Algebraic BP-theory and norm varieties

Nobuaki Yagita
(Received November 25, 2010; Revised November 21, 2011)

Abstract

Let p be an odd prime and $B P^{*}(p t) \cong \mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$ the coefficient ring of the Brown-Peterson cohomology theory $B P^{*}(-)$ with $\left|v_{i}\right|=-2 p^{i}+2$. We study $A B P^{*, *^{\prime}}(-)$ theory, which is the counter part in algebraic geometry of the $B P^{*}(-)$ theory. Let k be a field with $k \subset \mathbb{C}$ and $K_{*}^{M}(k)$ the Milnor K-theory. For a nonzero symbol $a \in K_{n+1}^{M}(k) / p$, a norm variety V_{a} is a smooth variety such that $\left.a\right|_{k\left(V_{a}\right)}=$ $0 \in K_{n+1}^{M}\left(k\left(V_{a}\right)\right) / p$ and $V_{a}(\mathbb{C})=v_{n}$. In particular, we compute $A B P^{*, *^{\prime}}\left(M_{a}\right)$ for the Rost motive M_{a} which is a direct summand of the motive $M\left(V_{a}\right)$ of some norm variety V_{a}.

Key words: algebraic cobordism, $B P$-theory, norm variety.

1. Introduction

A. Suslin and V. Voevodsky constructed and developed the motivic cohomology theory $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ for algebraic sets X (objects of the \mathbb{A}^{1} homotopy category) over the base field k. This theory is the counter part in algebraic geometry of the usual $\bmod p$ singular cohomology in algebraic topology. Let $c h(k)=0$ and fix an embedding $k \subset \mathbb{C}$. As the counter part of the complex cobordism theory $M U^{*}(X)$, Voevodsky defined the algebraic cobordism theory $M G L^{*, *^{\prime}}(X)$ and used it in the first proof of the Milnor conjecture [Vo1], [Vo2].

Given a nonzero symbol $a \in K_{n+1}^{M}(k) / p$, the norm variety V_{a} is a variety such that $\left.a\right|_{k\left(V_{a}\right)}=0 \in K_{n+1}^{M}\left(k\left(V_{a}\right)\right) / p$ and $V_{a}(\mathbb{C})=v_{n}$. Here v_{n} is the $2\left(p^{n}-1\right)$-dimensional complex manifold generating

$$
\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right] \cong B P^{*}(p t .) \subset M U^{*}(p t .)_{(p)}
$$

the coefficient ring of the $B P^{*}(-)$ theory in algebraic topology.
For $p=2$, we can take the norm variety by the smallest neighbor Q_{a} of the Pfister quadric defined by a. Voevodsky proved [Vo2], [Vo3] the

[^0]Milnor conjecture by studying cohomology operations on $H^{*, *^{\prime}}\left(Q_{a} ; \mathbb{Z} / 2\right)$. Moreover $M G L^{2 *, *}\left(Q_{a}\right)$ is studied by Vishik and Yagita [Vi-Ya] and applied to determine the multiplicative structure of the Chow rings of excellent quadrics [Ya3].

Recently Rost ([Ro], [Su-Jo]) announced the constructions of the norm variety V_{a} also for p odd, and Voevodsky ([Vo6]) gives the proof of the BlochKato conjecture (which is the odd prime version of the Milnor conjecture) by studying $H^{*, *^{\prime}}\left(V_{a} ; \mathbb{Z} / p\right)$.

In this paper we study the algebraic $A B P^{*, *^{\prime}}(X)$-theory, which is an algebraic version of the topological $B P^{*}(X)$-theory such that

$$
A B P^{*, *^{\prime}}(X) \cong M G L^{*, *^{\prime}}(X)_{(p)} \otimes_{M U^{*}} B P^{*}
$$

For examples, we explicitly study the cohomology operations and Gysin maps in $A B P^{*, *^{\prime}}$-theory. Moreover, we compute $A B P^{2 *, *}\left(M_{a}\right)$ for the (generalized) Rost motive M_{a}, which is a direct summand of $A B P^{2 *, *}\left(V_{a}\right)$. This computation extends the results in [Vi-Ya] to odd p cases. This result can be applied to seek the Chow rings of nontrivial torsors of exceptional groups for $p \geq 3$ [Ya5].

For the above arguments, we use the Atiyah-Hirzebruch spectral sequence (AHss) for $A B P^{*, *^{\prime}}(-)$ from [Ya2], which is reduced from the result for $M G L^{*, *^{\prime}}(-)$ by Hopkins-Morel. Hopkins and Morel announced their result more than ten years ago, but the text is still unavailable. We note here that we are using the existence and convergence of AHss for $A B P^{*, *^{\prime}}(X)$ when X are smooth varieties or Thom spaces of smooth varieties in this paper.

I am very grateful Masaki Kameko, Michishige Tezuka, Burt Totaro and Alexander Vishik for useful discussions and kind suggestions. I also thank the referees for the valuable comments and suggestions to improve the quality of the paper.

2. Cohomology operations

Let p be a fixed prime number. Let k be a field with $\operatorname{ch}(k)=0$, which contains a primitive p-th root of unity. In this paper, the $\bmod (p)$ motivic cohomology $H_{Z a r}^{m}(X ; \mathbb{Z} / p(n))$ is written by $H^{m, n}(X ; \mathbb{Z} / p)$ for an object X in the \mathbb{A}^{1}-homotopy category. We fix an embedding $k \subset \mathbb{C}$ and denote by
$t_{\mathbb{C}}$ the realization map

$$
t_{\mathbb{C}}: H^{*, *^{\prime}}(X ; \mathbb{Z}) \rightarrow H^{*}(X(\mathbb{C}) ; \mathbb{Z})
$$

where the right hand side is the usual (singular) cohomology of the complex manifold of \mathbb{C}-rational points of X when X is a smooth variety.

In the motivic $\bmod (p)$ cohomology, we have the Bockstein and the reduced power operations

$$
\begin{align*}
& P^{i}: H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \rightarrow H^{*+2(p-1) i, *^{\prime}+(p-1) i}(X ; \mathbb{Z} / p) \tag{2.1}\\
& \beta P^{i}: H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \rightarrow H^{*+2(p-1) i+1, *^{\prime}+(p-1) i}(X ; \mathbb{Z} / p) \tag{2.2}
\end{align*}
$$

which are compatible with the usual Bockstein and the reduced powers operations via the realization map $t_{\mathbb{C}}([\mathrm{Vo} 2],[\mathrm{Vo4}])$. (We identify $\beta=\beta P^{0}$ but note that βP^{i} is not assumed to have the decomposition $\beta \cdot P^{i}$.)

Let $\tau \in H^{0,1}(p t . ; \mathbb{Z} / p) \cong \mathbb{Z} / p$ and $\rho \in H^{1,1}(p t . ; \mathbb{Z} / p) \cong k^{*} /\left(k^{*}\right)^{p}$ be elements corresponding to the primitive root ζ of unity. Then $\beta(\tau)=\rho$. Reduced power operations have the following properties for all primes (Lemma 9.7, Lemma 9.8 in [Vo4]),

$$
\begin{gather*}
P^{0}=\text { Identity, } \quad P^{n}(x)=x^{p} \quad \text { if } x \in H^{2 n, n}(X ; \mathbb{Z} / p) \tag{2.3}\\
P^{i}(x)=0 \quad \text { if } x \in H^{m, n}(X ; \mathbb{Z} / p), i>m-n \text { and } i \geq n \tag{2.4}
\end{gather*}
$$

When $p>2$, the Cartan formula

$$
P^{i}(x y)=\sum_{0 \leq j \leq i} P^{j}(x) P^{i-j}(y)
$$

and the Adem relations are also satisfied as the topological cases. However when $p=2$ we need some modification for τ and $\rho\left(P^{i}=S q^{2 i}\right.$ and $\left.\beta=S q^{1}\right)$. For example

$$
\begin{equation*}
S q^{2 i}(u v)=\sum_{0 \leq i \leq i} S q^{2 j}(u) S q^{2 i-2 j}(v)+\tau \sum_{0 \leq j \leq i-1} S q^{2 j+1}(u) S q^{2 i-2 j-1}(v) \tag{2.5}
\end{equation*}
$$

Moreover we have the Milnor operation

When $p \geq 3$, we have $Q_{0}=\beta$ and $Q_{i+1}=\left[Q_{i}, P^{p^{i}}\right]$. But for $p=2$ the above property holds only with $\bmod (\rho)$ (see [Vo4] for details). We note $Q_{i}^{2}=0$ and $Q_{i} Q_{j}=-Q_{j} Q_{i}$. But Q_{i} is not a derivation when $\rho \neq 0$ and $p=2$ (while it is a derivation whenever $p \geq 3$).

For a non zero element x in $H^{m, n}(X ; \mathbb{Z} / p)$ or each cohomology operation (or differential in the spectral sequence), we define the weight and the difference by $w(x)=2 n-m$ and $d(x)=m-n$ so that if X is a smooth variety, then

$$
w(x) \geq 0, \quad d(x) \leq \operatorname{dim}(X)
$$

We also note $w(\beta)=-1, w\left(P^{i}\right)=0, w\left(Q_{i}\right)=-1$.
The solution of the Bloch-Kato conjecture by Voevodsky implies

$$
\begin{aligned}
& H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \cong H_{e t}^{*}(X ; \mathbb{Z} / p) \quad \text { for } * \leq *^{\prime} \\
& H^{*, *}(p t . ; \mathbb{Z} / p) \cong K_{*}^{M}(k) / p \cong H_{e t}^{*}(p t . ; \mathbb{Z} / p) .
\end{aligned}
$$

Since $d(x) \leq 0$ for non zero $x \in H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p)$, we have
Lemma $2.1 \quad H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p) \cong \mathbb{Z} / p[\tau] \otimes K_{*}^{M}(k) / p$.
Corollary 2.2 Let $p \geq 3$. For $x \in H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p)$, we see $Q_{i}(x)=0$ and $P^{j}(x)=0$ for all $i, j \geq 1$.

Proof. By dimensional reason, $P^{n}(x)=0$ for $x \in H^{*, *}(p t . ; \mathbb{Z} / p) \cong$ $K_{*}^{M}(k) / p$ or $x=\tau$. When $p>2$, the Cartan formula holds, hence $P^{n}(x)=0$ for all $x \in H^{*, *^{\prime}}(p t ; \mathbb{Z} / p) \cong \mathbb{Z} / p[\tau] \otimes K_{*}^{M}(k)$ and $n>0$. We see also $Q_{n}(x)=0$ for $n>0$, since Q_{n} is a derivation, and is trivial on $K_{*}^{M}(k) / p$ and on τ.

Remark However when $p=2$, in general, $P^{n}(x) \neq 0$ and $Q_{n}(x) \neq 0$ for $x \in H^{*, *^{\prime}}(p t, ; \mathbb{Z} / 2)$, for example, see [Vo4] or [Ya2].
V. Voevodsky (the main theorem in [Vo7]) showed that the $\bmod p \operatorname{mo-}$ tivic Steenrod algebra $A_{p}^{*, *^{\prime}}$ is generated as an $H^{*, *^{\prime}}(p t, \mathbb{Z} / p)$-module by products of P^{i} and βP^{j}. Moreover he also proved

$$
\begin{equation*}
A_{p}^{*, *^{\prime}} \cong H^{*, *^{\prime}}(p t ; \mathbb{Z} / p) \otimes R P \otimes \Lambda\left(Q_{0}, Q_{1}, \ldots\right) \tag{2.7}
\end{equation*}
$$

where $R P$ is the \mathbb{Z} / p-module generated by products of reduced powers $P^{i_{1}} \ldots P^{i_{n}}$ (without the Bockstein).

3. $A B P$ theories

Hereafter, in this paper, we assume that p is an odd prime number. We recall that $M U^{*}(-)$ is the complex cobordism theory defined on the category of topological spaces and ([Mi], [Ha], [Ra])

$$
M U^{*}=M U^{*}(p t .)=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \quad\left|x_{i}\right|=-2 i
$$

Here each x_{i} is represented by sum of hypersurfaces of $\operatorname{dim}\left(x_{i}\right)=2 i$ defined by polynomials with the coefficient in \mathbb{Z}, in some product of complex projective spaces.

Let $M G L^{*, *^{\prime}}(-)$ be the motivic cobordism theory defined by Voevodsky. By the Thom isomorphism, it is easily proved that ([Hu-Kr], [Ve]) $M G L$ is cellular and there is an $H^{*, *^{\prime}}(p t)$-module isomorphism
$H^{*, *^{\prime}}(M G L) \cong H^{*, *^{\prime}}(B G L) \cong H^{*, *^{\prime}}(p t)\left[c_{1}, c_{2}, \ldots\right]$ with $\operatorname{deg}\left(c_{i}\right)=(2 i, i)$.
This isomorphism induces the $A_{p}^{*,,^{\prime}}$-module isomorphism

$$
H^{*, *^{\prime}}(M G L ; \mathbb{Z} / p) \cong H^{*, *^{\prime}} \otimes R P \otimes \mathbb{Z} / p\left[m_{i} \mid i \neq p^{j}-1\right]
$$

with $H^{*, *^{\prime}}=H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p)$ and $\operatorname{deg}\left(m_{i}\right)=(2 i, i)$. (Here $A_{p}^{>0, *^{\prime}}$ acts trivially on m_{i}. The Cartan formula for P^{i} and the fact that Q_{i} is a derivation give the $A_{p}^{*, *^{\prime}}$ action on $H^{*, *^{\prime}}(M G L ; \mathbb{Z} / p)$ above.)

Let us write by $A M U$ the spectrum $M G L_{(p)}$ representing the motivic cobordism theory (localized at p), i.e., $M G L^{*, *^{\prime}}(-)_{(p)}=A M U^{*, *^{\prime}}(-)$. Since $A M U^{*, *^{\prime}}(X)$ is a multiplicative cohomology theory, we know it is an $A M U^{*, *^{\prime}}(p t$.$) -algebra. Moreover we can embeds M U^{*}$ into $A M U^{2 *, *}(p t$. ([Vo1]). Hence $A M U^{*, *^{\prime}}(X)$ is also an $M U_{(p)}^{*}$-algebra.

Given a regular sequence $S_{n}=\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in M U_{(p)}^{*}$, we can inductively construct the $A M U$-module spectrum by the cofibering of spectra ([Bo], [Hu], [Ya2])

$$
\begin{equation*}
\mathbb{T}^{-1 / 2\left|s_{i}\right|} \wedge A M U\left(S_{i-1}\right) \xrightarrow{\times s_{i}} A M U\left(S_{i-1}\right) \rightarrow A M U\left(S_{i}\right) \tag{3.1}
\end{equation*}
$$

where \mathbb{T} is the Tate object (so that $H^{*+2, *^{\prime}+1}(\mathbb{T} \wedge X) \cong H^{*, *^{\prime}}(X)$).
It is also immediate that $t_{\mathbb{C}}\left(A M U\left(S_{n}\right)\right) \cong M U\left(S_{n}\right)$ with

$$
M U\left(S_{n}\right)^{*}=M U^{*} /\left(\operatorname{Ideal}\left(S_{n}\right)\right)
$$

Recall that the Brown-Peterson theory $B P^{*}(X)$ is defined ([Ra], [Ha], [No], [Ya1]) by

$$
B P^{*}(X)=M U\left(x_{i} \mid i \neq p^{j}-1\right)^{*}(X)_{(p)}
$$

so that $B P^{*} \cong \mathbb{Z}_{(p)}\left[v_{1}, \ldots\right]$ with identifying $v_{i}=x_{p^{i}-1}$. For $S=\left(v_{i_{1}}, \ldots\right.$, $v_{i_{n}}$, let us write

$$
\begin{equation*}
A B P(S)=A M U\left(S \cup\left\{x_{i} \mid i \neq p^{j}-1\right\}\right) \tag{3.2}
\end{equation*}
$$

so that $t_{\mathbb{C}}(A B P(S))=B P(S)$ with $B P(S)^{*}=B P^{*} /(S)$. By using the long exact sequence induced from (3.1), we have

Lemma 3.1 ([Bo], Lemma 3.1 in [Ya2]) Let $S=\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$. Then

$$
\begin{aligned}
H^{*, *^{\prime}}(A B P(S) ; \mathbb{Z} / p) & \cong H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p) \otimes H^{*}(B P(S) ; \mathbb{Z} / p) \\
& \cong H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p) \otimes R P \otimes \Lambda\left(Q_{i_{1}}, \ldots, Q_{i_{n}}\right)
\end{aligned}
$$

For each $A B P(S)^{*, *^{\prime}}(X)$-theory, we can construct the AtiyahHirzebruch spectral sequence (AHss).

