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Generalized shadows of codes over rings

Steven T. DOUGHERTY*

(Received July 30, 2001; Revised January 30, 2002)

Abstract. We describe different ways of defining shadows for self-dual codes over rings,
giving special attention to the rings of order 4. We determine their respective weight enu-
merators and give the corresponding shadow sum constructions. We also give a connection
between the shadow of a code and its construction via the Chinese Remainder Theorem.
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1. Introduction

Self-dual codes over rings have become an important object of study.
They are interesting as objects themselves, however they have added impor-
tance because of their relationship to real and complex unimodular lattices
and their corresponding theta series, which are then used to construct mod-
ular forms.

Self-dual codes over Z_{2k} were introduced in [2] and have been studied
extensively elsewhere, see [13]. Self-dual codes over Z_{4} have been widely
investigated (see [11] and the references given therein). Self-dual code over
F_{2}+uF_{2} were introduced in [1] and [5]. Three classes namely Type I ,
Type II and Type IV codes were introduced in [2] and [6].

We shall describe the theory of shadows applied to codes over the rings
Z_{k} and F_{2}+uF_{2} . Moreover we shall show how this theory can be applied
in different manners.

Shadows for binary codes were introduced in [4]. The definition was
generalized for codes over Z_{4} in [7], for codes over Z_{2k} in [2], and for codes
over F_{2}+uF_{2} in [5]. In [9], a detailed study of these shadows and the
corresponding shadows for lattices is given.

There are two primary purposes for shadows:
1) Eliminate a putative code by examining the weight enumerator

(Hamming, Symmetric, or Complete) of the shadow by finding a coefficient
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in the weight enumerator that is not a non-negative integer.
2) To build larger self-dual codes from existing self-dual codes.
To accomplish 1, it must be possible to find the weight enumerator of the

shadow from the weight enumerator of the putative code. To accomplish 2,
all that is required is that you know the orthogonality relations and the glue
group of the cosets. If you also know the respective weight enumerators then
so much the better because then you can determine the weight enumerator
of the formed code (parent code). For a complete description of forming
new codes from shadows see [10].

1.1. Definitions and Notations
The ring Z_{k} is the commutative ring described by Z/(k)=\{0,1,2 ,

k-1\} and the ring F_{2}+uF_{2} is described by Z[i]/(2) or Z[x]/(2, (x+1)^{2})

and the elements are \{0, 1, u, 1+u\} with u^{2}=0 . The Euclidean weight of
a vector x= (x_{1}, x_{2}, . , x_{n}) in Z_{k} is \sum_{i=1}^{n}\min\{x_{i}^{2}, (k-x_{i})^{2}\} .

Let R be finite commutative ring. A code over R is a subset of R^{n} and
a linear code is a submodule of this space. To the ambient space R^{n} attach
the inner product

[v, w]= \sum v_{i}w_{i}

and define the orthogonal C^{\perp}=\{v\in R^{n}|[v, w]=0\forall w\in C\} . We shall
say that a code is self-0rthogonal if C\subseteq C^{\perp} and self-dual if C=C^{\perp} .

A self-dual code over Z_{2k} is Type II if all vectors in the code have
Euclidean weights which are 0 (mod 4k) and Type I otherwise. This defini-
tion is natural, given the connection to unimodular lattices described below.
The same definition is not applied to codes over Z_{k} with k odd because the
connection to unimodular lattices does not hold.

The explicit connection is the A_{2k} construction of a lattice from a self-
dual code over Z_{2k} . Define the reduction modulo 2k , by \rho : Z^{n} -arrow Z_{2k}^{n} ,
by

\rho(x_{1}, ., x_{n})= ( x_{1} (mod 2k), \ldots , x_{n} (mod 2k) ).

Given a code C over Z_{2k} we construct a lattice by

\Lambda(C)=\frac{1}{\sqrt{2k}}\{x\in Z^{n}|\rho(x)\in C\} . (1)

In [2], it is proven that if C is a Type I code then \Lambda(C) is a Type I unimodu-
lar lattice, and that if C is a Type II code then \Lambda(C) is a Type II unimodular
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lattice and that the minimum norm of the lattice is \min\{2k, \frac{d_{E}}{2k}\} , where d_{E}

is the minimum Euclidean weight of the code. Additionally, there is a con-
nection between the shadows, that is, the image of the shadow under \Lambda is
the shadow of the image, see [9] for a complete explanation of the connection
between shadow codes and shadow lattices.

