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Finite p-groups which determine p-nilpotency locally

Thomas S. Weigel

(Received June 22, 2009)

Abstract. Let G be a finite group, and let p be a prime number. It might happen

that the p-Sylow normalizer NG(P ), P ∈ Sylp(G), of G is p-nilpotent, but G will not

be p-nilpotent (see Example 1.1). However, under certain hypothesis on the structure

of the Sylow p-subgroup P of G, this phenomenon cannot occur, e.g., by J. Tate’s

p-nilpotency criterion this is the case if P is a Swan group in the sense of H-W. Henn

and S. Priddy. In this note we show that if P does not contain subgroups of a certain

isomorphism type Yp(m) — in which case we call the p-group P slim — the previously

mentioned phenomenon will not occur provided p is odd. For p = 2 the same remains

true if P is D8-free (see Main Theorem).

Key words: finite groups, p-nilpotency, slim p-groups, Sylow subgroups, p-nilpotent

Sylow normalizer

1. Introduction

The three theorems of L. Sylow are certainly some of the central results
in the theory of finite groups. From Sylow’s first theorem grows the wish
to detect properties of a finite group G analyzing a Sylow p-subgroup P ∈
Sylp(G) or its normalizer NG(P ). There are finite groups G which are not
p-nilpotent, but NG(P ) is p-nilpotent (see Example 1.1). Hence for the
property p-nilpotency this wish cannot become a general theorem valid for
all finite p-groups.

Example 1.1 (a) Let p = 2. Then for n ≥ 2 a Sylow 2-subgroup of
G = SLn(2) is self-normalizing, but for n ≥ 3 the group G is not 2-nilpotent.
(b) Let T be a Coxeter torus of the Chevalley group X = SLp(p). Then
T ∩ Z(X) = {1} and NX(T )/T ' Cp, where Cp denotes the cyclic group of
order p. Let P̄ ∈ Sylp(NX(T )). Then NNX(T )(P̄ ) = P̄ . Let V = Fp

p denote
the natural left Fp[SLp(p)]-module. Then G = V oNX(T ) is obviously not
p-nilpotent, but NG(P ) = P for P ∈ Sylp(G) (see Fact 2.1(i)). Note that
P ' Cp oCp, and for p = 2 one has G = S4.

Nevertheless, for some finite p-groups P this problem has an affirmative

2000 Mathematics Subject Classification : Primary 20D20; Secondary 20D15.



12 T. S. Weigel

answer. We say that a finite p-group P determines p-nilpotency locally, if
for every finite group G with P̄ ∈ Sylp(G) isomorphic to P and NG(P̄ )
p-nilpotent follows that G is also p-nilpotent. The class of finite p-groups
with this property will be denoted by DNp. In particular, if P ∈ DNp

and Out(P ) is a p-group, then G is p-nilpotent whenever P̄ ∈ Sylp(G) is
isomorphic to P .

The first examples of finite p-groups with this property which attracted
our attention are Swan groups. Following H.-W. Henn and S. Priddy (see
[4]) one calls a finite p-group P a Swan group, if the restriction map in
cohomology

resG
NG(P̄ ) : H•(G,Fp) −→ H•(NG(P̄ ),Fp) (1.1)

is an isomorphism whenever P̄ ∈ Sylp(G) is isomorphic to P . From J. Tate’s
nilpotency criterion (see [7]) one concludes that every Swan group deter-
mines p-nilpotency locally.

In [8], J. Thévenaz pointed out — using a result of G. Mislin (see [6]) —
that one can characterize Swan groups as those finite p-group P which have
the property that for any finite group G with P̄ ∈ Sylp(G) isomorphic to P

follows that NG(P̄ ) controls p-fusion in G. Although all abelian p-groups
and “most” finite p-groups are Swan groups, there are relatively small finite
p-groups which are not Swan groups; e.g., for p odd, the extra special group
P = p1+2 of order p3 and exponent p is isomorphic to the Sylow p-subgroup
of G = SL3(p), but NG(P ) does not control p-fusion in G. Hence P = p1+2

is not a Swan group. In [4], it was shown that for p odd every p-central
p-group is indeed a Swan group.