Theorem 3.2 (Theorem 3.5 in [Ya2]) Let $A h=A B P(S)$ for $S=$ $\left(v_{i_{1}}, v_{i_{2}}, \ldots\right)$. Then there is AHss (the Atiyah-Hirzebruch spectral sequence)

$$
E(A h)_{2}^{\left(m, n, 2 n^{\prime}\right)} \cong H^{m, n}\left(X ; h^{2 n^{\prime}}\right) \Longrightarrow A h^{m+2 n^{\prime}, n+n^{\prime}}(X)
$$

with the differential $d_{2 r+1}: E_{2 r+1}^{\left(m, n, 2 n^{\prime}\right)} \rightarrow E_{2 r+1}^{\left(m+2 r+1, n+r, 2 n^{\prime}-2 r\right)}$.
From the above theorem and dimensional reason (Corollary 3.8 in [Ya2]), we see

$$
\begin{equation*}
A B P(S)^{2 *, *}(p t) \cong B P(S)^{*}=B P^{*} /(S) \tag{3.3}
\end{equation*}
$$

The above AHss is the spectral sequence of $h^{*} \cong B P^{*} / S$-algebras. When $p \notin S$, we have for smooth X (Corollary 3.9 in [Ya2]),

$$
\begin{equation*}
A B P(S)^{2 *, *}(X) \otimes_{B P^{*}} \mathbb{Z}_{(p)} \cong H^{2 *, *}(X)_{(p)} \cong C H^{*}(X)_{(p)} \tag{3.4}
\end{equation*}
$$

We also note the following lemma (the motivic version of the main theorem in [Ya1]).
Lemma 3.3 If $\sum v_{i} y_{i}=0 \in A B P^{*, *^{\prime}}(X)$, then there is $x \in H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ such that $Q_{i}(x)=\rho\left(y_{i}\right)$ where $\rho: A B P \rightarrow A H \mathbb{Z} / p$ is the natural (Thom) map.

Proof. (This proof is a motivic version of the argument of Tamanoi [Ta].) Define the map κ by the following composition map

$$
\Pi \mathbb{T}^{p^{i}-1} A B P \xrightarrow{\vee v_{i}} \bigvee A B P \xrightarrow{\text { folding }} A B P
$$

so that $\kappa_{*}\left(b_{0}, b_{1}, \ldots\right)=\sum v_{i} b_{i}$ for $b_{i} \in A B P^{*, *^{\prime}}(X)$. Let $A L$ be the spectrum and $\Pi q_{i}, \theta$ be maps defined by the following cofiber sequence

$$
S_{s}^{-1} A L \xrightarrow{\Pi q_{i}} \Pi \mathbb{T}^{p^{i}-1} A B P \xrightarrow{\kappa} A B P \xrightarrow{\theta} A L
$$

Since $v_{n}^{*}=0\left(\right.$ from $\left.v_{n}^{*}(1)=0\right)$ on $H^{*, *^{\prime}}(A B P ; \mathbb{Z} / p)$, we see $\kappa^{*}=0$ on $H^{*, *^{\prime}}(A B P ; \mathbb{Z} / p)$. Hence we have

$$
\begin{aligned}
0 \rightarrow & H^{*-1, *^{\prime}}\left(\Pi \mathbb{T}^{p^{i}-1} A B P ; \mathbb{Z} / p\right) \\
& \xrightarrow{\Pi q_{i}^{*}} H^{*, *^{\prime}}(A L ; \mathbb{Z} / p) \rightarrow H^{*, *^{\prime}}(A B P ; \mathbb{Z} / p) \rightarrow 0
\end{aligned}
$$

Recall $H^{*, *^{\prime}}(A B P ; \mathbb{Z} / p) \cong H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p) \otimes R P$ (see Lemma 3.1). Hence the $\bmod p$ cohomology is easily computed

$$
H^{*, *^{\prime}}(A L ; \mathbb{Z} / p) \cong H^{*, *^{\prime}}(p t . ; \mathbb{Z} / p) \otimes R P \otimes\left\{1, q_{0}^{*}\left(1_{0}\right), q_{1}^{*}\left(1_{1}\right), \ldots\right\}
$$

where $1_{i} \in H^{2 p^{i}-1, p^{i}-1}\left(\mathbb{T}^{p^{i}-1} A B P ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p$ which is represented by $\rho: A B P \rightarrow H \mathbb{Z} / p$, and where $1 \in H^{0,0}(A L ; \mathbb{Z} / p)$ is $\left(\theta^{*}\right)^{-1}(1)$ for $H^{0,0}(A L ; \mathbb{Z} / p) \stackrel{\theta^{*}}{\cong} H^{0,0}(A B P ; \mathbb{Z} / p)$ since $H^{-1,0}\left(\Pi \mathbb{T}^{p^{i}-1} A B P ; \mathbb{Z} / p\right)=0$.

Here we can prove that

$$
q_{i}^{*}\left(1_{i}\right)=Q_{i}(1) \quad \text { for } 1 \in H^{0,0}(A L ; \mathbb{Z} / p)
$$

Because this holds for topological case (see [Ta] for details), and $H^{2 *+1, *}(A L ; \mathbb{Z} / p)$ is isomorphic to $R P \otimes\left\{q_{0}^{*}\left(1_{0}\right), q_{1}^{*}\left(1_{1}\right), \ldots\right\}$ which maps injectivity to (the topological) $H^{2 *+1}(A L ; \mathbb{Z} / p)$ by the realization map $t_{\mathbb{C}}$.

Let $\eta: A L \rightarrow H \mathbb{Z} / p$ be the map of spectra representing $1 \in$ $H^{0,0}(A L ; \mathbb{Z} / p)$. The above equation $q_{i}^{*}\left(1_{i}\right)=Q_{i}(1)$ means

$$
\rho q_{i}=Q_{i} \eta: A L \rightarrow S^{2 p^{i}-1, p^{i}-1} H \mathbb{Z} / p
$$

as homotopy maps.
Suppose $\sum v_{i} y_{i}=0 \in A B P^{*, *^{\prime}}(X)$. Then $\kappa\left(\Pi\left(y_{i}\right)\right)=0$. So there is $z \in A L^{*-1, *}(X)$ with $\Pi\left(q_{i}(z)\right)=\Pi\left(y_{i}\right)$. Take $x=\eta(z)$ and we get

$$
\rho\left(y_{i}\right)=\rho q_{i}(z)=Q_{i} \eta(z)=Q_{i}(x) .
$$

Corollary 3.4 Let $z \in E_{\infty}^{*, *^{\prime}, 0} \subset H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ in AHss converging to $A B P^{*, *^{\prime}}(X)$ such that $v_{n} z=0 \in E_{\infty}^{*,,^{\prime},,^{\prime \prime}}$ for some $n \geq 0$. Then there is $x \in H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ such that $\sum_{i \geq 0} v_{i} y_{i}=0$ in $A B P^{*, *}(X)$ with $\rho\left(y_{i}\right)=$ $Q_{i}(x)$ for all $i \geq n$ and $z=\rho\left(y_{n}\right)$.

Proof. Let F_{*} be the filtration of $A B P^{*+*^{\prime \prime}, *^{\prime}+1 / 2 *^{\prime \prime}}(X)$ such that $E_{\infty}^{*, *^{\prime}, *^{\prime \prime}}$ $\cong F_{*} / F_{*+1}$. Then $v_{n} z=0 \in E_{\infty}^{*, *^{\prime}, *^{\prime \prime}}$ means that $v_{n} z=0 \bmod \left(F_{*+1}\right)$ in $A B P^{*, *^{\prime}}(X)$. So there is a relation in $A B P^{*, *^{\prime}}(X)$ such that

$$
v_{n} y_{n}^{\prime}+v_{n+1} y_{n+1}^{\prime}+\cdots=0 \quad \bmod \left(p, v_{1}, v_{2}, \ldots\right)^{2}
$$

with $\rho\left(y_{n}^{\prime}\right)=z$. Taking $y_{i}=y_{i}^{\prime} \bmod \left(p, v_{1}, v_{2}, \ldots\right)\left(\right.$ so $y_{i}=0 \bmod \left(p, v_{1}, \ldots\right)$ for $i<n$), we have

$$
p y_{0}+v_{1} y_{1}+\cdots+v_{n} y_{n}+v_{n+1} y_{n+1}+\cdots=0 .
$$

Since $\rho\left(y_{i}^{\prime}\right)=\rho\left(y_{i}\right)$, from the preceding lemma, we have the corollary.

4. Cohomology operations in $A B P^{*, *^{\prime}}(-)$-theory

Recall that

$$
\begin{equation*}
H^{*, *^{\prime}}(M G L) \cong H^{*, *^{\prime}}(p t . ; \mathbb{Z}) \otimes H^{*}(M U) \tag{4.1}
\end{equation*}
$$

where additively $H^{*}(M U) \cong H^{*}(B U) \cong \mathbb{Z}\left[c_{1}, \ldots\right]$ and where c_{i} is the i-th Chern class with $\operatorname{deg}\left(c_{i}\right)=(2 i, i)$. It is known $([\mathrm{Hu}-\mathrm{Kr}],[\mathrm{Ve}],[\mathrm{Bo}])$ that

$$
M G L^{*, *^{\prime}}(M G L) \cong M G L^{* \cdot *^{\prime}}(p t) \otimes H^{*}(M U)
$$

Consider AHss for X

$$
E(X)_{2}^{*, *^{\prime}, *^{\prime \prime}}=H^{*, *^{\prime}}(X, \mathbb{Z}) \otimes M U^{*^{\prime \prime}} \Longrightarrow M G L^{*, *^{\prime}}(X)
$$

Since each element in $H^{*}(M U)$ is a permanent cycle, we have the isomorphism for all $r \geq 2$,

$$
E(M G L)_{r}^{*, *^{\prime}, *^{\prime \prime}} \cong E(p t .)_{r}^{*, *^{\prime}, *^{\prime \prime}} \otimes H^{*}(M U)
$$

The Steenrod algebra of $M G L$-theory is isomorphic to $M G L^{*, *^{\prime}}(M G L)$. Hence for each $M G L^{*, *^{\prime}}$-basis $\left\{\bar{c}_{\beta}\right\}$, we can take (not canonically) an cohomology operation \bar{s}_{β} corresponding \bar{c}_{β}. In particular, given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, with $\alpha_{i} \geq 0$, take a base c_{α} as the symmetrization of $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots$ where $\alpha_{j}=\sharp\left(i \mid \beta_{i}=j\right.$) (identifying c_{i} is the i-th elementary symmetric function of $\left.x_{1}, x_{2}, \ldots\right)$. Let us write by S_{α} the corresponding operation in $A B P^{*, *^{\prime}}(-)$ and call it the Landweber-Novikov operation ([No], [Ra], [Ha]).

By using these Landweber-Novikov operations, we can define [Ya2] (see also $[\mathrm{No}]$ for the topological case) the projector $\Phi: M G L_{(p)} \rightarrow A B P$. Hence $A B P^{*, *^{\prime}}(X)$ is a direct summand of $M G L^{*, *^{\prime}}(X)_{(p)}$.

Lemma 4.1 (Lemma 4.1 in [Ya2]) The theory $A B P^{*, *^{\prime}}(-)$ is a multiplicative theory and there exists a map $A B P \rightarrow A M G L_{(p)}$ which induces the natural $B P^{*}$-algebra isomorphism

$$
A B P^{*, *^{\prime}}(X) \cong M G L^{*, *^{\prime}}(X)_{(p)} \otimes_{M U_{(p)}^{*}} B P^{*}
$$

and the natural $M U_{(p)}^{*}$-algebra isomorphism

$$
M G L^{*, *^{\prime}}(X)_{(p)} \cong A B P^{*, *^{\prime}}(X) \otimes_{B P^{*}} M U_{(p)}^{*}
$$

(identifying $v_{i} \in B P^{*}$ with $\left.x_{p^{i}-1} \in M U_{(p)}^{*}\right)$.
Proposition 4.2 (Proposition 4.2 in [Ya2]) Let us write

$$
\tilde{R P}=\mathbb{Z}_{(p)}\left\{r_{\alpha} \mid \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \alpha_{i} \geq 0\right\}
$$

with $\operatorname{deg}\left(r_{\alpha}\right)=\left(2 \sum \alpha_{i}\left(p^{i}-1\right), \sum \alpha_{i}\left(p^{i}-1\right)\right)$. Then there are $A B P^{*, *^{\prime}}(p t)-$. module isomorphisms

$$
A B P^{*, *^{\prime}}(A B P) \cong A B P^{*, *^{\prime}}(p t .) \otimes H^{*}(B P) \cong A B P^{*, *^{\prime}}(p t) \otimes \tilde{R P}
$$

Since $A B P^{2 *, *} \cong B P^{2 *}$ from (3.3), we have the isomorphism

$$
A B P^{2 *, *}(A B P) \cong B P^{2 *}(B P)
$$

Hence for each cohomology operation in $B P^{*}(-)$ theory, there is a unique operation in $A B P^{*, *^{\prime}}(-)$-theory. The Steenrod algebra of $B P$-theory is generated as an $B P^{*}$-module by the Quillen operation r_{α} for $\alpha=\left(\alpha_{1}, \ldots\right)$ with $\left|r_{\alpha}\right|=2 \sum \alpha_{i}\left(p^{i}-1\right)$. Hence $A B P^{*, *^{\prime}}(A B P)$ is also generated by ($A B P-$)Quillen operation r_{α} as an $A B P^{*, *^{\prime}}$-module.

Remark The Landweber-Novikov operation S_{α} is also defined as the cohomology operations in $A B P^{* \cdot *^{\prime}}(-)$ theory by

$$
A B P \rightarrow M G L_{(p)} \xrightarrow{S_{\alpha}} M G L_{(p)} \rightarrow A B P .
$$

We use the same letter S_{α} for this operation in $A B P^{*, *^{\prime}}(-)$. Then for each sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ such that $\alpha_{i}=0$ if $i \neq p^{k}-1$ for each k, the Landweber-Novikov operation S_{α} generates $A B P^{*, *^{\prime}}(A B P)$ as an $A B P^{*, *^{\prime}}(p t$.)-module.

Each multiplicative operation $o(-)$ in $B P^{*}(X)$ theory is determined by an element (see [Ha], [Ra])

$$
o(y) \in\left(B P^{*}[[y]]\right)^{2} \cong B P^{2}\left(\mathbb{C} P^{\infty}\right), \quad|y|=2
$$

The total Quillen operation $r_{t}\left(\right.$ resp. $\left.S_{t}\right)$ in $B P^{*}(-)\left[t_{1}, t_{2}, \ldots\right]$ theory $\left(\left|t_{i}\right|=\right.$
$\left.2\left(p^{i}-1\right)\right)$ is defined by

$$
o(y)=r_{t}(y)=\sum^{F_{B P}} t_{n} y^{p^{n}} \quad\left(\text { resp. } S_{t}(y)=\sum t_{n} y^{p^{n}}\right)
$$

where $\sum^{F_{B P}}$ means sum of the formal group law of $B P^{*}(-)$ theory. Then the operation $r_{\alpha}(-)$ is defined from the total operation

$$
r_{t}(x)=\sum r_{\alpha}(x) t^{\alpha} \quad \text { with } t^{\alpha}=t_{1}^{\alpha_{1}} \ldots
$$

and S_{α} is defined similarly.
The motivic r_{α} in $A B P^{*, *^{\prime}}(-)$ is defined just by the inverse image of the topological r_{α} from the isomorphism $A B P^{2 *, *}(A B P) \cong B P^{2 *}(B P)$. (This does not means that $r_{t}(x)$ is multiplicative.) However, we see that the motivic r_{t} is also multiplicative, indeed, the Quillen operation r_{α} (and the Landweber-Novikov operation S_{α}) satisfies the Cartan formula also in $A B P^{*, *^{\prime}}(-)$-theory.

Lemma 4.3 In $A B P^{*, *^{\prime}}(X)$, we have the Cartan formula, i.e.,

$$
r_{\alpha}(x y)=\sum_{\alpha=\alpha^{\prime}+\alpha^{\prime \prime}} r_{\alpha^{\prime}}(x) r_{\alpha^{\prime \prime}}(y)
$$

Proof. The Cartan formula holds if

$$
\begin{equation*}
\mu^{*}\left(r_{\alpha}\right)=\sum_{\alpha=\alpha^{\prime}+\alpha^{\prime \prime}} r_{\alpha^{\prime}} \otimes r_{\alpha^{\prime \prime}} \tag{*}
\end{equation*}
$$

for the coproduct map $\mu^{*}: A B P^{*, *^{\prime}}(A B P) \rightarrow A B P^{*, *^{\prime}}(A B P \wedge A B P)$. Here note for $X=A B P, A B P \wedge A B P$ (from Proposition 4.2), we have

$$
A B P^{*, *^{\prime}}(X) \cong A B P^{*, *^{\prime}}(p t) \otimes H^{*}\left(t_{\mathbb{C}}(X)\right)_{(p)}
$$

In particular

$$
A B P^{2 *, *}(X) \cong B P^{2 *}\left(t_{\mathbb{C}}(X)\right)
$$

The Cartan formular holds in $B P^{*}(-)$ theory and the formula $(*)$ holds
in $B P^{*}$-theory and so does in $A B P^{2 *, *}(A B P \wedge A B P)$, indeed $r_{\alpha} \in$ $A B P^{2 *, *}(A B P)$.