The complete weight enumerator of a code C over Z_{k} is defined by

cwe_{C}(x_{0}, x_{1} , .,^{x_{k-1})=\sum_{c\in C}x_{0}^{n_{0}(c)}x_{1}^{n_{1}(c)}}
. . x_{k-1}^{n_{k-1}(c)} , (2)

where n_{i}(c) is the number of coordinates of c that are i , i.e. n_{i}(c)=|\{j|

c_{j}=i\}| . The symmetric weight enumerator is defined by

swe_{C}(x_{0}, x_{1} , . .^{ x\ell)=\sum_{c\in C}x_{0}^{n_{\acute{0}}(c)}x_{1}^{n_{1}’(c)}}, , . x_{\ell-1}^{n_{\acute{\ell}-1}(c)}x_{\ell}^{n_{\acute{\ell}}(c)} , (3)

where n_{i}’(c) is the number of coordinates that are\pm i and \ell=\lceil\frac{k}{2}\rceil .
The Hamming weight enumerator is given by

W_{C}(x, y)= \sum_{c\in C}x^{n-wt(c)}y^{wt(c)}
(4)

where wt(c) is the number of non-zero elements of the code.

1.2. Rings of Order 4
We shall examine the weights given in Table 1 for codes over the rings

of order 4, namely the Hamming, Euclidean and Lee weights. Specifically,
the Hamming weight is the number of non-zero coordinates, the Lee weight
is the Hamming weight of its binary image under a gray map, and the
Euclidean weight is defined in the natural manner.

Table 1. Weights for Z_{4} and F_{2}+uF_{2}

We say that self-dual codes over F_{2}+uF_{2} with the property that all
Lee weights are divisible by four are Type II. Self-dual codes which are not
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Type II are called Type I. This is a natural definition given the gray map
defined below.

We also consider the following distance preserving gray maps.

\psi \phi

\psi(0)=00 \phi(0)=00

\psi(1)=01 \phi(1)=01

\psi(1+u)=10 \phi(3)=10

\psi(u)=11 \phi(2)=11

Note that \psi is F_{2}-linear and \phi is not linear.

2. Generalized shadows

Usually, the shadow is defined by taking the subcode C_{0} of vectors
whose Euclidean weight is 0 (mod 4k) for a self-dual code over Z_{2k} and
then the shadow S=C_{0}^{\perp}-C . In this section we shall generalize this idea.

In general, all that is required to build a shadow is to find a subcode of
index 2. In particular, let C be a self-dual code over R with s a vector not
in C, but s+s\in C . Define C_{0} to be the subcode of C orthogonal to s , i.e.

C_{0}=\{c\in C|[c, s]=0\} .

Let t be a vector such that \langle C_{0}, t\rangle=C , where \langle C_{0}, t\rangle denotes the space
generated by C_{0} and t , then C_{1}=C_{0}+s and C_{3}=C_{0}+s+t .

The shadow is defined by S=C+s or equivalently S=C_{1}\cup C_{3} .
We know that [t, t]=0 and so to determine orthogonality relations all

that is required is to know [s, t]=\tau and [s, s]=\sigma .
More generally, the vector s can be chosen as any vector that is not in

C. Then let \Psi_{s} : Carrow Z_{k} by \Psi_{s}(c)=[s, c] . Then the kernel of the map is
the code C_{0} and the image is a subgroup of Z_{k} , denoted by G . Note that if

Table 2. Orthogonality Relations for Shadows
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Z_{k} is a field then there are only two possible choices, i.e. the entire group or
the trivial subgroup, however for rings there are many more possibilities for
the order. It is easy to see that there exists a vector t such that \langle C_{0}, t\rangle=C

and that [t, s]\in G . It is also clear that the index of C_{0} in C is the cardinality
of the image of the map \Psi_{s} , specifically, each coset is mapped to an element
of this subgroup.

