lieb-Thirring inequality for
the case v > 1/2, n =1 and v > 0, n = 2. Our result does not include the
case v = 1/2, n = 1. The case w = 1 and u(x) = |z — 29|?™ ™ is proved
by Egorov and Kondrat’ev ([2]). In [9] Netrusov and Weidl proved (6) for
w=u=1,¢=n/(2m) <1,v=1-n/(2m). Our result does not include
their result.

We remark that the condition (4) is trivial by Holder’s inequality when
g = n/(2m) and v = w™@™_ An example of Ly which satisfies the
conditions in [Theorem 1.1 is given in Section 4. We also prove in Section 4
that when n = 2m the condition (3) means that w is “essentially” constant.
We give a bound for the constant ¢ in (6) in Section 4.

2. Preliminaries

First we recall some properties of A,-weights which will be used in the
following sections. Let M be the Hardy-Littlewood maximal operator, that
is,
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M(f)te) = s |Q‘/ )] dy,

where the supremum is taken over all cubes ) which contain .

Proposition 2.1

(i) Let1 <p < oo andw be a non-negative and locally integrable function
on R™. Then there is a positive constant ¢ such that

M(f)Pwdxr < (:/ | fIPw dx

T

. ]R n

for all f € LP(w) if and only if w € A,,.

i) Let 1 <p<ooandw € A,. Then there cxists a q € (1,p) such that

P

w e Ay

(iii) Let 0 <7 < 1 and f be a locally integrable function on R™ such that
M(f)(z) < oo a.e. Then (M(f))" € A;.

(iv) Let 1 <p < oo and w € A,. Then there exists a positive constant ¢
such that

/ wdrl:gc/wda?
J2Q Q

for all cubes Q € R™, where 2Q) denotes the double of Q.

The proofs of these facts are in [4, Chapter IV] or [16, Chapter V].
Property (iv) is called the doubling property of A,-weights.
Let ¢ be a function which satisfies the following conditions.

(A1) ¢ € S(R™).

(A2) suppgp C {£ € R™: 5 <[¢] <2}

(A3) 1@l > c>0if 2 <[¢) <]

(A4) > [p(2°¢)> =1 for all £ £ 0.

For a dyadic cube @) such that
Q={(z1,...,xn) : k; <2%x; < k;+ 1, i=1,... n}.

for v e Z and k € 2", we set

pala) = 22p(2" — k).
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3. Proof of Theorem 1.1

By (ii) of [Proposition 2.1 there exists a constant s such that 1 < s <
g+~ and u € Agyy)/s It turns out that V_ € L7 (R™) (cf. [17, Section 3]).

Let v(z) = (M(V2)(z))'/. We may assume that v(z) > 0 for all z €
R™. By the properties of the maximal operator we have V_(z) < v(z) a.e.
By (i) of [Proposition 2.1 we get

/ VIV udr = M(V_S)(qu'V)/Su dx < cl/ VIt dx < oo.
n Rn

n

Furthermore v is an A;-weight by (iii) of [Proposition 2.1l.
We have the following lemmas.

Lemma 3.1 There exists a positive constant « such that

aZ Q™ 2m/n| (f, Q)| |Q|/wdzv</ {Z |Do‘f|2}wda:

QReQ |lal=
for all f € C°(R™).
Lemma 3.2 There exist positive constants 3 and (' such that

! 2 1 vdzr 20 dx
9 el [ virs [ Isfva

QeQ

<B Y 1(f,%0) |2|Q| vdz
QeQ

for all f € C§°(R™).
The proof of is in [17, Proposition 2.2 and Lemma 3.2].
is proved in [3].

Now we set,

Q d 2m/n d }7
{QE ﬁ/ )dz > a|Q|” /Qw(a:) T

where o and 3 are constants in Lemmas and B.2. We remark that 7 is
not empty. In fact, if Z is empty, then we have

6/ x)dzr < a|Q|” 2’"“/”/@21)(:16) dz
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forall Q € Q. Let Qp € Q and Qp C Q1 C Q2 C - - - be the infinite sequence
of dyadic cubes such that ;4 is the parent of Q; for all i = 1,2,.... By
(3) we have