As a $B P^{*}$-algebra, we have $A B P^{2 *, *}(A B P) \cong B P^{2 *}(B P)$. Of course $A B P^{*, *^{\prime}}(X)$ is a $A B P^{*, *^{\prime}}(A B P)$-module.

Lemma $4.4 A B P^{*, *^{\prime}}(A B P)$ is a $B P^{*}(B P)$-module.
Recall that $H_{*}(B P) \cong \mathbb{Z}_{(p)}\left[m_{1}, m_{2}, \ldots\right]$ where $m_{i}=1 /\left(p^{i}\right) \mathbb{C} P^{p^{i}-1}$ where $\mathbb{C} P^{m}$ is the m-dimensional complex projective space ([Ha], [Ra]). The Quillen operation r_{α} on m_{n} is explicitly written.

Lemma 4.5 (Quillen [Ha], [Ra])

$$
r_{\alpha}\left(m_{n}\right)= \begin{cases}m_{i} & \text { if } \alpha=p^{i} \Delta_{n-i} \text { for } \Delta_{n-i}=(0, \ldots, 0, \stackrel{n-i}{1}, 0, \ldots) \\ 0 & \text { otherwise }\end{cases}
$$

Hazewinkel showed the following expression of v_{n} by m_{i} ([Ha])

$$
v_{n}=p m_{n}-\sum_{1 \leq i \leq n-1} m_{i} v_{n-i}^{p^{i}}
$$

identifying $\pi_{*}(B P)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots\right] \subset H_{*}(B P)=\mathbb{Z}_{(p)}\left[m_{1}, \ldots\right]$.
Let us write by I_{n} the ideal in $B P^{*}$ generated by $\left(v_{0}, \ldots, v_{n-1}\right)$. (Let $v_{0}=p$.) One of important properties of r_{α} is;

Lemma 4.6 (Hazewinkel [Ha], [Ra])

$$
r_{\alpha}\left(v_{n}\right)= \begin{cases}v_{i} \bmod \left(I_{i}^{2}\right) & \text { if } \alpha=p^{i} \Delta_{n-i} \\ 0 \bmod \left(I_{n}^{2}\right) & \text { otherwise } .\end{cases}
$$

An Ideal J in $B P^{*}$ is called invariant if it is so under the Quillen (or Landweber-Novikov) operations, i.e., $r_{\alpha}(J) \subset J$ for all α.

Lemma 4.7 (prime invariant ideal theorem [La]) If for $a \in B P^{*}$, the ideal $J=\left(I_{n}, a\right)$ is invariant, then $a=\lambda v_{n}^{s} \bmod \left(I_{n}\right)$ for $\lambda \in \mathbb{Z} / p$ and $s \geq 1$. In particular, prime invariant ideals are written as I_{m} for $m \geq 1$ or I_{∞}.

One of examples of invariant ideals is following. For AHss converging $A B P^{*, *^{\prime}}(X)$, we recall the filtration of the infinite term $E_{\infty}^{s, *^{\prime}, *^{\prime \prime}} \cong$
$F_{s}(X) / F_{s+1}(X)$.
Corollary 4.8 If $x \in E_{\infty}^{*, *^{\prime}, 0}$ and $B P^{*} / J\{x\} \subset E_{\infty}^{*, *^{\prime}, *^{\prime \prime}}$ for some ideal J, then this ideal J is invariant.

Proof. Let us write $x^{\prime} \in A B P^{*, *^{\prime}}(X)$ a corresponding element to $x \in$ $E_{\infty}^{n, *^{\prime}, 0}$. Let $a \in J$ so that $a x^{\prime}=0 \bmod \left(F_{n+1}\right)$. Then

$$
0=r_{\alpha}\left(a x^{\prime}\right)=\sum_{\alpha=\alpha^{\prime}+\alpha^{\prime \prime}} r_{\alpha^{\prime}}(a) r_{\alpha^{\prime \prime}}\left(x^{\prime}\right)=r_{\alpha}(a) x^{\prime} \quad \bmod \left(F_{n+1}\right)
$$

since $r_{\alpha^{\prime \prime}}\left(x^{\prime}\right) \in F_{n+\left|r_{\alpha^{\prime \prime}}\right|} \subset F_{n+1}$ for $\alpha^{\prime \prime} \neq 0$. (Of course $A B P^{s, *^{\prime}}(X) \subset F_{s}$.) Hence $r_{\alpha}(a)$ is also in J.

5. Gysin maps

First we recall the Thom isomorphism. Let V be an m-dimensional vector bundle over X and $T h_{X}(V)$ be the induced Thom space. Then it is well known that there is the Thom isomorphism (for details, see [Vo1], [Vo 2], $[\mathrm{Pa}],[\mathrm{Ne}],[\mathrm{St}],[\mathrm{Ra}])$

$$
T h: H^{*, *^{\prime}}(X ; \mathbb{Z}) \cong \tilde{H}^{*+2 m, *^{\prime}+m}\left(T h_{X}(V) ; \mathbb{Z}\right)
$$

The element $T h(1) \in H^{2 m, m}\left(T h_{X}(V)\right)$ is called its Thom class and the above isomorphism is that of $H^{*, *^{\prime}}(X ; \mathbb{Z})$-modules. The right hand module is a free $H^{*, *^{\prime}}(X ; \mathbb{Z})$-module generated by the Thom class $T h(1)$ (by the diagonal map $\left.T h_{X}(V) \rightarrow T h_{X}(V) \wedge X\right)$.

Lemma 5.1 The Thom isomorphism also holds in $A B P^{*, *^{\prime}}(X)$ for smooth X

$$
T h: A B P^{*, *^{\prime}}(X) \cong A B P^{*+2 m, *^{\prime}+m}\left(T h_{X}(V)\right) .
$$

Proof. Consider the AHss $E\left(T h_{X}(V)\right)_{r}$ (resp. $\left.E(X)_{r}\right)$ converging to $A B P^{*, *^{\prime}}\left(T h_{X}(V)\right)\left(\right.$ resp. $\left.A B P^{*, *^{\prime}}(X)\right)$. Since $w(T h(1))=0$, we see that the Thom class $T h(1)$ is a permanent cycle in $E\left(T h_{X}(V)\right)_{r}$. Then we see inductively that $E\left(T H_{X}(V)\right)_{r}$ is the free $E(X)_{r}$-module generated by $T h(1)$. Hence we get the lemma.

For a projective map $f: Y \rightarrow X$ of smooth projective varieties such
that $c=\operatorname{codim}_{X}(Y)$ is constant, we will define the Gysin map

$$
f_{*}: A B P^{*, *^{\prime}}(Y) \rightarrow A B P^{*+2 c, *^{\prime}+c}(X) .
$$

(For more algebraic treatments of the Gysin map, see Nenashev [Ne], and for topological one see [St].)

By definition, the projective map is factored as

$$
f: Y \xrightarrow{i} \mathbb{P}^{m} \times X \xrightarrow{p} X
$$

where i is a closed embedding to the product $\mathbb{P}^{m} \times X$ and p is the projection.
For a close regular embedding $i: Y \rightarrow Z$ of $\operatorname{codim}_{Z}(Y)=c$, we define the Gysin map i_{*} by

$$
i_{*}: A B P^{*, *^{\prime}}(Y) \cong A B P^{*+2 c, *^{\prime}+c}\left(T h_{Y}\left(N_{Z / Y}\right)\right) \xrightarrow{q^{*}} A B P^{*+2 c, *^{\prime}+c}(Z)
$$

where $N_{Z / Y}$ is the normal bundle of Y in Z and $q: Z \rightarrow T h_{Y}\left(N_{Z / Y}\right)$ is the quotient map.

For $p: Z \times X \rightarrow X$, the Gysin map p_{*} is defined as follows. There is an m dimensional vector bundle V on Z with $\operatorname{dim}(Z)=d$ (Theorem 2.11 [Vo3]) such that there is a map $i: \mathbb{T}^{m+d} \rightarrow T h_{Z}(V)$ having the property that the composition of maps

$$
\begin{aligned}
& H^{2 d, d}(Z) \cong H^{2(m+d), m+d}\left(T h_{Z}(V)\right) \\
& \quad \xrightarrow{i^{*}} H^{2(m+d), m+d}\left(\mathbb{T}^{m+d}\right) \cong H^{0,0}(p t .)=\mathbb{Z}
\end{aligned}
$$

coincides with the degree map. Then we can define the Gysin map

$$
\begin{aligned}
p_{*}: & A B P^{*, *^{\prime}}(Z \times X) \cong A B P^{*+2 m, *^{\prime}+m}\left(T h_{Z}(V) \times X\right) \\
& \stackrel{i^{*}}{\longrightarrow} A B P^{*+2 m, *^{\prime}+m}\left(\mathbb{T}^{m+d} \times X\right) \cong A B P^{*-2 d, *^{\prime}-d}(X) .
\end{aligned}
$$

Of course for a projective map f, we define the Gysin map by $f_{*}=p_{*} i_{*}$. (We can see that the above is well defined by considering the embedding to $\mathbb{P}^{M} \times X$ for a sufficient large $M>0$, see Nenashev [Ne] for example.)

In particular, $A B P^{2 *, *}(X)$ is closed under f_{*} and f^{*}, that is an oriented
cohomology theory in Panin's sense [Pa]. Recall here the algebraic cobordism theory $\Omega^{*}(X)$ defined by Levine and Morel [Le-Mo1], [Le-Mo2]. This theory is the universal oriented theory of which elements are represented by $f: Y \rightarrow X$ such that $\operatorname{codim}_{X}(Y)$ is constant and f is projective. By the universality of $\Omega^{*}(X)$, we can define the natural map

$$
\rho_{B P}: \Omega^{*}(X)_{(p)} \otimes_{M U^{*}} B P^{*} \rightarrow A B P^{2 *, *}(X)
$$

by $\rho_{B P}([f: Y \rightarrow X])=f_{*}\left(1_{X}\right)$. By the recent result by Levine [Le], the natural map $\Omega^{*}(X) \rightarrow M G L^{2 *, *}(X)$ is an isomorphism. This implies that the above map $\rho_{B P}$ is also an isomorphism. Therefore, each element $x \in$ $A B P^{2 *, *}(X)$ is represented by $f_{*}\left(1_{Y}\right)=[f: Y \rightarrow X]$ such that $\operatorname{codim}_{X}(Y)$ is constant and f is projective.

Recall that $S_{t}=\sum S_{\alpha} t^{\alpha}$ (resp. $c_{t}=\sum c^{\alpha} t^{\alpha}$, this c^{α} is that defined just before Lemma 4.1) is the total Landweber-Novikov operation (resp. total Chern class). Let us write

$$
\nu_{f}=-f^{*}\left(T_{X}\right)+T_{Y} \in K(Y)
$$

for the tangent bundles T_{X} and T_{Y}. Then on $A B P^{2 *, *}(X)$, we can define the operations s_{t} by

$$
\begin{equation*}
s_{t}\left(f_{*}\left(1_{Y}\right)\right)=f_{*}\left(c_{t}\left(\nu_{f}\right)\right) \tag{1}
\end{equation*}
$$

such that $t_{\mathbb{C}} s_{t}=S_{t} t_{\mathbb{C}}\left(\right.$ see $[\mathrm{Qu}],[\mathrm{No}]$ for $M U^{*}$-case $)$.
Remark In Section 4 we defined the Landweber-Novikov operation S_{t} for all $A B P^{*, *^{\prime}}(-)$. The author does not prove yet that $S_{t} \mid A B P^{2 *, *}(X)=s_{t}$ while $t_{\mathbb{C}}\left(S_{t}\right)=t_{\mathbb{C}}\left(s_{t}\right)$.

Example Consider the inclusion $i: \mathbb{P}^{d} \rightarrow \mathbb{P}^{d+1}$. Then the total Chern class of the normal bundle ν_{i} is

$$
c_{t}\left(\nu_{i}\right)=\left(\sum t_{n} y^{p^{n}-1}\right) \quad \text { with } e\left(\nu_{i}\right)=y
$$

in fact, $c_{\Delta_{i}}(L)=e(L)^{p^{i}-1}$ for line bundles L. (Here $\Delta_{i}=(0, \ldots, 0, \stackrel{i}{1}$, $0, \ldots, 0)$ and see the explanation before Lemma 4.1 for the definition c_{α}.) On the other hand, the total Landweber-Novikov operation is

$$
S_{t}(y)=\sum t_{n} y^{p^{n}}
$$

from the definition of S_{t} (see the explanation before Lemma 4.3). Indeed, we show (1)

$$
i_{*}\left(c_{t}\left(\nu_{i}\right)\right)=i_{*}\left(\sum t_{n} y^{p^{n}-1}\right)=\sum t_{n} y^{p^{n}}=S_{t}\left(i_{*}(1)\right)
$$

since $i^{*} i_{*}(1)=e\left(\nu_{i}\right)=y$.
Lemma 5.2 ($A B P$-version of a theorem of $[\mathrm{Qu}]$, [$\mathrm{Ka}-\mathrm{Me}]$, the RiemannRoch theorem in Panin [Pa]) Let $x \in A B P^{2 *, *}(Y)$ and $f: Y \rightarrow X$ be projective. Then $s_{t}\left(f_{*}(x)\right)=f_{*}\left(c_{t}\left(\nu_{f}\right) s_{t}(x)\right)$.

Proof. Let $x=[g: Z \rightarrow Y]$. By the definition

$$
\nu_{f g}=-g^{*} f^{*} T_{X}+T_{Z}=g^{*}\left(-f^{*} T_{X}+T_{Y}\right)-g^{*} T_{Y}+T_{Z}=g^{*} \nu_{f}+\nu_{g}
$$

This implies $c_{t}\left(\nu_{f g}\right)=g^{*}\left(c_{t}\left(\nu_{f}\right)\right) c_{t}\left(\nu_{g}\right)$. Hence we have from (1)

$$
\begin{aligned}
s_{t}\left(f_{*} x\right) & =s_{t}\left(f_{*} g_{*}(1)\right)=f_{*} g_{*}\left(c_{t}\left(\nu_{f g}\right)\right)=f_{*} g_{*}\left(g^{*}\left(c_{t}\left(\nu_{f}\right) c_{t}\left(\nu_{g}\right)\right)\right. \\
& =f_{*}\left(c_{t}\left(\nu_{f}\right) g_{*}\left(c_{t}\left(\nu_{g}\right)\right)=f_{*}\left(c_{t}\left(\nu_{f}\right) s_{t}(x)\right) .\right.
\end{aligned}
$$

Let $\pi: X \rightarrow p t$. be the projection. Let us write

$$
I(X)=\pi_{*} A B P^{2 *, *}(X) \subset A B P^{2 *, *}(p t .)=B P^{2 *}
$$

From Quillen's lemma, it is immediate
Lemma 5.3 The ideal $I(X)$ is generated by elements x with $-2 \operatorname{dim}(X) \leq$ $|x| \leq 0$ as a $B P^{*}$-module. Moreover $I(X)$ is an invariant ideal of $B P^{*}$.

Proof. Since $A B P^{2 *, *}(X)$ is generated as a $B P^{*}$ module by elements y with $0 \leq|y| \leq 2 \operatorname{dim}(X)$, we have the first statement. If $a \in I(X)$, then $a=$ $\pi_{*}(x)$ for some $x \in A B P^{2 *, *}(X)$. Then $s_{t}(a)=\pi_{*}\left(c_{t}\left(\nu_{\pi}\right) s_{t}(x)\right) \in I(X)[t]$.

6. I_{n+1}-torsion spaces

Recall that $I_{n+1}=\left(p, v_{1}, \ldots, v_{n}\right)$. In this section, we consider $I_{n+1^{-}}$ torsion spaces and their applications according to V. Voevodsky. Recall that $B P\langle n\rangle^{*}(X)$ is the cohomology theory with the coefficient $B P\langle n\rangle^{*}=$ $\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ so that $B P\langle-1\rangle^{*}(X)=H^{*}(X ; \mathbb{Z} / p)$ and $B P\langle\infty\rangle^{*}(X)=$ $B P^{*}(X)$.