Define the coset C_{\alpha,\beta} of C_{0} in C_{0}^{\perp} by

C_{\alpha,\beta}=C_{0}+\alpha t+\beta t (5)

where \alpha , \beta\in G .
The inner-product of any vector in C_{\alpha,\beta} with a vector in C_{\alpha’,\beta’} will

be denoted by [C_{\alpha,\beta}, C_{\alpha’,\beta’}] . This can be computed by taking an arbitrary
vector from both, c_{0}+\alpha t+\beta s\in C_{\alpha,\beta} and c_{0}’+\alpha’t+\beta’s\in C_{\alpha’,\beta’} , with c_{0}

and c_{0}’ elements of C_{0} . Then

[c_{0}+\alpha t+\beta s\in C_{\alpha,\beta}, c_{0}’+\alpha’t+\beta’s\in C_{\alpha,\beta}]

=(\alpha\beta’+\beta\alpha’)[t, s]+\beta\beta’[s, s] .

Note that the subgroup G consists of all the elements that are possible
values for the above computations.

In this more general setting there are |G|-1 shadows, specifically, each
C+\beta s , (\beta\neq 0) is a shadow of the code.

A similar construction can be made for lattices constructed from self-
dual codes. Specifically, let C_{0} be the subcode orthogonal to the vector s ,
then the following diagram commutes.

C_{0}^{\perp}|

\vec{A_{2k}}
\Lambda_{0}^{*}|

C_{0}C\uparrow

\vec{A_{2k}\vec{A_{2k}}}

\Lambda_{0}\Lambda\uparrow

Specifically, \Lambda_{0} are those vectors w such that w\cdot A_{2k}(v)\in Z .

2.1. Shadow sums
The above technique is useful when using shadows to build larger self-

dual codes. That is, one specifies a vector s and then one can determine
the vector t . Then the following technique applies, which generalizes the
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techniques given in [10] and the references therein.
Let C and D be self-dual codes of length n and n’ respectively. Let C_{0}

and D_{0} be subcodes of C and D both of index r and subgroup G.
Let s and t be vectors such that C=\langle C_{0}, t\rangle and C_{0}^{\perp}=\langle C, s\rangle . Let s’

and t’ be vectors such that D=\langle D_{0}, t’\rangle and D_{0}^{\perp}=\langle D, s’\rangle . The vectors t’

and s’ can be chosen so that

[s, s]=-[s^{/}, s^{/}] (6)

and

[s, t]=-[s’, t’] (7)

We can make [s, s]=-[s’, s’] by noting that the map F : (C_{0}^{\perp}-C)arrow G

given by F(X)=[x, x] is injective. Moreover \Psi_{r} is also injective so t’ can
be chosen likewise.

Define the shadow sum of C and D by

C \oplus_{S}D=\bigcup_{\alpha,\beta}(C_{\alpha,\beta}, D_{\alpha,\beta}) (8)

where (C_{\alpha,\beta}, D_{\alpha,\beta})=\{(v|v’)\} with v\in ( C_{\alpha,\beta} and v’\in D_{\alpha,\beta} ).

Theorem 2.1 Let C and D be self-dual codes over Z_{k} of length n and n’
with C_{0} and D_{0} of index r with group G, then the shadow sum C\oplus_{S}D is
a self-dual code of length n+n’ . If W(X) is any weight enumerator then

W_{C\oplus_{S}D}(X)= \sum_{\alpha,\beta}W_{C_{\alpha,\beta}}(X)\cross W_{D_{\alpha,\beta}}(X)
(9)

Proof. We have that |C_{0}|= \frac{|C|}{r}=\frac{1}{r}k^{\frac{n}{2}} and |D_{0}|= \frac{|D|}{r}=\frac{1}{r}k^{\frac{n’}{2}} Then
|C \oplus_{S}D|=r^{2}|C_{0}||D_{0}|=k\frac{n+n’}{2} . The code is linear by construction.

To show the new code is self-0rthogonal we consider the inner-product
of two arbitrary vectors. Consider (v|v’)\in(C_{\alpha,\beta}, D_{\alpha,\beta}) and (w, w’)\in
(C_{\alpha’,\beta’}, D_{\alpha’,\beta’}) , then

[(v|v’), (w|w’)]

=[(v_{0}+\alpha t+\beta s|v_{0}’+\alpha t’+\beta s’), (w_{0}+\alpha’t+\beta’s|w_{0}’+\alpha’t’+\beta’s’)]

=(\alpha\beta’+\beta\alpha’)[s, t]+\beta\beta’[s, s]+(\alpha\beta’+\beta\alpha’)[s’, t’]+\beta\beta’[s’, s’]

=0.