(Qiga| 2/ / w(z) dz < |Q;) 2™/ / w(z) dz

Qit1 i

for all 7. Hence we have
B/ v(z)dr < a|Q0|"2m/"/ w(z) dx
Qi 0

for all . On the other hand, since v € A;, there exists a constant d > 1
such that

d/ vdmﬁ/ vdzx
Qi Qi1

for all ¢ (cf. [4, p. 141]). Hence we have

di/ vd:cg/ vdxr
Qo Q

i

and

lim vdxr = 00.
im0 JQ

This is a contradiction. Therefore 7 is not empty.
Let @ € 7 and Q' be the parent of Q. Then we have

a|Q'|—2m/”/ w(z)dr < alQl_Qm/"/ w(z)dr < 6/ v(x) dx
' Q Q
<pB | v(z)dz.
QI
Hence we have Q' € Z. This fact means that Z is an infinite set.
Lemma 3.3 There exists a ¢ > 0 such that

Z (ﬁ/ vdx)vgc/ VI udx
Q n

QeT

The proof of this lemma will be given later.
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For f € C5°(R™) we have

J1svodo < [1Pude <5 Y ((Fv0) ﬁ/cg”dx’

QeQ
where we used Lemma 3.2. The last quantity is bounded by

QEI QQI

< BE S|, 00) +aZ|<f,soQHQ| 2m/n /wdm
2 2 Q)

ScKHf||§+/ { . lD“fQ}wdw

SN
laj=m

where

= max —- / vdzr
QEZ Q)
and we used [Lemma 3.1. We remark that K is finite by [Lemuna 3.3l

By the condition (2) we have

[ spvode< [ 1Pode < eI+ (Lo 1) ™)
Hence we have
o)+ [ VIfPde = ~cKIfI3

for all f € C§°(R™). Therefore

W) =alfo)+ [ Vigde

is a lower semi-bounded quadratic form on H.

By the assumption of the coefficients of Ly and V; € L2 (R™) we can
show that b(f, g) is a closed form on H (cf. [17]). Since b(f, g) is a closed and
lower semi-bounded quadratic form on H, there exists a unique self-adjoint
operator L in L?(R") with domain D C H such that

(Lf,9) Za(f»g)nt/” V fgdx
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for all f € D and g € H ([10, Theorem VIIIL.15]).

We set,
M= inf (Lf, f
feD, ||f||:1( :
and
)\k — sup iIlf (Lf7 j)
2 fED,|Ifll=1,
¢ls a¢k—1€L (f7¢_l):()’]:1”k_l
for k£ > 2.

For each fixed k € N either:

(i) there are k eigenvalues counting multiplicity below the infimum of the
essential spectrum of L, and Ay is the kth eigenvalue of L;
or

(ii) Ag is the infimum of the essential spectrum of L and A\, = Ay =
Ak+t2 = -+ - and there are at most k—1 eigenvalues counting multiplicity
below .

The proof of this fact is in [11, Theorem XIII.1].
We have the following lemma.

Lemma 3.4 Let A > 0 and

= {Q S A (1|Q\_]_2m/"/ wdx — BlQ| ™! / vdr < —A} :
Q Jo

Then T4 1s a finite set.

Proof. Let (Q € T4. Then we have

A< ﬁ/ vdx.
Q1 Jg
By we conclude that T4 is a finite set. (]

Let {ur}32, be the non-decreasing rearrangement of

{Q|QI«1~2m/n/ ’u}d.’li—,@‘Qll/ ’Udl'} .
Q Q QeT

< pp <

Then
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and

lim pr =0

k—oo

by [Cemma 3.4.
When

uk:a\Q(_l_Qm/n/ wdm—B1Q|_1/ vdr,
Q Q

we define 1 = ¢g.

By (7) and the density argument we have / |f|?vdz < oo for all f €

Rn
D and the inequalities in Lemmas and hold for f € D. Hence we
have

(L, f) = a(f, ) + /R VP de

> /R{ ) 1Daf|2}wdw—4nv_|f|2dx

|a|=m

> /R{ 5 ID“f2}de/Rnlflzvdx

la|=m

> ¥ I(f.0) {alQ i [ wiz—sar | vda |

QeQ
for all f € D. Therefore we have

Ak 2> inf Lf,
feD, | fl=1, (LS, f)
(f:)=0,1=1,...,k—1
(o0
> inf 7¢, 2
fen, | fll=1, ; \(f J)l My
(fwi)=0,i=1,....k—1 )=

(0.}

> Pk sup (0501 > cpk,
fEDIfI=1, ik
(f,%):o, 221,,]{3—1

where we used the fact py, < 0 and Y |(f,95)]* < || fII*.
Since limg_, o ux = 0, the negative spectrum of L is discrete. Further-
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more we have

STl <) Il
kAR <O k=1
Y
=3 (o101 [ vae—aiqr i [ war)
Q

QeT
o
Z (ﬁlQ| 1/ vdw) < c/ VI udx < c/ VIt de,
QEI n n
where we used Lemma 3.3 This ends the proof of [[Theorem 1.1.