Lemma 6.1 (Lemma 5.2 in [Ya2]) Let $E_{r}^{*,,^{\prime}, *^{\prime \prime}}$ be the AHss for $A B P^{*, *^{\prime}}(X)$. If $x=Q_{n} \ldots Q_{1} Q_{0} x^{\prime}$ in $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$, then $x \in E_{2 p^{n}}^{*, *^{\prime}, 0}$ and x is I_{n+1}-torsion in $E_{2 p^{n}}^{*, *^{\prime},{ }^{\prime \prime}}$.

Proof. For each $k \geq 1$, there is a cofiber sequence of spectra (3.1)

$$
\mathbb{T}^{p^{k}-1} \wedge A B P\langle k\rangle \xrightarrow{v_{k}} A B P\langle k\rangle \xrightarrow{\rho_{k}} A B P\langle k-1\rangle .
$$

Consider the Baas-Sullivan exact sequence, namely, the long exact sequence induced from the above cofiber map

$$
\begin{aligned}
\rightarrow & A B P\langle k\rangle^{*+2 p^{k}-2, *^{\prime}+p^{k}-1}(X) \xrightarrow{v_{k}} A B P\langle k\rangle^{*, *^{\prime}}(X) \xrightarrow{\rho_{k}} \\
& A B P\langle k-1\rangle^{*, *^{\prime}}(X) \xrightarrow{\delta_{k}} A B P\langle k\rangle^{*+2 p^{k}-1, *^{\prime}+p^{k}-1}(X) \rightarrow \cdots
\end{aligned}
$$

The induced map

$$
\operatorname{Im}\left(A B P\langle n-1\rangle^{*, *^{\prime}}(X) \rightarrow H^{*, *^{\prime}}(X ; \mathbb{Z} / p)\right) \rightarrow H^{*, *^{\prime}}(X: \mathbb{Z} / p)
$$

defined by $\rho_{0} \ldots \rho_{k-1}(y) \mapsto \rho_{0} \ldots \rho_{k} \delta_{k}(y)$ for $y \in A B P\langle n-1\rangle^{*, *^{\prime}}(X)$ represents $Q_{k} \bmod \left(P^{I} Q_{J} \| J \mid \geq 2\right)$ from the topological case [Ya1] and (2.7). In particular, $x \mapsto \rho_{0} \ldots \rho_{n} \delta_{n} \delta_{n-1} \ldots \delta_{0}(x)$ for $x \in H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ represents exactly the operation $Q_{n} \ldots Q_{0}(x)$ (using $Q_{i}^{2}(x)=0$).

By the Baas-Sullivan exact sequence, we can see that $x^{\prime \prime}=\delta_{n} \ldots$ $\delta_{0}\left(x^{\prime}\right) \in A B P\langle n\rangle^{*, *^{\prime}}(X)$ is I_{n+1}-torsion since the map δ_{i} is a map of $A B P-$ module spectra. In particular,

$$
x=Q_{n} \ldots Q_{0}\left(x^{\prime}\right)=\rho_{0} \ldots \rho_{n}\left(x^{\prime \prime}\right)
$$

is a permanent cycle in the spectral sequence

$$
E(A B P\langle n\rangle)_{2}^{*, *^{\prime}, *^{\prime \prime}}=H^{*, *^{\prime}}\left(X ; B P\langle n\rangle^{*^{\prime \prime}}\right) \Longrightarrow A B P\langle n\rangle^{*, *^{\prime}}(X) .
$$

Compare the above spectral sequence with the $A B P$-spectral sequence

$$
E(A B P)_{2}^{*, *^{\prime}, *^{\prime \prime}} \cong H^{*, *^{\prime}}\left(X ; B P^{*^{\prime \prime}}\right) \Longrightarrow A B P^{*, *^{\prime}}(X)
$$

Since $B P^{*} \cong B P\langle n\rangle^{*}$ for $*>-2 p^{n+1}+2$, we can see that x exists in $E(A B P)_{2 p^{n}}^{*,,^{\prime}, *^{\prime \prime}}$ and x is I_{n+1}-torsion.

Let us write by $Q(n)$ the exterior algebra $\Lambda\left(Q_{0}, \ldots, Q_{n}\right)$.
Lemma 6.2 (Lemma 5.3 in [Ya2]) If $A B P\langle k\rangle^{*, *^{\prime}}(X)$ is I_{k+1}-torsion for all $k \leq n$, then $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ is a free $Q(n)$-module.

Proof. Consider the Baas and Sullivan exact sequence in the proof of the preceding lemma. Here $v_{k}=0$ in our case, so we have

$$
A B P\langle k-1\rangle^{*, *^{\prime}}(X) \cong\left\{\rho_{k}, \delta_{k}^{-1}\right\} A B P\langle k\rangle^{*, *^{\prime}}(X) .
$$

Hence by induction on n, we have the isomorphism
$H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \cong A B P\langle-1\rangle^{*, *^{\prime}}(X) \cong Q(n) \otimes\left\{\delta_{0}^{-1} \ldots \delta_{n}^{-1} A B P\langle n\rangle^{*, *^{\prime}}(X)\right\}$,
which is of course a $Q(n)$-free module.
Let the \check{C} ech complex $\check{C}(X)$ be the simplicial scheme such that $\check{C}(X)_{n}=$ X^{n+1} and the faces and degeneracy maps are given by partial projections and diagonals respectively ([Vo1], [Vo2]). One of the important properties of $\check{C}(X)$ is the following.

Lemma 6.3 ([Vo1], [Vo2], [Vo3]) Let X, Y be smooth schemes such that

$$
\operatorname{Hom}(Y, X) \neq \emptyset
$$

Then the projection $\check{C}(X) \times Y \rightarrow Y$ is an equivalence in the \mathbb{A}^{1}-homotopy category.

In the stable \mathbb{A}^{1} homotopy category, define $\tilde{C}(X)$ by the following cofiber sequence

$$
\begin{equation*}
\tilde{C}(X) \rightarrow \check{C}(X) \rightarrow \operatorname{Spec}(k) \tag{6.1}
\end{equation*}
$$

Lemma 6.4 ([Vo1], [Ya2]) Let $\pi: Y \rightarrow p t$. be the projection and $\pi_{*}([Y])=$ y in $B P^{*}$. Let $A h=A B P\left(S_{n}\right)$ for some regular sequence S_{n} in $B P^{*}$. If $\operatorname{Hom}(Y, X) \neq \emptyset$, then $A h^{*, *^{\prime}}(\tilde{C}(X))$ is y-torsion.

Proof. Let $p: \tilde{C}(X) \times Y \rightarrow \tilde{C}(X)$ be the projection, and consider the composition map

$$
p_{*} p^{*}: A h^{*, *^{\prime}}(\tilde{C}(X)) \rightarrow A h^{*, *^{\prime}}(\tilde{C}(X) \times Y) \rightarrow A h^{*+|y|,,^{\prime}+1 / 2|y|}(\tilde{C}(X))
$$

Here $p_{*} p^{*}(x)=y x$, indeed,

$$
p_{*} p^{*}(x)=p_{*}\left(1_{\tilde{C}(X) \times Y} \cdot p^{*}(x)\right)=p_{*}\left(1_{\tilde{C}(X) \times Y}\right) \cdot x=\left(y 1_{\tilde{C}(X)}\right) \cdot x .
$$

But $A h^{*}(\tilde{C}(X) \times Y) \cong 0$ since $A h^{*, *^{\prime}}(\check{C}(X) \times Y) \cong A h^{*, *^{\prime}}(Y)$ from the cofibering $\tilde{C}(X) \times Y \rightarrow \check{C}(X) \times Y \rightarrow Y$. Hence $y x=p_{*} p^{*}(x)=0$.

Recall that $I(X)=\pi_{*}\left(A B P^{2 *, *}(X)\right)$ for $\pi: X \rightarrow p t$.
Corollary 6.5 If $v_{n} \in I(X)$, then $H^{*, *^{\prime}}(\tilde{C}(X) ; \mathbb{Z} / p)$ is a free $Q(n)$ module.

Proof. If there are maps $V_{i} \rightarrow X$ such that $t_{\mathbb{C}}\left(\pi_{*}\left[V_{i}\right]\right)=v_{i}$ for all $i \leq n$, then we have the result. From Lemma 4.6, we know $r_{p^{i} \Delta_{n-i}}\left(v_{n}\right)=v_{i}$ $\bmod \left(I_{i}\right)$. Since $I(X)$ is invariant ideal, we see that $v_{i} \in I(X)$ for all $i \leq n$. This means the existence of V_{i} and above maps.

7. Chow motive

For smooth X_{1} and X_{2}, an element $\theta \in C H^{\operatorname{dim}\left(X_{2}\right)}\left(X_{1} \times X_{2}\right)$ can be viewed as a correspondence from X_{1} to X_{2}. More generally, for an element $\theta \in C H^{*}\left(X_{1} \times X_{2}\right)$, we have a homomorphism

$$
f_{\theta}: H^{*, *^{\prime}}\left(X_{1} ; \mathbb{Z} / p\right) \rightarrow H^{*, *^{\prime}}\left(X_{2} ; \mathbb{Z} / p\right) \quad \text { by } f_{\theta}(x)=p r_{2 *}\left(p r_{1}^{*}(x) \cup \theta\right)
$$

where $p r_{i}$ are projections of $X_{1} \times X_{2}$ onto X_{i}.
For $\theta \in C H^{\operatorname{dim} X}(X \times X)$, the morphism $p_{\theta}=f_{\theta}$ is called a projector if $p_{\theta} \circ p_{\theta}=p_{\theta}$. The objects of $C h o w^{e f f}(k)$ are pairs (X, p), where X are smooth varieties and $p \in C H^{\operatorname{dim}(X)}(X \times X)$ are projectors. Morphisms in Chow ${ }^{e f f}(k)$ are defined by morphisms f_{θ}. (Namely, the category

Choweff (k) of Chow motive is the pseudo abelian envelop of the category of correspondences). (See [Vi] for details.) Objects (X, p) are simply called motives M which are direct summand of $M(X)=\left(X, i d_{X}\right)$, and $H^{*, *^{\prime}}(M ; \mathbb{Z} / p)$ are defined as $\operatorname{Im}(p)$.

Lemma 7.1 Let $\theta \in C H^{*}(X \times X)$. Then f_{θ} commutes with Q_{i}. In particular, for a direct summand M of $M(X)$, its p_{θ} commutes with Q_{i}. Hence $H^{*, *^{\prime}}(M ; \mathbb{Z} / p)$ has the natural $Q(\infty)$-module structure.

Proof. For $\theta \in C H^{*}(X \times X)$, we have

$$
f_{\theta}\left(Q_{i}(x)\right)=p r_{2 *}\left(p r_{1}^{*}\left(Q_{i}(x)\right) \cdot \theta\right)=p r_{2 *}\left(Q_{i}\left(p r_{1}^{*}(x) \cdot \theta\right)\right)
$$

The last equation follows from $Q_{i}(\theta)=0$ since $w(\theta)=0$. Hence we have the desired result if $p r_{2 *} Q_{i}=Q_{i} p r_{2 *}$.

By definition of the Gysin map (recall Section 7), we know

$$
p r_{2 *}(x)=i^{*}\left(T h_{X}(1) \cdot x\right)
$$

where $T h_{X}(1) \in H^{2 m, m}\left(T h_{X}(V) ; \mathbb{Z} / p\right)$ is the Thom class for some bundle V over X and $i: \mathbb{T}^{m} \times X \subset T h_{X}(V) \times X$. Since $w\left(T h_{X}(1)\right)=0$, we see $Q_{i}\left(T h_{X}(1) \cdot x\right)=T h_{X}(1) \cdot Q_{i}(x)$. Therefore we see that $p r_{2 *}$ commutes with Q_{i}. (Indeed, Q_{i} commutes with the Gysin maps.)

Remark The reduced powers P^{i} do not act naturally on $H^{*, *^{\prime}}(M ; \mathbb{Z} / p)$, see Lemma 7.3 bellow.

Let $A^{*}(X)$ be an oriented generalized cohomology theory on the category of smooth varieties X over k, in the sense of Panin [Pa]. The theories $C H^{*}(X)$ and $A B P^{2 *, *}(X)$ are oriented generalized cohomology theories.

We can define the category of A-motive $M_{A}(k)$ as a pseudo abelian envelop of the category of A-correspondences Cor_{A} (of degree 0). Here objects in $C o r_{A}$ are classes $[X]$ of smooth varieties and its morphisms are given by

$$
\operatorname{Mor}_{\text {Cor }_{A}}([X],[Y])=A^{\operatorname{dim}(X)}(X \times Y)
$$

Theorem $7.2([\mathrm{Vi}-\mathrm{Ya}])$ Let $\rho^{A}: A^{*}(X) \rightarrow C H^{*}(X)$ be a map of oriented cohomology theories such that ρ^{A} are epic and $\operatorname{Ker}\left(\rho^{A}\right)$ are nilpotent for all X. Then ρ^{A} induces the natural 1 to 1 correspondence between the set of isomorphism classes of objects in $M_{A}(k)$ and $M_{C H}(k)$.

The theory $A B P^{2 *, *}(X)$ satisfies the assumption of the above theorem (with localized at p) from the fact that $B P^{*}$ is generated by non positive degree elements.

For an element $\theta \in A B P(S)^{2 \operatorname{dim}\left(X_{2}\right), \operatorname{dim}\left(X_{2}\right)}\left(X_{1} \times X_{2}\right)$, as the case of Chow rings, we can define the homomorphism

$$
\begin{array}{ll}
f_{\theta}: A B P(S)^{*, *^{\prime}}\left(X_{1}\right) \rightarrow A B P(S)^{*, *^{\prime}}\left(X_{2}\right) & \text { by } f_{\theta}(x)=p r_{2_{*}}\left(p r_{1}^{*}(x) \cap \theta\right), \\
\text { and } A B P(S)^{*, *^{\prime}}(M)=p_{\theta} A B P(S)^{*, *^{\prime}}(X) \quad \text { for } M=\left(X, p_{\theta}\right) .
\end{array}
$$

Lemma 7.3 ($A B P$-version of a theorem in $[\mathrm{Ka}-\mathrm{Me}]$) For $x \in A B P^{2 *, *}(X)$ and $\theta \in A B P^{2 d, d}(X \times X), d=\operatorname{dim}(X)$, we have

$$
s_{t}\left(f_{\theta}(x)\right)=f_{s_{t}(\theta)}\left(s_{t}(x) c_{t}\left(\nu_{X}\right)\right) .
$$

Proof. From Lemma 5.2, we have

$$
s_{t}\left(f_{\theta}(x)\right)=s_{t}\left(p r_{2 *}\left(p r_{1}^{*}(x) \cdot \theta\right)\right)=p r_{2 *}\left(s_{t}\left(p r_{1}^{*}(x) \theta\right) c_{t}\left(\nu_{p r_{2}}\right)\right)
$$

Here $c_{t}\left(\nu_{p r_{2}}\right)=p r_{1}^{*}\left(c_{t}\left(\nu_{X}\right)\right)$. Hence the above element is

$$
p r_{2 *}\left(s_{t}\left(p r_{1}^{*}(x)\right) s_{t}(\theta) p r_{1}^{*}\left(c_{t}\left(\nu_{X}\right)\right)=p r_{2 *}\left(p r_{1}^{*}\left(s_{t}(x) c_{t}\left(\nu_{X}\right)\right) s_{t}(\theta)\right)\right)
$$

which is $f_{s_{t}(\theta)}\left(s_{t}(x) c_{t}\left(\nu_{X}\right)\right)$.

8. Norm Variety

Recently, Voevodsky announced the proof of the Bloch-Kato conjecture for all odd primes [Vo6]. For non zero $a=\left\{a_{0}, \ldots, a_{n}\right\} \in K_{n+1}^{M}(k) / p$, Rost ([Ro]) constructed the (smooth projective) norm variety V_{a} such that

$$
\begin{equation*}
\pi_{*}\left[1_{V_{a}}\right]=V_{a}(\mathbb{C})=v_{n},\left.\quad a\right|_{k\left(V_{a}\right)}=0 \in K_{n+1}^{M}\left(k\left(V_{a}\right)\right) / p \tag{1}
\end{equation*}
$$

(2) the following sequence is exact

$$
H_{-1,-1}\left(V_{a} \times V_{a}, \mathbb{Z}\right) \xrightarrow{p r_{1}-p r_{2}} H_{-1,-1}\left(V_{a} ; \mathbb{Z}\right) \rightarrow k^{*}
$$

Let us write $\chi_{a}=\check{C}\left(V_{a}\right)$ and $\tilde{\chi}_{a}=\tilde{C}\left(V_{a}\right)$. By the solution of Bloch-Kato conjecture, we see the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{*+1, *}\left(\chi_{a} ; \mathbb{Z} / p\right) \xrightarrow{\times \tau} K_{*+1}^{M}(k) / p \rightarrow K_{*+1}^{M}\left(k\left(V_{a}\right)\right) / p \tag{8.1}
\end{equation*}
$$

identifying $H^{*+1, *+1}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong K_{*+1}^{M}(k) / p$. (For $p=2$ case, see the proof of Proposition 2.3 in [Or-Vi-Vo].) Since $\left.a\right|_{k\left(V_{a}\right)}=0 \in K_{n+1}^{M}\left(k\left(V_{a}\right)\right) / p$, there is a unique element $a^{\prime} \in H^{n+1, n}\left(\chi_{a} ; \mathbb{Z} / p\right)$ such that $\tau a^{\prime}=a$.