\square
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As an example, let C be the self-dual code of length 3 over Z_{4} generated
by \{(200), (020), (002)\} and let D be the self-dual code of length 2 over Z_{4}

generated by \{(20), (02)\} . Let s=(123) and s’=(13) , then [s, s]=-[s’, s’] .
Both C_{0} and D_{0} are of index 2. We have

swe_{C_{0,0}}=x_{0}^{3}+x_{0}^{2}x_{2}+x_{0}x_{2}^{2}+x_{2}^{3}

swe_{C_{0,1}}=2x_{\pm 1}^{2}x_{2}+2x_{0}x_{\pm 1}^{2}=swe_{C_{1,1}}

swe_{C_{1,0}}=2x_{0}^{2}x_{2}+2x_{0}x_{2}^{2}

and

swe_{D_{0,0}}=x_{0}^{2}+x_{2}^{2} , swe_{D_{0,1}}=2x_{\pm 1}^{2}=swe_{D_{1,1}} , swe_{D_{1,0}}=2x_{0}x_{2} .

The shadow sum C\oplus_{S}D is a self-dual code of length 5 and has the following
symmetric weight enumerator:

swe_{C_{0,0}}swe_{D_{0,0}}+swe_{C_{1,0}}swe_{D_{1,0}}+swe_{C_{0,1}}swe_{D_{0,1}}+swe_{C_{1,1}}swe_{D_{1,1}}

=x_{0^{5}}+6x_{0^{3}}x_{2^{2}}+x_{0^{4}}x_{2}+6x_{0^{2}}x_{2^{3}}+x_{0}x_{2^{4}}+x_{2^{5}}+8x_{\pm 1^{4}}x_{2}+8x_{\pm 1^{4}}x_{0}

3. Shadows from constant vectors

As an example of a useful construction technique and of a subcode
whose weight enumerator is determinable, we shall examine shadows formed
from constant weight vectors.

Let C be a self-dual code over Z_{k} of length n with s= (\gamma, \gamma, \ldots, \gamma) not
in C. Very often, such a vector can be found, for example the all one vector
of length n is only self-0rthogonal if k divides n .

We note that for codes over Z_{2k} the constant vector (k, k, ., k) is
always in a self-dual code, see [3]. However, there are self-dual codes over
Z_{k} with k odd that contain no constant vectors, for example, \langle(1,2)\rangle over
Z_{5} or \langle(1,8)\rangle over Z_{65} . The fact that (k, k, . ., k)\in C for self-dual code
over Z_{2k} limits the size of the index of C_{0} in C, since at best it can be k

and not 2k .
Let C_{0}=\{v|v\in V, [v, s]=0\} with C_{0} of index r in C. We note that

[v, s]=0 \Leftrightarrow\sum_{i=1}^{n}\gamma v_{i}=\gamma\sum_{i=1}^{n}v_{i}=0 . (10)

The values [s, v] takes on for v\in C are the elements of the subgroup G
of Z_{k} with |G|=r .
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Let cwe_{C}(x_{0}, x_{1}, \ldots, x_{k-1})=\sum A_{a_{0},a_{1},\ldots,a_{k-1}}x_{0^{0}}^{a}x_{1}^{a_{1}} \cdot x_{k-1}^{a_{k-1}} be the
complete weight enumerator for the code C, where A_{a_{0},a_{1},\ldots,a_{k-1}} denotes the
number of vectors in C with a_{i} coordinates that are an i , for i=0, \ldots , k-
1 . Note that if a vector v is represented by the monomial x_{0^{0}}^{a}x_{1}^{a_{1}}\cdot\cdot x_{k-1}^{a_{k-1}}

then \sum v_{i}=\sum a_{i}i and [v, s]= \sum_{i=1}^{n}\gamma a_{i}i . Let \xi_{r} be a complex r-th root of
unity. We are now in a position to determine the weight enumerator of the
subcode C_{0} .