Proof of Lemma 3.3. For () € T we have

a1Q|_2m/"f z)dr < ﬁ/
1/(g+v) (g+v=1)/(g+7)
<o [ i) / g g}
Q Q

Since u € A4 means

1 1 g+v-1
—/ udm{—/ u_l/(q+7_1)da:} <cg,
QI Jg QI Jg

the last term is bounded by

1/(g+7) —1/(g+7)
c (/ vq+7udx) Q| (/ uda:)
Q Q
1/(g+7) v/{alg+7)}-1/q
<c (/ vq+7udx> Q| (/ uda:)
Q Q
1/(g+7) v/{a(g+7)}
<c (/ UQ+7uda:) Q| (/ udx) IQl”Qm/”_I/ wdz,
Q Q Q

(8)

where we used (4). Therefore we have

v/4q
O<c§/vq+7uda: (/udaz) )
Q Q

By this inequality we conclude that if @ D Q2 D --- are cubes in
Z, then this sequence must have a minimal element with respect to the
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inclusion relation. Let M be the set of all such minimal cubes in Z.

Lemma 3.5 Let Q € Q and Q1,Q2,...,Qan be the half-size dyadic sub-
cubes of Q. Then we have

on
(ﬁ/c;vdx>7 < 2—nmin{1,’7}z (‘Ql‘ 0 ’de>7- (9)
i=1 ! i

Proof. We have

27'L

1 / B 1
— | vdx=2"" vdzx.
IQ' Q Z |Q2| Qi

1=1

If 0 < v <1, then we can get (9) easily. If v > 1, then (9) is a consequence
of the convexity of the function y = 27, z > 0. O

Let NV be the set of all Q € Q such that Q ¢ Z and its parent Q' € T \
M. Then using repeatedly we have

> @k =)

QeT
< Z (Té‘)—\/cgvdx)v{;f—k"mm{lﬁ}}

QeEM

s (f@ /Q vdx)”{ig—knmin{lw}}

QEN k=1

SCQEGJ:M (é/@vdaz)y%—cz (ﬁ/@m::)v.

QEN
Let @ € Z. Then by (4) and (8) we get

1 ¥ v/(g+7) -/ (q+v)
(—/ vda:) <c (/ Ity dCE) (/ uda:)
Q| Jo Q Q
v/(q+7) qv/(g+7)
<c (/ vq+7ud:):> <|Q\_2m/"_1/ wd:z:)
Q Q
v/(a+7) qv/(g+7)
<c (/ vqﬂuda:) (|Q|_1/ vd:c) :
Q Q
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Therefore we have

(ﬁévdw)vgclquﬂud:ﬁ.

Similarly we have this inequality for Q € N because the parent Q' of Q
belongs to Z and the inequality

|Ql_2m/"_1/wdx§c'\Q|_l/ vdr
Q Q

holds by the doubling property of v.
Therefore we conclude

Z(lQ\/vdx> <c ) /vq+7uda“+c

QeI QEM QEN

< c/ vy d,
n

where we used the fact that the cubes in M U N are mutually disjoint.
Hence is proved. O

/ VI wdx

4. Some remarks

Let m and n be natural numbers such that n/2 < m < 3n/2. Let a be
a number such that m —n/2 < a« < min{2m — n,n}. Then

Lof(a) = (~1)™ > D° (ja|* D’ f(x))
|Bl=m

satisfies the conditions in [Theorem 1.1 with w(z) = |2|® and u = w ™"/ (2",
We shall show this. First we have |z|* € H" (R™). It is known that for
p € (1,00) and § € R we have |z|° € A, on R" if and only if —n < § <
n(p — 1) (cf. [4, p.407]). Hence we can easily show that w = |z|* € A, and
w=w MM = |g| /(M) ¢ Ay /(2m)+~ for any v > 0 such that n/(2m) +
~v > 1. We shall prove that w satisfies the condition (3). Let Q' € Q such
that

Q ={(x1,...,xn) 1 ks <2z < ki +1,i=1,...,n}

for k = (k1,...,k,) € Z" and v € Z. We shall show that the inequality
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/ 2| dx < 22’”/ |lz|* dz (10)
Q' Q

holds for all half-size dyadic sub-cubes @ of @’. Since w(z) = |z|* is a
radial function, it is enough to consider the case k; > 0 foralli=1,...,n.
Since |z|* < |2'|* for all z, 2’ € R" such that 0 < z; <zl i=1,...,n, it is
enough to prove for ’

Q‘—‘{(.Ccl,...,l‘n):k'iSQin <ki+1/2, ’i:1,...,n}.