Let M_{a} be the object in $D M_{-}^{\text {eff }}$ defined by the following distinguished triangle

$$
\begin{align*}
& M\left(\chi_{a}\right)\left(b_{n}\right)\left[2 b_{n}\right] \rightarrow M_{a} \rightarrow M\left(\chi_{a}\right) \\
& \quad \xrightarrow{\delta_{a}=Q_{0} \ldots Q_{n-1}\left(a^{\prime}\right)} M\left(\chi_{a}\right)\left(b_{n}\right)\left[2 b_{n}+1\right] \tag{8.2}
\end{align*}
$$

where $b_{n}=\left(p^{n}-1\right) /(p-1)=p^{n-1}+\cdots+p+1$ so that $\operatorname{deg}\left(\delta_{a}\right)=\left(2 b_{n}+1, b_{n}\right)$. For $i<p$, define the symmetric powers

$$
M_{a}^{i}=S^{i}\left(M_{a}\right)=q_{i}\left(M_{a}^{\otimes i}\right) \subset M_{a}^{\otimes i}
$$

where $q_{i}=(1 / i!) \sum_{\sigma \in S_{i}} \sigma$ and $\sigma: M_{a}^{\otimes i} \rightarrow M_{a}^{\otimes i}$ is the motivic endomorphism given by the permutation. One of the important results in [Vo6] Voevodsky proved is that M_{a}^{p-1} is a direct summand of a motive of V_{a} (for details see [Vo6]). Moreover, there are distinguished triangles (for details, see (5.5), (5.6) in [Vo6])

$$
\begin{align*}
M_{a}^{i-1}\left(b_{n}\right)\left[2 b_{n}\right] & \rightarrow M_{a}^{i} \tag{8.3}\\
M\left(\chi_{a}\right)\left(b_{n} i\right)\left[2 b_{n} i\right] & \left.\rightarrow M_{a}^{i} \rightarrow \chi_{a}^{i-1}\right) \xrightarrow{s_{i}} M_{a}^{i-1}\left(b_{n}\right)\left[2 b_{n}+1\right] \tag{8.4}\\
r_{i} & \left.\chi_{a}\right)\left(b_{n} i\right)\left[2 b_{n} i+1\right] .
\end{align*}
$$

Then we have the diagram

$$
\begin{gathered}
H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \\
H^{\sharp, \sharp^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \stackrel{s_{p-1}^{*}}{\leftarrow} H^{\natural, q^{\prime}}\left(M_{a}^{p-2} ; \mathbb{Z} / p\right) \longleftarrow H^{\sharp-1, \sharp^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right) \\
\downarrow \\
H^{\natural, q^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& \left(\sharp, \sharp^{\prime}\right)=\left(*+2\left(p^{n}+b_{n}\right), *^{\prime}+p^{n}+b_{n}-1\right)=\left(*+2 b_{n+1}, *^{\prime}+b_{n+1}-1\right), \\
& \left(\left\llcorner, \mathfrak{\natural}^{\prime}\right)=\left(*+2 p^{n}-1, *^{\prime}+p^{n}-1\right),\right.
\end{aligned}
$$

and the vertical and horizontal arrows are exact. From the result of Voevodsky, we know (Appendix in [Su-Jo])

Lemma 8.1 ([Vo6]) For $x \in H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right)$, we have

$$
s_{p-1}^{*} r_{p-1}^{*}(x)=\lambda Q_{0} Q_{1} \ldots Q_{n}\left(a^{\prime}\right) \cup x \quad \lambda \neq 0 \in \mathbb{Z} / p .
$$

Corollary 8.2 The following map

$$
Q_{0} \ldots Q_{n}\left(a^{\prime}\right) \cup-: H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \rightarrow H^{\sharp, \mathbb{H}^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right)
$$

is surjective (resp. isomorphic) if the difference $*-*^{\prime} \geq 0\left(\right.$ resp. $\left.*-*^{\prime}>0\right)$ i.e., $\sharp-\sharp^{\prime} \geq b_{n+1}-1$ (resp. $\sharp-\sharp^{\prime}>b_{n+1}-1$).

Proof. Let the difference $*-*^{\prime} \geq 0$. Note that M_{a}^{p-1} is a direct summand of the motive of V_{a}. Hence we see

$$
H^{\sharp, \sharp^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)=0, \quad H^{\natural, \natural^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)=0
$$

since their difference is larger than $p^{n}-1=\operatorname{dim}\left(V_{a}\right)$. Hence we know the surjectivity of $s_{p-1}^{*} r_{p-1}^{*}$. When the difference $*-*^{\prime}>0$, we get moreover

$$
H^{\sharp-1, \sharp^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)=0, \quad H^{\natural-1, \mathfrak{q}^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)=0,
$$

by the same reasons. Thus we see the injectivity.
Denote by $k\left(V_{a}\right)$ the function field of V_{a} and by $\left(V_{a}\right)_{0}$ the set of closed points of V_{a}. One of the main theorems of the paper ([Or-Vi-Vo]) by Orlov, Vishik and Voevodsky is the $p=2$ case of the following theorem.

Theorem 8.3 For any $a=\left\{a_{0}, \ldots, a_{n}\right\} \in K_{*}^{M}(k) / p$, the following sequence is exact

$$
\begin{aligned}
& \amalg_{x \in\left(V_{a}\right)_{0}} K_{*}^{M}(k(x)) / p \xrightarrow{T r_{k(x) / k}} K_{*}^{M}(k) / p \\
& \quad \xrightarrow{a} K_{*+n+1}^{M}(k) / p \rightarrow K_{*+n+1}^{M}\left(k\left(V_{a}\right)\right) / p .
\end{aligned}
$$

Outline of proof (See for the case $*=1$, A. 1 in [Su-Jo]). The exactness of the last part in the above sequence follows from (8.1). The first part is also just an odd prime p version of the arguments of the proof by Orlov, Vishik and Voevodsky. From arguments by Voevodsky ([Vo6], the main theorem in Appendix in [Su-Jo]), we see the exact sequence

$$
\begin{align*}
& \amalg_{x \in\left(V_{a}\right)_{0}} K_{*}^{M}(k(x)) / p \xrightarrow{T r_{k(x) / k}} K_{*}^{M}(k) / p \\
& \xrightarrow{\delta_{a}} H^{*+2 b_{n}+1, *+b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) . \tag{8.5}
\end{align*}
$$

The last map δ_{a} is epic by the following reason. Consider the composition

$$
K_{*}^{M}(k) / p \xrightarrow{\delta_{a}} H^{*+2 b_{n}+1, *+b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \xrightarrow{Q_{n}} H^{2 p b_{n}+2, p b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) .
$$

Since $Q_{n} \delta_{a}=Q_{n} \ldots Q_{0}\left(a^{\prime}\right)$, we see that $Q_{n} \delta_{a}$ is epic from the preceding lemma. Since $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ is $\Lambda\left(Q_{n}\right)$-free (from Corollary 6.5), we see that Q_{n} above is monic. (Note that $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right) \cong H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right)$ when $*>*^{\prime}$.) Thus we show that the map δ_{a} in the above sequence is epic.

We also know that the map

$$
\begin{align*}
& K_{*}^{M}(k) / p \xrightarrow{\delta_{a}} H^{*+2 b_{n}+1, *+b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \\
& \quad \xrightarrow{\left(Q_{n-1} \ldots Q_{0}\right)^{-1}} H^{*+n+1, *+n}\left(\chi_{a} ; \mathbb{Z} / p\right) \xrightarrow{\times \tau} K_{*+n+1}^{M}(k) / p \tag{8.6}
\end{align*}
$$

is the multiplication with a because V_{a} is a splitting variety of a and the maps are those of $K_{*}^{M}(k) / p$-modules. Here we also use (8.1) and the fact that $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ is $Q(n)$-free from Corollary 6.5 , in fact the above map $Q_{n-1} \ldots Q_{0}$ is an isomorphism. Thus we get the exact sequence.

Corollary 8.4 (For $p=2$, this is Theorem 2.10 in [Or-Vi-Vo]) For each $0 \neq h \in K_{n}^{M}(k) / p$, there is a field E / k and a nonzero pure symbol $a \in$ $K_{n}^{M}(k) / p$ such that $0 \neq\left. h\right|_{E}=\left.a\right|_{E}$ in $K_{n}^{M}(E)$.

Proof. Let $h=b_{1}+\cdots+b_{l}$ and each b_{i} a pure symbol for $1 \leq i \leq l$. Let $V_{b_{i}}$ be the norm varieties and $E_{i}=k\left(V_{b_{1}} \times \cdots \times V_{b_{i}}\right)$. Then of course $\left.h\right|_{E_{l}}=0$. Take i such that $\left.h\right|_{E_{i-1}} \neq 0$ but $\left.h\right|_{E_{i}}=0$. Then from the above theorem,

$$
\left.\operatorname{Ker}\left(K_{n}^{M}\left(E_{i-1}\right) / p \rightarrow K_{n}^{M}\left(E_{i}\right) / p\right)\right)=b_{i} K_{0}^{M}\left(E_{i-1}\right) / p
$$

Hence $h\left|E_{i-1}=\lambda b_{i}\right| E_{i-1}$ for $\lambda \neq 0 \in \mathbb{Z} / p$. Then $a=b_{i}$ and $E=E_{i-1}$ satisfy the desired result.

Let us write by K_{a} the quotient algebra of $K_{*}^{M}(k) / p$ by the annihilator ideal of a (which is the ideal generated by x with $\left.a x=0 \in K_{*}^{M}(k) / p\right)$, so that

$$
K_{*}^{M}(k) / p \supset K_{*}^{M}(k)(a) \cong K_{a}\{a\}
$$

Namely, $K_{*}^{M}(k) / p$-module generated by a in $K_{*}^{M}(k) / p$ is isomorphic to the free K_{a}-module generated by a.

Theorem 8.5 (For $p=2$, this is Theorem 5.8 in [Ya2]) Let $0 \neq a=$ $\left(a_{0}, \ldots, a_{n}\right) \in K_{n+1}^{M}(k) / p$. Then there is a $K_{*}^{M}(k) \otimes Q(n)$-module isomorphism

$$
H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right) \cong K_{a} \otimes Q(n) \otimes \mathbb{Z} / p\left[\xi_{a}\right]\left\{a^{\prime}\right\}
$$

where $\xi_{a}=Q_{n} Q_{n-1} \ldots Q_{0}\left(a^{\prime}\right)$ and $\operatorname{deg}\left(a^{\prime}\right)=(n+1, n)$.
Proof. Recall the difference $d(x)=*-*^{\prime}$ for $x \in H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$. Hence if $0 \neq x \in H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$, then $d(x)>0$. From (8.6) we already know that

$$
K_{*}^{M}(k) / p \xrightarrow{\delta_{a}} H^{*+2 b_{n}+1, *+b_{n}+1}\left(\chi_{a} ; \mathbb{Z} / p\right) \xrightarrow{\left(Q_{n-1} \ldots Q_{0}\right)^{-1}} H^{*+n+1, *+n}\left(\chi_{a} ; \mathbb{Z} / p\right)
$$

is an epimorphism, indeed, the map δ_{a} is epic from Corollary 8.2 and the map $Q_{n-1} \ldots Q_{0}$ is isomorphic since $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / 2\right)$ is $Q(n)$-free. The composition of the above map with

$$
\tau: H^{*+n+1, *+n}\left(\chi_{a} ; \mathbb{Z} / p\right) \rightarrow K_{*+n+1}^{M}(k) / 2
$$

is multiplying by a from (8.6). Since the last map τ is monic from (8.1), we see that

$$
\begin{aligned}
& H^{*+n+1, *+n}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right) \\
& \quad \cong \tau H^{*+n+1, *+n}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right) \cong \tau\left(Q_{0} \ldots Q_{n-1}\right)^{-1} \delta_{a} K_{*}^{M}(k) / p \\
& \quad \cong K_{*}^{M}(k) / p(a) \cong K_{a}\{a\} \subset K_{*+n+1}^{M}(k) / p
\end{aligned}
$$

Thus we get the case $d(x)=1$.
Since $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ is $Q(n)$-free (from Corollary 6.5), its contains

$$
Q(n)\left(K_{a}\left\{a^{\prime}\right\}\right) \cong K_{a} \otimes Q(n)\left\{a^{\prime}\right\}, \quad \text { with } \tau a^{\prime}=a
$$

Moreover the multiplying by ξ_{a} is isomorphic (from Lemma 8.1 and Corollary 8.2) in $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$, and we have the injection

$$
K_{a} \otimes Q(n) \otimes \mathbb{Z} / p\left[\xi_{a}\right]\left\{a^{\prime}\right\} \subset H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)
$$

We will prove that the above injection is an epimorphism also. Since the multiplying by ξ_{a} is isomorphic and $d\left(\xi_{a}\right)=b_{n+1}$, it is sufficient to prove that there are no additional $K_{*}^{M}(k) \otimes Q(n)\left[\xi_{a}\right]$-module generators x for $d(x) \leq b_{n+1}+1$. Suppose that t is such a generator with $1<d(t) \leq b_{n+1}+1$. Then we see

$$
d\left(Q_{0} \ldots Q_{n} t\right)=p^{n}+p^{n-1}+\cdots+1+d(t)>b_{n+1}+1
$$

From Corollary 8.2, there is an element $y \in H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ such that

$$
Q_{0} \ldots Q_{n}(t)=s_{p-1}^{*} r_{p-1}^{*}(y)=\xi_{a} \cup y
$$

Since Q_{i} is a derivation, we have

$$
\begin{aligned}
\xi_{a} \cup Q_{i}(y) & =Q_{0} \ldots Q_{n}\left(a^{\prime}\right) \cup Q_{i}(y) \\
& =Q_{i}\left(Q_{0} \ldots Q_{n}\left(a^{\prime}\right) \cup y\right)=Q_{i}\left(Q_{0} \ldots Q_{n}(t)\right)=0
\end{aligned}
$$

for $i \leq n$. Since the map multiplying by ξ_{a} is injective (indeed, isomorphic) for $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ from Corollary 8.2 , we see

$$
Q_{i}(y)=0 \quad \text { for all } 0 \leq i \leq n .
$$

Then the fact that $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)$ is $Q(n)$-free implies that

$$
y=Q_{n} Q_{n-1} \ldots Q_{0}\left(y^{\prime}\right) \quad \text { for some } y^{\prime} \in H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right)
$$

Of course $d\left(y^{\prime}\right)=d(t)-d\left(\xi_{a}\right) \leq 0$. This is a contradiction.

Remark The poof of this theorem was first given in the preprint [Ya4] in 2006, while Merkerjev and Suslin [Me-Su] also gave its proof in the recent paper [$\mathrm{Me}-\mathrm{Su}$].

Lemma 8.6 If $*<4 b_{n}$, then $H^{*, *^{\prime}}\left(M_{a} ; \mathbb{Z} / p\right) \cong H^{*, *^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right)$. Moreover if $*<2 b_{n}$, then $H^{*, *^{\prime}}\left(M_{a} ; \mathbb{Z} / p\right) \cong H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right)$.

Proof. Since $H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong 0$ for $*<0$, we get this lemma from (8.2), (8.4). For example, (8.4) induces the long exact sequence

$$
\leftarrow H^{*-2 b_{n} i, *^{\prime}-b_{n} i}\left(\chi_{a} ; \mathbb{Z} / p\right) \leftarrow H^{*, *^{\prime}}\left(M_{a}^{i} ; \mathbb{Z} / p\right) \leftarrow H^{*, *^{\prime}}\left(M_{a}^{i-1} ; \mathbb{Z} / p\right) \leftarrow \cdots,
$$

which induces the isomorphism $H^{*, *^{\prime}}\left(M_{a}^{i} ; \mathbb{Z} / p\right) \cong H^{*, *^{\prime}}\left(M_{a}^{i-1} ; \mathbb{Z} / p\right)$ for the first degree $*<2 b_{n} i$.