Lemma 3.1 Let C be a self-dual code of length n over Z_{k} with s=
(\gamma, \gamma, \ldots, \gamma) with C_{0} the subcode of C orthogonal to s then

cwe_{C_{0}}(x_{0}, x_{1}, . ., x_{k-1})

= \frac{1}{r}\sum_{j=0}^{r-1}cwe_{C}((\xi_{r}^{j})^{0}x_{0}, (\xi_{r}^{j})^{1}x_{1} , . , (\xi_{r}^{j})^{k-1}x_{k-1}) (11)

Proof. A monomial representing a vector v which is orthogonal to s will
have a coefficient of r in the summation, and a vector which is not orthogonal
will have 1+\xi_{r}+\xi_{r}^{2}+\cdot\cdot+\xi_{r}^{r-1}=0 for a coefficient. \square

If P(x_{0}, x_{1}, \ldots, x_{k-1}) is a polynomial, then let T\cdot P(x) be the action of
the Williams transform on the polynomial (without the constant).

Theorem 3.2 Let C be a self-dual code as described in Lemma 3.1. Then

cwe_{S}= \frac{1}{k^{\frac{n}{2}}}\sum_{j=1}^{r-1}T\cdot cwe_{C}((\xi_{r}^{j})^{0}x_{0}, (\xi_{r}^{j})^{1}x_{1} , . , (\xi_{r}^{j})^{k-1}x_{k-1}) (12)

Proof. We compute

cwe_{C_{0}^{\perp}}(x_{0}, x_{1} , . .,^{x_{k-1})}

= \frac{1}{|C_{0}|}T\cdot\frac{1}{r}\sum_{j=0}^{r-1}cwe_{C}((\xi_{r}^{j})^{0}x_{0}, (\xi_{r}^{j})^{1}x_{1} , . . , (\xi_{r}^{j})^{k-1}x_{k-1}) (13)

Then the first summand becomes

\frac{1}{|C|}T\cdot cwe_{C}(x_{0}, x_{1}, . ., x_{k-1})=cwec(x_{0}, x_{1}, ., x_{k-1}) ,

and
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cwe_{S}(x_{0}, x_{1}, \ldots, x_{k-1})

=cwe_{C_{0}^{\perp}} (x_{0}, x_{1}. ., x_{k-1})-cwec(x_{0}, x_{1}. ., x_{k-1}) .

\square

It is clear that the symmetric weight enumerator can be computed sim-
ilarly, as follows.

Corollary 3.3 Let C be a self-dual code as described in Lemma 11. Then

swe_{C_{0}}(x_{0}, x_{1}, \ldots, x\ell)=\frac{1}{r}\sum_{j=0}^{r-1}cwe_{C}((\xi_{r}^{j})^{0}x_{0}, (\xi_{r}^{j})^{1}x_{1} , ., (\xi_{r}^{j})^{k-1}x_{\ell})

(14)

and

swes= \frac{1}{k^{\frac{n}{2}}}\sum_{j=1}^{r-1}T’ swec ((\xi_{r}^{j})^{0}x_{0}, (\xi_{r}^{j})^{1}x_{1} , \ldots , (\xi_{r}^{j})^{\ell}x\ell) (15)

where T’ is the action of the Mac Williams relation for the symmetric weight
enumerator.

4. Shadows for F_{2}+uF_{2}

In [5], a shadow is defined for codes over F_{2}+uF_{2} using the Lee weight.
This is a natural definition since the shadow defined in this manner corre-
sponds via the gray map to the standard shadow of the formed binary self-
dual code. Specifically from [5], we have that if C is Type I then \phi(C_{j})=

\phi(C)_{j} for j=0,1,2,3 , that is,

coset\downarrow C_{j}C

\vec{\phi\vec{\phi}}

\phi(C_{j})=\phi(C)_{j}\phi(C)\downarrow coset

If C is a Type I code of length n then \phi(S) is the shadow of \phi(C) .
Moreover, it is an interesting weight with respect to the formed Complex

lattice. That is with every code C over F_{2}+uF_{2} the lattice

A(C)=L(C)/\sqrt{2}
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with

L(C)= {x\in Z[i]^{n}|x (mod 2)\in C}

is formed. Moreover, if C is a Type II code over F_{2}+uF_{2} then A(C) is
even unimodular, and unimodular if C is Type I.