If we set 2¥z = y in [10), then the inequality we shall show is

/ ylo dy < 22m / 1] dy, ay
R’ R

where

R={(y1,..,un) ki <wi<k;+1,i=1,...,n}
and

R={(y1,- - yn) ki <y; <k;+1/2, 1 =1,...,n}.

Setting z = 2y — k, we get

/ ly|*dz =27""% [ |z+k|*dz>2"""% | |z|%d=.
R R/ R!

Hence we proved since n + a < 2m.

Next we consider the condition (3) when n = 2m. Let Iy = (—o0,0)
and I1 = [0,00). For ry,...,r, € {0,1}, we set

K’r‘l,...,rn == {(xl, . .,.I'n) N - ITi’ ’[, = ]_’ ceey n}.
We have the following proposition.

Proposition 4.1 Let w be a real-valued locally integrable function on R™.
We assume that

/lw(x) dz < 2”/Qw(a:) dz (12)

for all Q € Q and its parent Q'. Then w(x) is constant almost everywhere
on each K  r..

Proof. Let Qo € Q@ and z € Q. Then there exists an infinite decreasing
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sequence of dyadic cubes Qg D @)1 D Q2 D -+ such that z € Q; and Q); is
the parent of Q;,1 for alli=0,1,.... By we have

1 1
w(z)dr < —— w(zx) dz
|Qil Qi |Qit1] Qi+1
for all © = 0,1,.... Since w is locally integrable and lim; ,, |Q;| = 0, we
have
) 1
lim w(z) dx = w(z)
1—00 |sz Qi
for almost every z € )y. Hence we have
1
e w(zx)dr < ess inf w(z).
Qo Qo (=) N 2€Qo (2)

Therefore we conclude that w is constant almost everywhere on Qg. Since we
can choose any dyadic cube as @)y, we get the conclusion of [Proposition 4.1].
d

Finally we give a bound of the constant ¢ in (6). The result is a little
complicated. We need explicit calculation of the constants in propositions
and lemmas in this paper and weighted norm inequalities in [4]. Let w and
u be weights satisfying the conditions in [Theorem 1.1l. Let A and B be the
Ag-constant of w and the A,4,-constant of u respectively. We set

A—272 1 log 6
R Y .

A (n+1)log?2

5 B~ Y(g+y=1) _ 9—(q+) 1 . log 8y

2= B-1/(g+v-1) 275 mln{ " (n+1) logQ} ’

neg (g+v—1)/(1+€2)
:(Q+’Y)(1+52), D_B 2 ,
q+y+e 27€2 — 2ne24,

5 D—s/(a+y—=s) _ 9—(q+7)/s 1 log &5

3= D—s/(a+7—9) R D S { T+ 1) logQ} !
H:w, E = 3"/ 1+34 ’

s(1+e€3) s—1

0 ——E_2_2 € —-1—min 1 log 04
T B 0 T " (n+1)log2 ]
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Then the constant ¢ in (6) is bounded by

o0

A/l(l B2 (,(11E4'y+5q1271,522K,~(q+’y)/s ﬁl_cnéq%-ch 2—kn min{ 1’7}
’ n  Cmmn E

q-+7v—KS o

n 2 n +~v—1)/{1+e;
% 22(1(27l+2)(1+61)/51 ( 2ne1 > q/e1 ( one? )(q y—1)/(1+e2)

2-c1 — gne1 )

ones (q+v—s)/(s(1+e€3))
X
(2—6;; _ 27L€;; 63>

2782 — Jne2 (SQ

bl

x 22(q+'y)(2n+3)(l+54)/64 <
Q74 — QnEy (54

o >2(q+7)/64

where ¢ is the constant in (4) and ¢, ¢y, ¢mn are constants depending
only on m and n. We omit the proof.
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