Let us consider the following triangular domain generated by bidegree

$$
D_{i}=\left\{\operatorname{deg}(x) \mid w(x) \geq 0, \text { first. } \operatorname{deg}(x)<2 b_{n} i, d(x) \geq b_{n}(i-1)\right\}
$$

and $D=\bigcup_{j=1}^{p-1} D_{j}$. Note that all bidegree $\operatorname{deg}(x)$ of $w(x) \leq 1$ (indeed, $w(\tau)=2$), are contained in D.
Lemma 8.7 Let us write $K=K_{*}^{M}(k) / p$ and ${ }_{a} K=\{x \in K ; a x=0\}$ the annihilator ideal by a so that $K_{a} \cong K / a K$. For bidegree $\left(*, *^{\prime}\right) \in D$ defined above, we have the K-module (but not ring) isomorphism,

$$
H^{*, *^{\prime}}\left(M_{a}^{p-1} ; \mathbb{Z} / p\right) \cong\left(K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus_{a} K\{t\}\right)[t] /\left(t^{p-1}\right) \oplus K\{1\}
$$

where $\operatorname{deg}(t)=\left(2 b_{n}, b_{n}\right)$.
Proof. Consider the exact sequence induced from (8.3)

$$
\begin{aligned}
& \leftarrow H^{*, *^{\prime}}\left(M_{a}^{i-1}\left(b_{n}\right)\left[2 b_{n}\right] ; \mathbb{Z} / p\right) \\
& \quad \stackrel{j_{1}}{\longleftarrow} H^{*, *^{\prime}}\left(M_{a}^{i} ; \mathbb{Z} / p\right) \stackrel{j_{2}}{\longleftarrow} H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \stackrel{s_{i}}{\longleftarrow} \cdots
\end{aligned}
$$

Note $\left|Q_{n} a^{\prime}\right|=2 p^{n}+n$ and recall that $H^{*, *^{\prime}}\left(\tilde{\chi}_{a} ; \mathbb{Z} / p\right) \cong H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right)$ for $*>*^{\prime}$. Hence for $*<2 p^{n}+n$ we have the isomorphism

$$
H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus K\{1\}
$$

In particular, it is isomorphic to $K_{a}\left\{c_{0}=Q_{1} \ldots Q_{n-1}\left(a^{\prime}\right)\right\}$ when $\left(*, *^{\prime}\right) \in$ $\bigcup_{j=2}^{i} D_{j}$. Hence j_{2} is zero and j_{1} is surjective in $\bigcup_{j=2}^{i} D_{j}$.

By induction we assume for $\left(*, *^{\prime}\right) \in \bigcup_{j=1}^{i-1} D_{j}$

$$
H^{*, *^{\prime}}\left(M_{a}^{i-1} ; \mathbb{Z} / p\right) \cong\left(K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus_{a} K\{t\}\right)[t] /\left(t^{i-1}\right) \oplus K\{1\} .
$$

Then for $\left(*, *^{\prime}\right) \in \bigcup_{j=2}^{i} D_{j}$, we see

$$
\begin{aligned}
& H^{*, *^{\prime}}\left(M_{a}^{i-1}\left(b_{n}\right)\left[2 b_{n}\right] ; \mathbb{Z} / p\right) \\
& \quad \cong\left(\left(K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus_{a} K\{t\}\right)[t] /\left(t^{i-1}\right) \oplus K\{1\}\right) \otimes\{t\} .
\end{aligned}
$$

In particular, both sides of the above are zero if $\left(*, *^{\prime}\right) \in D_{1}$. Hence j_{2} is injective when $\left(*, *^{\prime}\right) \in D$.

We consider the exact sequence (8.3) again

$$
\begin{aligned}
& \stackrel{j_{2}}{\longleftarrow} H^{*+1, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \\
& \quad s_{i} H^{*+2 b_{n}, *^{\prime}+b_{n}}\left(M_{a}^{i-1}\left(b_{n}\right)\left[2 b_{n}\right] ; \mathbb{Z} / p\right) \stackrel{j_{1}}{\longleftarrow} H^{*, *^{\prime}}\left(M_{a}^{i} ; \mathbb{Z} / p\right)
\end{aligned}
$$

Here $s_{i}(t)=\delta_{a}$ from (8.2). Hence we can see

$$
\operatorname{Ker}\left(s_{i}\right) \cong\left(\left(K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus_{a} K\{t\}\right)[t] /\left(t^{i-1}\right) \oplus_{a} K\{1\}\right) \otimes\{t\}
$$

(The map j_{1} is not injective, but the degree $\operatorname{Im}\left(s_{i}\right)=K_{a}\{\delta\}$ does not contained in D, and hence j_{1} is injective when we restricted degree in D.) Thus we can prove the lemma.

Remark The isomorphism in the above theorem is that of $K \otimes Q(n)$ modules. This fact is proved in Lemma 9.5 in the next section.
Corollary 8.8 Let $c_{i}=Q_{0} \ldots \hat{Q}_{i} \ldots Q_{n-1}\left(a^{\prime}\right)\left(\right.$ hence $\left|c_{i}\right|=2\left(b_{n}-p^{i}+1\right)$). Then there is an additive (not ring) isomorphism

$$
\begin{aligned}
C H^{*}\left(M_{a}^{p-1}\right) / p & \cong \mathbb{Z} / p\{1\} \oplus \mathbb{Z} / p[t] /\left(t^{p-1}\right)\left\{c_{0}, \ldots, c_{n-1}\right\} \\
C H^{*}\left(M_{a}^{p-1}\right)_{(p)} & \cong \mathbb{Z}_{(p)} \oplus\left(\mathbb{Z}_{(p)}\left\{c_{0}\right\} \oplus \mathbb{Z} / p\left\{c_{1}, \ldots, c_{n-1}\right\}\right)[t] /\left(t^{p-1}\right)
\end{aligned}
$$

Note for $i \geq 1, c_{i} \in \operatorname{Im}\left(Q_{0}\right)$ and it is just a p-torsion in the integral

Chow ring.

9. Rost's basic correspondence

We recall the arguments of Rost in [Ro]. Let $q: V_{a} \rightarrow \chi_{a}$ be the natural map and $K^{*, *^{\prime}}$ be the kernel of the induced map $q^{*}: H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \rightarrow$ $H^{*, *^{\prime}}\left(V_{a} ; \mathbb{Z} / p\right)$. Then the natural filtration on the simplicial scheme χ_{a} gives the map

$$
\operatorname{proj}: K^{*, *^{\prime}} \rightarrow H^{1}\left(V_{a} ; H^{*-1, *^{\prime}} / p\right)
$$

where $H^{1}(X ; F)$ is an abbreviation for the homology of complex

$$
F(X) \xrightarrow{p_{1}^{*}-p_{2}^{*}} F(X \times X) \xrightarrow{p_{1}^{*}-p_{2}^{*}+p_{3}^{*}} F(X \times X \times X) \rightarrow \cdots
$$

Since $H^{2 *+1, *}(Y ; \mathbb{Z} / p)=0$ and $H^{2 *, *}(Y ; \mathbb{Z} / p)=C H^{*}(Y) / p$ for any smooth variety Y, we see $K^{2 b_{n}+1, b_{n}} \cong H^{2 b_{n}+1, b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right)$ and

$$
H^{1}\left(V_{a} ; H^{2 b_{n}, b_{n}} / p\right) \cong C H^{b_{n}}\left(V_{a} \times V_{a}\right) /\left(p, p_{1}^{*}-p_{2}^{*}\right)
$$

Hence the map proj is written as

$$
\text { proj : } H^{2 b_{n}+1, b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \rightarrow C H^{b_{n}}\left(V_{a} \times V_{a}\right) /\left(p, p_{1}^{*}-p_{2}^{*}\right)
$$

Define

$$
\rho=\operatorname{proj}\left(Q_{n-1} \ldots Q_{0}\left(a^{\prime}\right)\right) \in C H^{b_{n}}\left(V_{a} \times V_{a}\right) \quad \bmod \left(p, p_{1}^{*}-p_{2}^{*}\right),
$$

and also define $c\left(V_{a}\right)=p_{1 *}\left(\rho^{p-1}\right) \in C H^{d}\left(V_{a}\right) / p \cong \mathbb{Z} / p$. In [Ro] Rost constructs a norm variety such that $c\left(V_{a}\right) \neq 0 \in \mathbb{Z} / p$. Moreover he shows that we can take a projector $\theta \in C H^{d}\left(V_{a} \times V_{a}\right)$ such that

$$
\theta=1 / c\left(V_{a}\right)\left(\rho^{p-1}\right) \in C H^{d}\left(V_{a} \times V_{a}\right) / p
$$

Thus we can define the motive $M_{a}^{R}=f_{\theta}\left(M\left(V_{a}\right)\right)$. We will see that M_{a}^{R} is isomorphic to M_{a}^{p-1} as motives in Corollary 9.3 below.

Hereafter this paper, the variety V_{a} always means a norm variety which has this property

$$
c\left(V_{a}\right) \neq 0 \in \mathbb{Z} / p
$$

and has the projector f_{θ}.
Let \bar{k} be the algebraic closure of k and $\left.X\right|_{\bar{k}}=X \otimes_{k} \bar{k}$. Let $i_{\bar{k}}$: $H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \rightarrow H^{*, *^{\prime}}\left(\left.X\right|_{\bar{k}} ; \mathbb{Z} / p\right)$ be the induced map. From the exact sequence induced from (8.3) or (8.4), we have the isomorphism of modules (for the Voevodsky motive M_{a}^{p-1})

$$
H^{*, *^{\prime}}\left(\left.M_{a}^{p-1}\right|_{\bar{k}} ; \mathbb{Z}_{(p)}\right) \cong \mathbb{Z}_{(p)}[t] /\left(\bar{t}^{p}\right)
$$

for $\operatorname{deg}(\bar{t})=\left(2 b_{n}, b_{n}\right)$.
Recall that the Rost motive M_{a}^{R} is defined by $M_{a}^{R}=f_{\rho^{p-1}}\left(M\left(V_{a}\right)\right)$. We will study $\left.\rho\right|_{\bar{k}}$. Let $j: V_{a} \times\left.\operatorname{Spec}(\bar{k}) \subset\left(V_{a} \times V_{a}\right)\right|_{\bar{k}}$ and let $\bar{t}=j^{*}\left(\left.\rho\right|_{\bar{k}}\right)$. Then (Lemma 5.2 in [Ro])

$$
\left.\rho\right|_{\bar{k}}=\bar{t} \otimes 1-1 \otimes \bar{t} \in C H^{b_{n}}\left(\left.V_{a}\right|_{\bar{k}} \times V_{a} \mid \bar{k}\right) / p
$$

from the cocycle condition $p_{1}^{*}-p_{2}^{*}+p_{3}^{*}=0$. Thus we get

$$
\begin{equation*}
(\rho \mid \overline{\bar{k}})^{p-1}=\sum \bar{t}^{p-1-i} \otimes \bar{t}^{i} \in C H^{d}\left(\left.V_{a}\right|_{\bar{k}} \times\left. V_{a}\right|_{\bar{k}}\right) / p . \tag{*}
\end{equation*}
$$

The fact $0 \neq c\left(V_{a}\right)=p_{1 *}\left(\left(\rho \mid \bar{k}^{p-1}\right)\right.$ implies that $\bar{t}^{p-1} \neq 0 \in C H^{d}\left(V_{a} \mid \bar{k}\right) / p$. Moreover the fact that $p_{2 *}\left(\overline{t^{i}} \otimes \bar{t}^{i}\right)=\delta_{p-1, j} \bar{t}^{i}$ implies that $f_{\theta}\left(\bar{t}^{i}\right)=\bar{t}^{i}$ for all $0 \leq i \leq p-1$. By the definition of the map f_{θ} and (*), we see

$$
f_{\theta}\left(\left.V_{a}\right|_{\bar{k}}\right)=\mathbb{Z}_{(p)}\left\{1, \bar{t}, \ldots, \bar{t}^{p-1}\right\},
$$

that is, $C H^{*}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)_{(p)} \cong \mathbb{Z}_{(p)}[t] /\left(\bar{t}^{p}\right)$. Thus we have the ring epimorphism

$$
C H^{*}\left(\left.V_{a}\right|_{\bar{k}}\right)_{(p)} \rightarrow C H^{*}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)_{(p)} \cong \mathbb{Z}_{(p)}[t] /\left(\bar{t}^{p}\right) .
$$

Note also $C H^{*}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right) \cong C H^{*}\left(M_{a}^{p-1} \mid \bar{k}\right)$.
Lemma 9.1 We have for $0 \leq s \leq p-2$,

$$
i_{\bar{k}}\left(c_{0} \otimes t_{s}\right)=\lambda_{s} p \bar{t}^{s+1} \in C H^{*}\left(\left.V_{a}\right|_{\bar{k}}\right)_{(p)} \quad \lambda_{s} \neq 0 \bmod (p) .
$$

Proof. First we prove $i_{\bar{k}}\left(c_{0} \otimes t^{p-2}\right)=p \bar{t}^{p-1}$. Here $c_{0} \otimes t^{p-2}\left(\right.$ resp. $\left.\bar{t}^{p-1}\right)$
generates $\mathbb{Z}_{(p)} \subset C H^{d}\left(V_{a}\right)\left(\right.$ resp. $\left.C H^{d}\left(\left.V_{a}\right|_{\bar{k}}\right) \cong \mathbb{Z}_{(p)}\right)$ where $d=\operatorname{dim}\left(V_{a}\right)=$ $p^{n}-1$.

Let us write $\operatorname{deg}(X)=\pi_{*}\left(C H^{\operatorname{dim}(X)}(X)\right)$ for $\pi: X \rightarrow p t$. Since V_{a} has no k-rational points,

$$
\operatorname{deg}\left(V_{a}\right) \subset p C H^{0}(\operatorname{Spec}(k))=p \mathbb{Z}_{(p)}
$$

On the other hand, the fact $t_{\mathbb{C}}\left(V_{a}\right)=v_{n}$ implies that

$$
\pi_{*}\left(r_{\Delta_{n}}\left(-T_{V_{a}}\right)\right)=\pi_{*}\left(r_{\Delta_{n}}\left(-T_{V_{a} \mid \bar{k}}\right)\right)=p \bmod \left(p^{2}\right)
$$

Hence we have $\operatorname{deg}\left(V_{a}\right)=p \mathbb{Z}_{(p)}$, while $\operatorname{deg}\left(\left.V_{a}\right|_{\bar{k}}\right)=\mathbb{Z}_{(p)}$. Since deg $=\operatorname{deg} \cdot i_{\bar{k}}$, we see that $i_{\bar{k}}\left(c_{0} \otimes t^{p-2}\right)=p \bar{t}^{p-1}$.

From (8.3), we have the following commutative diagram

When $\left(*, *^{\prime}\right)=\left(2 b_{n} i, b_{n} i\right)$, we see that $H^{*, *^{\prime}}\left(\chi_{a}\right)=H^{*, *^{\prime}}\left(\left.\chi_{a}\right|_{\bar{k}}\right)=0$ from Theorem 8.5. Hence $\left.j_{1}\right|_{\bar{k}}$ and j_{1} are isomorphism for these degree. (Note $H^{*, *}\left(\chi_{a}\left(p b_{n}\right)\left[2 p b_{n}\right]\right)=0$.) Moreover

$$
\left.j_{1}\right|_{\bar{k}}\left(\bar{t}^{i}\right)=\lambda \bar{t}^{i-1} \quad \text { for } \lambda \neq 0 \in \mathbb{Z} / p
$$

and $j_{1}\left(c_{0} \otimes t^{i}\right)=\lambda c_{0} \otimes t^{i-1}$. By induction starting $i_{\bar{k}}\left(c_{0} \otimes t^{p-2}\right)=p \bar{t} \bar{t}^{p-1}$, we have the desired result $i_{\bar{k}}\left(c_{0} \otimes t^{i-2}\right)=\lambda p \overline{t^{i-1}}$, from the above diagram.

Now we recall properties of generically split over X. We say that a k-motive M which is a direct summand of $M(X)$ is generically split over X if $\left.M\right|_{k(X)}$ splits as a sum of Tate motives $\mathbb{T}^{\otimes i}$. Vishik and Zainoulline prove [Vi-Za] that if motives N, M are generically split over X and a map $f: N \rightarrow M$ of k-motives is generically split over X (i.e., $\left.f\right|_{k(X)}$ is a split $k(X)$-epimorphism), then f itself splits (i.e., f is a split k-epimorphism). Moreover, Vishik and Zainoulline prove the Rost nilpotent theorem for $k(X) / k$.

The following lemma and corollary are suggested by the referee.
Lemma 9.2 Let $N \rightarrow M\left(V_{a}\right)$ be a map of k-motives over V_{a} such that $C H^{d}\left(\left.N\right|_{k\left(V_{a}\right)}\right)_{(p)} \rightarrow C H^{d}\left(\left.V_{a}\right|_{k\left(V_{a}\right)}\right)_{(p)} \cong \mathbb{Z}_{(p)}$ is an epimorphism. Moreover let N be generically split over V_{a}. Then N contains M_{a}^{R} as a k-motive direct summand.