It is natural to ask whether a shadow can be formed based on Lee weight
for self-dual codes over Z_{4} . Consider the following two vectors v=(221111)
and w=(313100) . The vector v has Lee weight 8\equiv 0 (mod 4) and the
vector w has Lee weight 4\equiv 0 (mod 4). Moreover [v, v]=[w, w]=[v, w]=
0 . Now v+w=(130211) has Lee weight 6\not\equiv 0 (mod 4). Hence the sum
of two vectors with Lee weight 0 (mod 4) does not necessarily have Lee
weight congruent to 0 (mod 4), so no such shadow is possible, given the
usual construction. This is not surprising because the corresponding gray
map is not linear.

Unlike the case for Z_{4} , we can define an additional shadow for codes
over F_{2}+uF_{2} , namely the Euclidean shadow. The Euclidean weight of every
codeword in a self-dual code is even. We define an E4 code C as a self-dual
code C with the property that the Euclidean weight of every codeword in
C is divisible by four. For example, the code { (0) , (u)} is the smallest E4
code. Notice that { (0) , (u)} is not a Type II code in the usual sense. This
implies that there is an E4 code for any length. Moreover we define an E8
code C as a self-dual code C with the property that the Euclidean weight
of every codeword in C is divisible by eight. For example, K_{8m} is a E8 code,
where K_{8m} is the F_{2}+uF_{2} analog of the Klemm code of length 8m defined
in [12]. A self-dual code with the property that the Euclidean weight is not
divisible by 4 is called E2.

As before C_{0} is the subcode of vectors whose Euclidean weight is 0
(mod 4). The code C_{0} is of index 2 in C. Let the symmetric weight enu-
merator be defined by swe_{C}(a, b, c)= \sum_{c\in C}a^{n_{c}(0)}a^{n_{c}(1,1+u)}a^{n_{c}(u)} , where
a^{n_{c}(i)} is the number of coordinates in c that are i .

Theorem 4.1 If C is an E2 code, then the swe of C_{0} is

swe_{C_{0}}(a, b, c)= \frac{1}{2} (swe_{C}(a, b, c)+swec(a, ib, c)) .

The swe of S is related to the swe of C by the relation

swe_{S}(a, b, c)=swe_{C}(b+(a+c)/2, (a-c)i/2, (a+c)/2-b)
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If the swe of an E2 code C can be expressed as

\sum_{j,k}\alpha_{jk}(a+c)^{n-2j-4k}(ac-b^{2})^{j}(b^{2}(a-c)^{2})^{k}
, (16)

then the swe of its shadow is

\sum_{j,k}\alpha_{jk}(-1)^{k}2^{-j}(a+c)^{n-2j-4k}(a^{2}+c^{2}-2b^{2})^{j}((a-c)^{2}b^{2})^{k}
. (17)

Note that this shadow can be used to eliminate a putative code over
F_{2}+uF_{2} . More to the point given a putative weight enumerator for a code
over F_{2}+F_{2} both the Euclidean and Lee shadows should be investigated
to determine if there is a possible inconsistency.

We see from Equation 17 that any vector in the shadow is self-0rthogonal
since it has n_{1,1+u}\equiv 0 (mod 2). Hence \sigma=[s, s]=0 . Also we have [s, ut]=
u[s, t]=0 since ut has only u for non-zero coordinates and is therefore in
C_{0} . Moreover, [s, t]\neq 0 by construction, so \tau=[s, t]=u .

Thus we have the following orthogonality relations given in Table 3.

Table 3. Orthogonality Relations for the
Euclidean Shadow for F_{2}+uF_{2}

In contrast the Lee weight shadow is computed (see [5]) by the following.
If C is a Type I code, then the swe of C_{0} is

swec_{0}(a, b, c)= \frac{1}{2} (swec(a , b , c)+swec(a, ib, -c) ).

The swe of S is related to the swe of C by the relation

swe_{S}(a, b, c)=swec(b+(a+c)/2, i(a-c)/2, b-(a+c)/2)



112 S. T. Dougherty

5. Rings of order 4

We shall give a concrete example of constant vector shadows over rings
of order 4. Let j denote the all one vector.

Case 1: R=Z_{4}

We note that [v, v]=0 implies that [v, 2j]=0, so 2j\in C . (This is
Proposition 4.1 in [7], i.e. all self-dual codes over Z_{4} contain 2j ). Hence
j+j\in C and thus C is index 2 in C_{0}^{\perp} giving us the desired situation.

The weight enumerator of C_{0} is easily computed, i.e.

cwe_{C_{0}}(x_{0}, x_{1}, x_{2}, x_{3})

= \frac{1}{2}(cwe_{C}(x0, ix_{1}, ^{-x_{2}}, -ix_{3})+cwe_{C}(x_{0}, x_{1}, x_{2}, x_{3})) (18)

Hence we can compute the weight enumerator of the shadow simply by
noting that S=C+j , i.e .

cwe_{S}(x_{0}, x_{1}, x_{2}, x_{3})=cwe_{C}(x_{1}, x_{2}, x_{3}, x_{0}) (19)

Notice also that 11111113 has Euclidean weight 8 but is not perpendic-
ular to j so it is not the same subcode as those vectors that have Euclidean
weight congruent to 0 (mod 8).

We have that 2t\in C_{0} and [t,j]\neq 0 so 2[t,j]=0 and then [t,j]=2 .
Also we have that [j,j]=n (mod 4) which gives the orthogonality relations
for this case.

Now C_{1}+C_{1}=(C_{0}+j)+(C_{0}+j)=(C_{0}+2j) . If n\equiv 1 (mod 2)
then 2n\equiv 2 (mod 4) then C_{1}+C_{1}=C_{2} and we have that the glue group,
C_{0}^{\perp}/C_{0} , is isomorphic to the cyclic group of order 4. If n\equiv 2 (mod 2) then
2n\equiv 0 (mod 4) and C_{1}+C_{1}=C_{0} and the glue group is the Klein-4 group.

Since [j,j]=n (mod 4) we have that \sigma=n (mod 4). Notice that 2t\in

C_{0} , Hence [2t,j]=2[t,j]=0 and [t,j]\neq 0 so \tau=[t,j]=2 , giving the
orthogonality relations.

Theorem 5.1 Let C be a self-dual code over Z_{4} and let s be the all one
vector with C_{0}=\{c\in C|[c, s]=0\} then the glue group C_{0}^{\perp}/C_{0} is
isomorphic to the cyclic group of order 4 if n\equiv 1 (mod 2) and isomor-
phic to the Klein-4 group if n\equiv 0 (mod 2) and the orthogonality relations
are given by Table 4. The shadow S=C_{1}\cup C_{3} has weight enumerator
cwe_{S}(x_{0}, x_{1}, x_{2}, x_{3})=cwe_{C}(x_{1}, x_{2}, x_{3}, x_{0}) .
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Table 4. Orthogonality Relations for the all one
shadow for Z_{4} Codes (read (mod 4))

Case 2: R=F_{2}+uF_{2}

Let

cwe_{C}(x_{0}, x_{1}, x_{u}, x_{1+u})= \sum A_{(a,b,c,d)}x_{0}^{n_{0}(c)}x_{1}^{n_{1}(c)}x_{u}^{n_{u}(c)}x_{1+u}^{n_{1+u}(c)} .

(20)

The vector v with wt(v)=x_{0}^{n_{0}(c)}x_{1}^{n_{1}(c)}x_{u}^{n_{u}(c)}x_{1+u}^{n_{1+u}(c)} is in C_{0} if and only if
n_{1}(c)\equiv n_{u}(c)\equiv n_{1+u}(c) . Hence C_{0} can be computed. As in the previ-
ous case it is easy to compute the weight enumerator of the shadow, i.e.
cwe_{S}(x_{0}, x_{1}, x_{u}, x_{1+u})=cwe_{C}(x_{1}, x_{0}, x_{1+u}, x_{u}) .

Since [j,j]=n (mod 2) we have that \beta=n (mod 2). Notice that
[t, t]=0 implies that n_{1}(t)+n_{1+u}(t)\equiv 0 (mod 2). This implies ut has
n_{u}(ut)\equiv 0 (mod 2) and n_{1}(ut)=n_{1+u}(ut)=0 . Then we have that ut\in

C_{0} . Since ut \in C_{0} , we have [ut,j]=u[t,j]=0 and [t,j]\neq 0 so \alpha=[t,j]=u ,
giving the orthogonality relations.

The glue group is always the Klein 4 group since the sum a vector with
itself is always the 0 vector.