Proof. Let p_{N} be a projector for N. Then from the assumption of the epimorphism $\left(p_{N}\left(\bar{t}^{p-1}\right)=\bar{t}^{p-1}\right)$, we have

$$
i_{\bar{k}}\left(p_{N}\right)=1 \otimes \bar{t}^{p-1}+a \bar{t} \otimes \bar{t}^{p-2}+\cdots \in C H^{*}\left(V_{a} \times\left. V_{a}\right|_{\bar{k}}\right) / p
$$

For the projector $p_{M}=f_{\theta}\left(\right.$ for $\left.M_{a}^{R}\right)$ we know $($ with $\bmod (p))$

$$
i_{\bar{k}}\left(p_{M}\right)=1 \otimes \bar{t}^{p-1}+\bar{t} \otimes \bar{t}^{p-2}+\cdots+\bar{t}^{p-1} \otimes 1 .
$$

If they are the same in $C H^{*}\left(M_{a}^{R} \times\left. M_{a}^{R}\right|_{\bar{k}}\right) / p$, then from Vishik and Zainoulline results, we see that N contains M_{a}^{R} also as k-motives.

Suppose that for $0<i<p-1$

$$
i_{\bar{k}}\left(p_{N}-p_{M}\right)=\bar{t}^{i} \otimes \bar{t}^{p-1-i}+a^{\prime} \bar{t}^{i+1} \otimes \bar{t}^{p-i-2}+\cdots
$$

Then we show

$$
\left.i_{\bar{k}}\left(\left(p_{N}-p_{M}\right) \rho^{i}\right)\right)=\bar{t}^{i} \otimes \bar{t}^{p-1}+a^{\prime \prime} \bar{t}^{i+1} \otimes \bar{t}^{p-2}+\cdots
$$

Therefore we can compute

$$
i_{\bar{k}}\left(p r_{1 *}\left(\left(p_{N}-p_{M}\right) \rho^{i}\right)\right)=p r_{1 *}\left(\bar{t}^{i} \otimes \bar{t}^{p-1}+a^{\prime \prime} \bar{t}^{i+1} \otimes \bar{t}^{p-2}+\cdots\right)=\bar{t}^{i}
$$

Hence $\bar{t}^{i} \in \operatorname{Im}\left(i_{\bar{k}}\right)$, and this contradicts to the preceding lemma.
From the nilpotent theorem for $k\left(V_{a}\right) / k$ by Vishik-Zainoulline and the fact that M_{a}^{p-1} is indecomposable (over k), we have the following corollary.
Corollary 9.3 The motives M_{a}^{p-1} and M_{a}^{R} are isomorphic as k-motives. Hence the generalized Rost motive M_{a} (which is an indecomposable summand of $M\left(V_{a}\right)$ with $\left.\operatorname{deg}\left(M_{a}\right)=p \mathbb{Z}_{(p)}\right)$ is uniquely determined by the norm variety V_{a}.

Lemma 9.4 There is $\xi \in C H^{(p-2) b_{n}}\left(M_{a}^{R} \times M_{a}^{R}\right)$ such that $\left.\xi\right|_{\bar{k}}=\left.\rho^{p-2}\right|_{\bar{k}}$ and for $\left(*, *^{\prime}\right) \in \bigcup_{j=2}^{n-1} D_{j}-\left\{\left(2 b_{n}, b_{n}\right)\right\}$, we have the isomorphism

$$
f_{\xi}: H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right) \cong H^{*-2 b_{n}, *^{\prime}-b_{n}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)
$$

Proof. We consider the following diagram in the derived category $D M_{-}^{e f f}$ ([Vo1], Section 9 in [Fr-Vo])

$$
\begin{array}{r}
M_{a}^{R}\left(b_{n}\right)\left[2 b_{n}\right] \xrightarrow{(1)} M_{a}^{p-2}\left(b_{n}\right)\left[2 b_{n}\right] \xrightarrow{(2)} M\left(\chi_{a}\right)\left(p b_{n}\right)\left[2 p b_{n}+1\right] \\
=\downarrow \tag{II}\\
M\left(\chi_{a}\right)(0)[-1] \xrightarrow{(3)} M_{a}^{p-2}\left(b_{n}\right)\left[2 b_{n}\right] \xrightarrow{(4)} M_{a}^{R}
\end{array}
$$

Here (I) and (II) are distinguished triangles from (8.4) and (8.3). Let

$$
\xi=(4) \cdot(1) \in \operatorname{Hom}\left(M_{a}^{R}\left(b_{n}\right)\left[2 b_{n}\right], M_{a}^{R}\right) \cong C H^{(p-2) b_{n}}\left(M_{a}^{R} \times M_{a}^{R}\right)
$$

We note that

$$
\left.f_{\xi}\right|_{\bar{k}}\left(\bar{t}^{p-1}\right)=\bar{t}^{p-2}=\left.f_{\rho^{p-2}}\right|_{\bar{k}}\left(\bar{t}^{p-1}\right) .
$$

Here the first equation follows from (8.3) and Lemma 9.1. The second equation follows from $\left.\rho^{p-2}\right|_{\bar{k}}=1 \otimes \bar{t}^{p-2}+\ldots$ Using arguments in the proof of Lemma 9.2 (considering $p r_{1 *}\left(\rho^{i}\left(\xi-\rho^{p-2}\right)\right)$ for some $\left.i\right)$, we see $\left.\xi\right|_{\bar{k}}=\left.\rho^{p-2}\right|_{\bar{k}}$.

Next we consider the induced exact sequences

$$
\begin{aligned}
& H\left(M_{a}^{R} ; \mathbb{Z} / p\right)<{ }^{*-2 b_{n}, *^{\prime}-b_{n}}{ }^{(1)^{*}} H \stackrel{*-2 b_{n}, *^{\prime}-b_{n}}{\left(M_{a}^{p-2} ; \mathbb{Z} / p\right)}{ }^{(2)^{*}} H^{*-2 p b_{n}-1, *^{\prime}-p b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \\
& =\uparrow \\
& H^{*+1, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \stackrel{(3)^{*}}{\leftrightarrows} H \stackrel{*-2 b_{n}, *^{\prime}-b_{n}}{\left(M_{a}^{p-2} ; \mathbb{Z} / p\right) \stackrel{(4)^{*}}{\longleftarrow} H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right) . ~ . ~ . ~ . ~}
\end{aligned}
$$

For $\left(*, *^{\prime}\right) \in \bigcup_{j=2}^{n-1} D_{j}-\left\{\left(2 b_{n}, b_{n}\right)\right\}$, we see

$$
H^{*+1, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong H^{*-2 p b_{n}-1, *-p b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong 0
$$

Hence we have the exact sequence

$$
\begin{gathered}
\leftarrow H^{*-2 p b_{n}, *^{\prime}-p b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \leftarrow H^{*-2 b_{n}, *^{\prime}-b_{n}}\left(M_{a}^{R} ; \mathbb{Z} / p\right) \\
\stackrel{f_{\xi}}{\leftarrow} H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right) \leftarrow H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \leftarrow .
\end{gathered}
$$

For $\left(*, *^{\prime}\right) \in \bigcup_{j=2}^{n-1} D_{j}$, we see

$$
H^{*, *^{\prime}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong H^{*-2 p b_{n}, *-p b_{n}}\left(\chi_{a} ; \mathbb{Z} / p\right) \cong 0
$$

Thus we have the isomorphism in the lemma.
Remark By arguments just before Remark 2.6 in [Ro], Rost showed an exact quadrangle

$$
M\left(\chi_{a}\right)\left(p b_{n}\right)\left[2 p b_{n}\right] \rightarrow M^{R}\left(b_{n}\right)\left[2 b_{n}\right] \xrightarrow{\rho^{p-2}} M^{R} \rightarrow M\left(\chi_{a}\right) .
$$

The proof of the above lemma is suggested by this exact quadrangle.
Lemma 9.5 For bidegree $\left(*, *^{\prime}\right) \in D$, we have the $K \otimes Q(n-1)$-module (but not ring) isomorphism,

$$
H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right) \cong\left(K_{a} \otimes Q(n-1)\left\{a^{\prime}\right\} \oplus_{a} K\{t\}\right)[t] /\left(t^{p-1}\right) \oplus K\{1\}
$$

namely, $Q_{i}\left(a^{\prime} t^{s}\right)=Q_{i}\left(a^{\prime}\right) t^{s}$ for $0 \leq i \leq n-1,0 \leq s \leq p-2$.
Proof. From Lemma 8.7 and the preceding corollary, we have the K module isomorphism in this lemma. For $\left(*, *^{\prime}\right) \in \bigcup_{j=2}^{n-1} D_{j}-\left\{\left(2 b_{n}, b_{n}\right)\right\}$, we see that $f_{\xi} \mid H^{*, *^{\prime}}\left(M_{a}^{R}\right)$ is an isomorphism. Let $a_{p-1}=a^{\prime} \otimes t^{p-2}$. For each $1 \leq j \leq p-2$, define $a_{j} \in H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)$ by $f_{\xi}\left(a_{j+1}\right)=a_{j}$. By dimensional reason, we note

$$
a_{j}=a^{\prime} \otimes t^{j-1} \quad \bmod \left(K_{+}^{M}(k) / p\right) .
$$

Recall that from Lemma 7.1, f_{ξ} commute with Q_{i}. By the induction on
j, we assume $Q_{1} \ldots Q_{n-1}\left(a_{j}\right)=\lambda_{j} c_{0} t^{j-1}$ for $\lambda_{j} \neq 0$. Then

$$
\begin{aligned}
f_{\xi}\left(Q_{1} \ldots Q_{n-1}\left(a_{j+1}\right)\right) & =Q_{1} \ldots Q_{n-1}\left(f_{\xi}\left(a_{j+1}\right)\right)=Q_{1} \ldots Q_{n-1}\left(a_{j}\right) \\
& =\lambda_{j}^{\prime} c_{0} t^{j-1}=\lambda_{j}^{\prime \prime} f_{\xi}\left(c_{0} t^{j}\right)
\end{aligned}
$$

Hence we see that

$$
Q_{1} \ldots Q_{n-1}\left(a_{j+1}\right)=\lambda_{j}^{\prime \prime} c_{0} t^{j}
$$

Thus we show for all $0 \leq i_{1}<\cdots<i_{s} \leq n-1$,

$$
Q_{i_{1}} \ldots Q_{i_{s}}\left(a^{\prime}\right) \otimes t^{j-1}=Q_{i_{1}} \ldots Q_{i_{s}}\left(a_{j}\right) \quad \bmod \left(K_{+}^{M}(k) / p\right)
$$

Take $Q_{i_{1}} \ldots Q_{i_{s}}\left(a_{j}\right)$ (rewrite it $Q_{i_{1}} \ldots Q_{i_{s}}\left(a^{\prime}\right) \otimes t^{j-1}$) as a basis of the $K_{a^{-}}$ free submodule of $H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)$. Then we see that the isomorphism in this lemma is that of $Q(n-1)$-modules.

10. $A B P^{2 *, *}\left(V_{a}\right)$ for the norm varieties V_{a}.

We consider AHss

$$
E\left(V_{a}\right)_{2}^{*, *^{\prime}, *^{\prime \prime}}=H^{*, *^{\prime}}\left(V_{a}: B P^{*^{\prime \prime}}\right) \Longrightarrow A B P^{*, *^{\prime}}\left(V_{a}\right)
$$

From Corollary 8.8 and Lemma 9.5, we still show

$$
c_{i} \otimes t^{s}=Q_{0} \ldots \hat{Q}_{i} \ldots Q_{n-1}\left(a^{\prime} \otimes t^{s}\right), \quad 0 \leq s \leq p-2
$$

The Chow ring $C H^{*}\left(V_{a}\right)_{(p)}$ contains the $\mathbb{Z}_{(p)}$-module

$$
\mathbb{Z}_{(p)} \oplus\left(\mathbb{Z}_{(p)}\left\{c_{0}\right\} \oplus \mathbb{Z} / p\left\{c_{1}, \ldots, c_{n-1}\right\}\right) \otimes \mathbb{Z}[t] /\left(t^{p-1}\right)
$$

Lemma 10.1 In $\operatorname{gr} A B P^{2 *, *}\left(V_{a}\right) \cong E_{\infty}^{*, *^{\prime}, *^{\prime \prime}}$, the element $c_{i} \otimes t^{s}$ is $I_{i}=$ $\left(p, v_{1}, \ldots, v_{i-1}\right)$-torsion.

Proof. Since $c_{i} \otimes t^{s} \in \operatorname{Im}\left(Q_{0} \ldots Q_{i-1}\right)$, it is I_{i}-torsion in $E_{2 p^{i-1}}^{*, *^{\prime}, *^{\prime \prime}}$ from Lemma 6.1. Of course each element in $E_{2}^{2 *, *, 0} \cong C H^{*}\left(V_{a}\right)_{(p)}$ is permanent and we have the result.

Lemma 10.2 Let us write by $c_{i}(s) \in A B P^{2 *, *}\left(V_{a}\right)$ a lift of

$$
c_{i} \otimes t^{s} \in E\left(V_{a}\right)_{\infty}^{2 *, *, 0} \subset g r A B P^{2 *, *}\left(V_{a}\right) .
$$

Then $c_{i}(s)$ generates $A B P^{2 *, *}\left(M_{a}^{R}\right)$ as a $B P^{*}$-module, and there are relations in $A B P^{2 *, *}\left(M_{a}^{R}\right)$ for $k<i$

$$
\begin{aligned}
v_{k} c_{i}(s)=0 \quad & \bmod \left(B P^{*}\left\{c_{i^{\prime}}\left(s^{\prime}\right) \mid i^{\prime}<i \text { and } s=s^{\prime}, \text { or } s^{\prime}>s\right\}\right) \\
& v_{k} c_{i}(s)-v_{i} c_{k}(s)=0 \quad \bmod \left(I_{\infty}^{2}\right)
\end{aligned}
$$

Proof. Since $c_{i} \otimes t^{s}$ generates $C H^{*}\left(M_{a}^{R}\right), c_{i}(s)$ generates $A B P^{2 *, *}\left(M_{a}^{R}\right)$ as a $B P^{*}$-module, from $A B P^{2 *, *}(X) \otimes_{B P^{*}} \mathbb{Z}_{(p)} \cong C H^{*}(X)_{(p)}$.

Since $c_{i} \otimes t^{s}$ is a I_{i}-torsion in $g r A B P^{2 *, *}\left(V_{a}\right)$, it is a v_{k}-torsion for $k<i$. This means that in $A B P^{2 *, *}\left(V_{a}\right)$,

$$
v_{k} c_{i}(s)=0 \quad \bmod \left(B P^{*^{\prime}} \otimes C H^{*}\left(V_{a}\right)\left|2 *>\left|c_{i}(s)\right|\right)\right.
$$

where $\left|c_{i}(s)\right|$ is the first degree of $c_{i}(s)$. Hence from Theorem 7.2, we have in $A B P^{2 *, *}\left(M_{a}^{R}\right)$,

$$
v_{k} c_{i}(s)=0 \quad \bmod \left(B P^{*^{\prime}} \otimes c_{i^{\prime}}\left(s^{\prime}\right) \| c_{i^{\prime}}\left(s^{\prime}\right)\left|>\left|c_{i}(s)\right|\right)\right.
$$

which shows the first equality.
From Corollary 3.4, there is z such that

$$
Q_{k}(z)=c_{i} \otimes t^{s} \quad \text { in } H^{*, *^{\prime}}\left(V_{a} ; \mathbb{Z} / p\right)
$$

From Lemma 7.1, such element also exists in $H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)$ (since $c_{i} \otimes t^{s} \in$ $\left.H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)\right)$. Moreover, this z is uniquely written in $H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)$ as

$$
z=Q_{0} \ldots \hat{Q}_{k} \ldots \hat{Q}_{i} \ldots Q_{n-1}\left(\alpha^{\prime} \otimes t^{s}\right)
$$

from Lemma 9.5 by using $w(z)=1$. (Note that elements of this bidegree are generated by only one element as a $K_{*}^{M}(k) / p$-modules.) Then

$$
Q_{i}(z)=-c_{k} \otimes t^{s},
$$

and moreover $Q_{j}(z)=0$ for $j \neq k, j \neq i$ in $H^{*, *^{\prime}}\left(M_{a}^{R} ; \mathbb{Z} / p\right)$. (Note that for $m \geq n, Q_{m}(z)=0$ since $d\left(Q_{m} z\right)=p^{m}-1+d(z)>\operatorname{dim}\left(V_{a}\right)$.) From Corollary 3.4, we get the relation $v_{k} c_{i}(s)-v_{i} c_{k}(s)=0 \bmod \left(I_{\infty}^{2}\right)$.

Remark The results of preceding lemma is more clearly given if we use the AHss for pure motives. In fact, p_{θ} commutes with the differential d_{r} of AHss by the same reason as the proof of Lemma 7.1.

By using (8.3) and (8.4), we have the isomorphism of $B P^{*}$-modules

$$
A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right) \cong B P^{*} \otimes C H^{*}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right) \cong B P^{*}[\bar{t}] /\left(\bar{t}^{p}\right)
$$

for $\operatorname{deg}(\bar{t})=\left(2 b_{n}, b_{n}\right)$. (Note that $\bar{t} \in A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)$ is decided only $\bmod \left(I_{\infty}\right)$.) We have the $B P^{*}$-algebra epimorphism

$$
A B P^{*, *^{\prime}}\left(\left.V_{a}\right|_{\bar{k}}\right) \rightarrow A B P^{*, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right) \cong B P^{*}[\bar{t}] /\left(\bar{t}^{p}\right)
$$

Lemma 10.3 For $0 \leq s \leq p-2$. we have in $A B P^{2 *, *}\left(\left.V_{a}\right|_{\bar{k}}\right)$

$$
i_{\bar{k}}\left(c_{0}(s)\right)=p \bar{t}^{s+1} \quad \bmod \left(I_{\infty}^{2}\right)
$$

Proof. From the isomorphism $A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right) \cong B P^{*} \otimes H^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}} ;\right.$ $\mathbb{Z}_{(2)}$, and Lemma 9.1, we have

$$
i_{\bar{k}}\left(c_{0}(s)\right)=p \bar{t}^{s+1}+\sum_{s<s^{\prime}, j<n} \lambda_{j, s^{\prime}} v_{j} \bar{t}^{s^{\prime}+1} \quad \bmod \left(I_{\infty}^{2}\right)
$$

Moreover by dimensional reason such as $|\bar{t}|=2 b_{n}$ and $-b_{n}<\left|v_{j}\right|<0$, we see $\lambda_{j, s^{\prime}}=0$.

Lemma 10.4 In $A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)$, we have

$$
i_{\bar{k}}\left(c_{i}(s)\right)=v_{i} \bar{t}^{s+1} \quad \bmod \left(I_{\infty}^{2}\left\{\bar{t}^{s+1}, \bar{t}^{s+2}, \ldots\right\}\right)
$$

Proof. From Lemma 10.2, we see that

$$
\left(v_{i} c_{0}(s)-p c_{i}(s)\right) \in I_{\infty}^{2}\left\{c_{i^{\prime}}\left(s^{\prime}\right) \mid i^{\prime}<i \text { and } s^{\prime}=s, \text { or } s^{\prime}>s\right\} .
$$

Let us write by $I_{\infty}^{r}(s)$ the ideal $I_{\infty}^{r}\left\{\bar{t}^{s+1}, \bar{t}^{s+2}, \ldots\right\}$ in $B P^{*}[\bar{t}] /\left(\bar{t}^{p}\right)$. By induc-
tion on i, we assume that $i_{\bar{k}}\left(c_{i^{\prime}}\left(s^{\prime}\right)\right)=v_{i^{\prime}} \bar{t}^{s^{\prime}+1} \bmod \left(I_{\infty}^{2}\left(s^{\prime}\right)\right)$. In particular $i_{\bar{k}}\left(c_{i^{\prime}}\left(s^{\prime}\right)\right) \in I_{\infty}\left(s^{\prime}\right)$. Hence we have

$$
i_{\bar{k}}\left(v_{i} c_{0}(s)-p c_{i}(s)\right)=0 \quad \bmod \left(I_{\infty}^{3}(s)\right)
$$

From the preceding lemma, $i_{\bar{k}}\left(v_{i} c_{0}(s)\right)=p v_{i} \bar{t}^{s+1} \bmod \left(I_{\infty}^{3}(s)\right)$. Therefore, we have

$$
p\left(v_{i} \bar{t}^{s+1}-i_{\bar{k}}\left(c_{i}(s)\right)\right) \quad \bmod \left(I_{\infty}^{3}(s)\right) .
$$

Hence $i_{\bar{k}}\left(c_{i}(s)\right)=v_{i} \bar{t}^{s+1} \bmod \left(I_{\infty}^{2}(s)\right)$, since \bar{t}^{s} generates a free $B P^{*}$-module, indeed, $B P^{*}$ is a polynomial algebra over $\mathbb{Z}_{(p)}$.

Corollary 10.5 Let $i_{\bar{k}}: A B P^{2 *, *}\left(M_{a}^{R}\right) \rightarrow A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)$ be the restriction map. Then

$$
\operatorname{Im}\left(i_{\bar{k}}\right)=B P^{*}\{1\} \oplus I_{n}[]^{+} /\left(\bar{t}^{p}\right) \subset B P^{*}[\bar{t}] /\left(\bar{t}^{p}\right) .
$$

Proof. From the preceding lemma, we have

$$
i_{\bar{k}}\left(c_{i}(s)\right)=v_{i} \bar{t}^{s+1}+a \bar{t}^{s+1}+\sum_{s^{\prime}>s} b_{s^{\prime}} \bar{t}^{s^{\prime}+1}
$$

with $a, b_{s^{\prime}} \in I_{\infty}^{2}$. By dimensional reason such as $\left|v_{n}\right|=-2 \operatorname{dim}\left(V_{a}\right)$, we see $a \in\left(p, \ldots, v_{i-1}\right)^{2}=I_{i}^{2}$ and $b_{s^{\prime}} \in\left(p, v_{1}, \ldots, v_{n-1}\right)^{2}=I_{n}^{2}$.

We consider the filtration F_{i} of $A B P^{2 *, *}\left(M_{a}^{R}\right)$ by

$$
F_{i}=B P^{*^{\prime}} \otimes\left\{C H^{*}\left(M_{a}^{R}\right) \mid 2 * \geq i\right\} \subset A B P^{2 *, *}\left(M_{a}^{R}\right)
$$

By descending induction on j for F_{j}, we assume that

$$
i_{\bar{k}}\left(F_{\left|c_{i}(s)\right|+1}\right)=\left(p, \ldots, v_{i-1}\right) \bar{t}^{s+1} \oplus \bigoplus_{s^{\prime}>s} I_{n}\left\{\bar{t}^{s^{\prime}+1}\right\} .
$$

Then $a \bar{t}^{s+1}+\sum_{s^{\prime}>s} b_{s^{\prime}} \bar{t}^{s^{\prime}+1} \in i_{\bar{k}}\left(F_{\left|c_{i}(s)\right|+1}\right)$ and hence

$$
i_{\bar{k}}\left(F_{\left|c_{i}(s)\right|}\right)=\left(p, \ldots, v_{i}\right) \bar{t}^{s+1} \oplus \bigoplus_{s^{\prime}>s} I_{n}\left\{\bar{t}^{s^{\prime}+1}\right\} .
$$

Therefore we have

$$
i_{\bar{k}}\left(F_{\left|c_{0}(s-1)\right|+1} / F_{\left|c_{0}(s)\right|+1}\right) \cong I_{n}\left\{\bar{t}^{s+1}\right\}
$$

which induces the equality in this lemma.
Theorem 10.6 (For $p=2$, this is the main theorem in [Vi-Ya]) Let M_{a}^{R} be the Rost motive for a nonzero symbol $a \in K_{n+1}^{M}(k) / p$. Then the restriction map $i_{\bar{k}}: A B P^{2 *, *}\left(M_{a}^{R}\right) \rightarrow A B P^{2 *, *}\left(\left.M_{a}^{R}\right|_{\bar{k}}\right)$ is injective and

$$
A B P^{2 *, *}\left(M_{a}^{R}\right) \cong \operatorname{Im}\left(i_{\bar{k}}\right)=B P^{*}\{1\} \oplus I_{n}[\bar{t}]^{+} /\left(\bar{t}^{p}\right)
$$

Proof. Recall the filtration F_{i} of $A B P^{2 *, *}\left(M_{a}^{R}\right)$ defined by

$$
F_{i}=B P^{*^{\prime}} \otimes\left\{C H^{*}\left(M_{a}^{R}\right) \mid 2 * \geq i\right\} \subset A B P^{2 *, *}\left(M_{a}^{R}\right)
$$

and induced graded ring $\operatorname{gr} A B P^{2 *, *}\left(M_{a}^{R}\right)$. From the first equation of Lemma 10.2, $F_{\left|c_{i}(s)\right|} / F_{\left|c_{i}(s)\right|+1}$ is generated by one element $c_{i}(s)$ as a $B P^{*}$ module, which is I_{i}-torsion. Hence there is an epimorphism

$$
f_{1}: B P^{*} \oplus \bigoplus_{s=0}^{p-2} \bigoplus_{i=0}^{n-1} B P^{*} / I_{i}\left\{c_{i}(s)^{\prime}\right\} \rightarrow g r A B P^{2 *, *}\left(M_{a}\right)
$$

by $c_{i}(s)^{\prime} \mapsto c_{i}(s)$.
Next we consider the filration \bar{F}_{i} of $B P^{*} \oplus I_{n}[]^{+} /\left(\bar{t}^{p}\right)$, by $\bar{F}_{i}=i_{\bar{k}}\left(F_{i}\right)$, e.g.,

$$
\bar{F}_{\left|c_{i}(s)\right|}=B P^{*}\left\{v_{i^{\prime}} \bar{t}^{s^{\prime}+1} \mid i^{\prime} \leq i \text { and } s^{\prime}=s, \text { or } s^{\prime}>s\right\}
$$

so that we can define the map from the preceding lemma

$$
f_{2}: g r A B P^{2 *, *}\left(M_{a}^{R}\right) \rightarrow g r\left(B P^{*} \oplus I_{n}[t]^{+} /\left(\bar{t}^{p}\right)\right)
$$

We note here

$$
I_{n}=B P^{*}\left(p, v_{1}, \ldots, v_{n-1}\right) \cong \bigoplus_{i=0}^{n-1} B P^{*}\left\{c_{i}\right\} /\left(v_{i} c_{j}=v_{j} c_{i}\right)
$$

by $v_{i} \mapsto c_{i}$. Hence we get the isomorphisms

$$
g r I_{n} \cong \bigoplus_{i=0}^{n-1} B P^{*} / I_{i}\left\{c_{i}\right\} \cong \bigoplus_{i=0}^{n-1} B P^{*} / I_{i}\left\{v_{i}\right\}
$$

Therefore we have the isomorphism

$$
\operatorname{gr}\left(B P^{*}\{1\} \oplus I_{n}[\bar{t}]^{+} /\left(\bar{t}^{p}\right)\right) \cong B P^{*} \oplus \bigoplus_{s=0}^{p-2} \bigoplus_{i=0}^{n-1} B P^{*} / I_{i}\left\{v_{i} \bar{t}^{s+1}\right\}
$$

The composition $f_{2} f_{1}$ is clearly isomorphism by $c_{i}(s)^{\prime} \mapsto v_{i} \bar{t}^{s+1}$. Recall that f_{1} is an epimorphism. So f_{2} is an isomorphism. Therefore $i_{\bar{k}}$ itself is also an isomorphism.

References

[Bo] Borghesi S., Algebraic Morava K-theories and the higher degree formula. Invent. Math. 151 (2003), 381-413.
[Fr-Vo] Friedlander E. and Voevodsky V., Bivariant cycle cohomology, transfer, and motivic homology theories. Ann. of Math. Stud. 143 (2000), 138-238.
[Ha] Hazewinkel M., Formal groups and applications. Pure and applied Math. 78., Academic Press, Inc. (1978), 573 pp.
[Hu] Hu P., S-modules in the category of schemes. Mem. Amer. math. Soc. 767 (2003).
[$\mathrm{Hu}-\mathrm{Kr}$] Hu P. and Kriz I., Some remarks on real and algebraic cobordism. K-theory 22 (2001), 335-366.
[Ka-Me] Karpenko N. and Merkurjev A., Rost projectors and Steenrod operations. Document Math. 7 (2002), 481-493.
[La] Landweber P., Annihilater ideals and complex bordism. Illinois J. Math. 17 (1973), 273-284.
[Le] Levine M., Comparison of cobordism theories. J. Algebra 322 (2009), 3291-3317.
[Le-Mo1] Levine M. and Morel F., Cobordisme algébrique I. C. R. Acad. Sci. Paris 332 (2001), 723-728.
[Le-Mo2] Levine M. and Morel F., Cobordisme algébrique II. C. R. Acad. Sci. Paris 332 (2001), 815-820.
[Me-Su] Merkerjev A. and Suslin A., Motivic cohomology of the simplicial mo-
tive of a Rost variety. J. Pure and Appl. Algebra. 214 (2010), 20172026.
[Mi] Milnor J., On cobordism ring Ω_{*} and a complex analogue, I. Amer. J. Math. 82 (1960), 505-521.
[Ne] Nenashev A., Gysin maps in oriented theories. J. Algebra 205 (2006), 200-213.
[No] Novikov P., The methods of algebraic topology from the view point of cobordism theory. Math. USSR. Izv. 1 (1967), 827-913.
[Or-Vi-Vo] Orlov D., Vishik A. and Voevodsky V., An exact sequence for $K_{*}^{M} / 2$ with applications to quadratic forms. Ann. of Math. 165 (2007), 1-13.
[Pa] Panin I., Oriented cohomology theories of algebraic varieties. K-theory J. 30 (2003), 265-314.
[Qu] Quillen D., Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7 (1971), 29-56.
[Ra] Ravenel D., Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, 121. Academic Press (1986).
[Ro] Rost M., On the basic correspondence of a splitting variety. preprint, 2006.
[St] Stong R., Notes on cobordism theory. Princeton university press, Princeton, N.J, University Tokyo, Tokyo. (1968).
[Su-Jo] Suslin A. and Joukhovitski S., Norm Varieties. J. Pure and Appl. Algebra, 206 (2006), 245-276.
[Ta] Tamanoi H., Spectra of BP-linear relations, v_{n}-series, and BP cohomology of Eilenberg-MacLane spaces. Trans. Amer. Math. Soc., 352 (2000), 5139-5178.
[Ve] Vessozi G., Brown-Peterson spectra in stable \mathbb{A}^{1}-homotopy theory. Rend. Sem. Mat. Univ. Padova., 106 (2001), 47-64.
[Vi] Vishik A., Motives of quadrics with applications to the theory of quadratic forms. Geometric methods in algebraic theory of quadratic forms, by Izhboldin, Kahn, Karpenko and Vishik. LNM 1835 (2004), 25-101.
[Vi-Ya] Vishik A. and Yagita N., Algebraic cobordisms of a Pfister quadric. London Math. Soc., 76 (2007), 586-604.
[Vi-Za] Vishik A. and Zainoulline K., Motivic splitting lemma. Document Math. 13 (2008), 81-96.
[Vo1] Voevodsky V., \mathbb{A}^{1}-homotopy theory. Proceeding international congress of mathematics, Vo I. Document Math. 1998 (2000), 579-604.
[Vo2] Voevodsky V., The Milnor conjecture. www.math.uiuc.edu/K-theory/ 0176, (1996).
[Vo3] Voevodsky V., Motivic cohomology with $\mathbb{Z} / 2$ coefficient. Publ. Math. IHES 98 (2003), 59-104.
[Vo4] Voevodsky V., Reduced power operations in motivic cohomology. Publ. Math. IHES 98 (2003), 1-57.
[Vo6] Voevodsky V., On motivic cohomology with \mathbb{Z} / l-coefficients. Ann. of Math. 174 (2011), 401-438.
[Vo7] Voevodsky V., Motivic Eilenberg MacLane spaces. Publ. Math. IHES 112 (2010), 1-99.
[Ya1] Yagita N., On relations between Brown-Peterson cohomology and the ordinary $\bmod p$ cohomology theory. Kodai Math. J. 7 (1984), 273-285.
[Ya2] Yagita N., Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism. Proc. London Math. Soc. 90 (2005), 783-816.
[Ya3] Yagita N., Chow rings of excellent quadrics. J. Pure Appl. Algebra 212 (2008), 2440-2449.
[Ya4] Yagita N., Algebraic BP-theory and norm varieties. http://hopf.math.purdue.edu/cgi-bin/generate?/Yagita/abp (2006).
[Ya5] Yagita N., Note on Chow rings of nontrivial G-torsors over a field. Kodai J. Math. 34 (2011), 446-463.

Department of Mathematics
Faculty of Education
Ibaraki University
Mito, Ibaraki, Japan
E-mail: yagita@mx.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 14C15, 57T25; Secondary 55R35, 57 T 05.