Theorem 5.2 Let C be a self-dual code over F_{2}+uF_{2} and let s be
the all one vector with C_{0}=\{c\in C|[c, s]=0\} then the glue group
C_{0}^{\perp}/C_{0} is isomorphic to the Klein-4 group and the orthogonality relations
are given by Table 5. The shadow S=C_{1}\cup C_{3} has weight enumerator
cwe_{S}(x_{0}, x_{1}, x_{u}, x_{1+u})=cwe_{C}(x_{1}, x_{0}, x_{1+u}, x_{u}) .

Example 1 Let C be the following self-dual code:

C=\{(0,0,0) , (0, 1, 1), (0, u, u) , (0, 1+u, 1+u) , (u, 0,0) ,
(u, 1, 1) , (u, u, u) , (u, 1+u, 1+u)\}



114 S. T. Dougherty

Table 5. Orthogonality Relations for the all one shadow
for F_{2}+uF_{2} Codes (read (mod 2))

If C_{0} is the subcode formed by those vectors with Lee weight congruent
to 0 (mod 4) then

C_{0}=\{(0,0,0), (0, u, u), (u, 1,1), (u, 1+u, 1+u)\} (21)

If C_{0} is the subcode formed by those vectors with Euclidean weight
congruent to 0 (mod 4) then

C_{0}=\{(0,0,0), (0, u, u), (u, 0,0), (u, u, u)\} (22)

If C_{0} consists of those vectors orthogonal to j then

C_{0}=\{(0,0,0), (0, 1, 1), (0, u, u), (0, 1+u, 1+u)\} (23)

Hence C_{0} and the shadows are distinct for this code. Note that each of
these subcodes is mapped linearly to a subcode of the formed binary self-
dual code. Each can be used to form a shadow in the manner given above
for that binary code. Moreover, the formed binary shadows are the images
of the shadows over F_{2}+uF_{2} .

6. Chinese Remainder Theorem

Let C be a self-dual code over Z_{k} where k= \prod_{i=1}^{r}p_{i}^{qi} where gcd(p_{i},p_{j})=

1 if i\neq j . If C is read mod p_{i}^{qi} then C is a self-dual code over Z_{p_{i}^{q_{i}}} . Moreover,
if E_{i} is a self-dual code over Z_{p_{i}^{q_{i}}} for i=1 , ., r then CRT(E_{1}, E_{2 },., ^{E_{r}})

is the unique self-dual code such that the image of C (mod p_{i}^{qi} ) =E_{i} , see
[8] for a complete description.

Let C=CRT(E_{1}, E_{2}, ., E_{r}) and let D_{i} be a subcode of E_{i} of index
g . Then C_{0}=CRT(E_{1}, E_{2}, . . , D_{i}, ., E_{r}) is a subcode of C of index g

and C_{0}^{\perp}=CRT(E_{1}, E_{2}, . ., D_{i}^{\perp}, ., E_{r}) . Then the shadow is defined by
C_{0}^{\perp}-C .
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Proposition 6.1 Let C=CRT(E_{1}, E_{2}, . ., E_{r}) be a self-dual code over
Z_{2k} , with p_{1}=2 and let D_{1} be the subcode of whose Euclidean weights are 0
(mod 2(2^{q1}) ) then C_{0} is the subcode of vectors whose Euclidean weight are
0 (mod 4k) and the shadow is the usual shadow.

Proof. In the proof of Theorem 2.3 in [8] it is shown that a vector over
Z_{2^{q_{1}}r} where r is odd is doubly-even if and only if its image (mod 2^{q1} ) is
doubly even. The result follows. \square

Proposition 6.2 Let C=CRT(E_{1}, E_{2}, . ., E_{r}) be a self-dual code over
Z_{k} and let D_{i} be the subcode orthogonal to the constant vector v , then C_{0}

is the subcode orthogonal to a constant vector.

Proof. If v is a constant vector, then C_{0}^{\perp}=\langle C, s\rangle where s (mod p_{i}^{q^{i}} ) =
v . We can take s=CRT(0, 0, ., v , ., 0 ) and then C_{0} is described by
Lemma 3.1 and Theorem 3.2. \square

Acknowledgment The author is grateful to Masaaki Harada for helpful
discussions.
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