The main purpose of this paper is to show that DNp contains a large
subclass of the class of finite p-groups. For a prime number p and m ≥ 1
let Cpm denote the cyclic group of order pm. Let Yp(1) = Cp o Cp denote
the (regular) wreath product, and let β : Cp oCp → Cp denote the canonical
homomorphism with elementary abelian kernel. We define the p-groups
Yp(m), m ≥ 1, as the pull-back of the diagram

Cpm // Cp

Yp(m) //___

OOÂ
Â
Â

Cp oCp

β

OO

(1.2)
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A finite p-group will be called slim, if P contains no subgroup isomorphic to
Yp(m) for all m ≥ 1, and extra slim, if P contains no sub-quotient isomorphic
to Cp oCp. These groups are also called Cp oCp-free. By slimp we denote the
class of slim p-groups, and xslimp will denote the class of extra slim p-groups.
Obviously, xslimp ⊂ slimp. In Section 4.2 we will proof the following.

Main Theorem Every extra slim 2-group determines 2-nilpotency locally.
For p odd every slim p-group determines p-nilpotency locally.

Considering only certain subclasses of finite p-group, the Main Theorem
can be considered to be best possible (see Proposition 4.3). The following
examples of finite p-groups are extra slim:

(a) finite p-groups P of nilpotency class cl(P ) less or equal to p− 1;
(b) finite p-groups P of exponent p;
(c) regular finite p-groups in the sense of P. Hall (see [5, Kap. III, Section

10]);
(d) finite p-groups P with section rank srk(P ) ≤ p− 1,

where the section rank is defined by

srk(P ) = max
{

dimFp
(Homgr(U,Cp)) | U ≤ P

}
. (1.3)

For p odd, every p-central group of height p− 2 is slim (see [3]).
The proof of the Main Theorem1 uses G. Glauberman’s version of

J. G. Thompson’s p-nilpotency criterion (see Theorem 4.1) and a detailed
analysis of the possible counter examples, the pqp-sandwich groups (see Sec-
tion 2), and their universal p-Schur-Frattini cover (see Section 3.4).

It should be remarked that the class of extra slim p-groups plays an
important role in the analysis of the maximal p-abelian quotient of a finite
group G. T. Yoshida showed in [11] that if P ∈ Sylp(G) is extra slim one
has an isomorphism

G/Op(G).G′ ' NG(P )/Op(NG(P )).NG(P )′, (1.4)

i.e., the maximal p-abelian quotients of G and NG(P ) are isomorphic. In
particular, if NG(P ) is p-nilpotent one has an isomorphism G/Op(G)G′ '
P/P ′. Indeed, the Main Theorem shows that in this case one has even an

1The classification of finite simple groups is not used in the proof of the Main Theorem.
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isomorphism G/Op(G) ' P . It would be very interesting to know whether
some version of (1.4) also holds in case that P is slim provided p is odd.

2. pqp-sandwich groups

In this section we collect some basic facts about a particular class of
p-soluble groups for a given prime number p. For a prime number q co-
prime to p let Q be a non-trivial irreducible (left) Fq[Cp]-module, where Fq

denotes the finite field with q elements. Then

G0 = QoCp (2.1)

is a p-nilpotent group. For a non-trivial irreducible Fp[G0]-module P0 we
build the finite group

S(P0, Q) = P0 oG0 = P0 o (QoCp) (2.2)

and call it a pqp-sandwich group. Let S = S(P0, Q) and P ∈ Sylp(S). The
following fact which easy proof we leave to the reader shows that NS(P ) =
P , but S is obviously not p-nilpotent.

Fact 2.1 Let p be any prime number. Let G be a finite group, let P ∈
Sylp(G), and let N be a normal subgroup of G.

( i ) If N is of p-power order, one has NG/N (P/N) = NG(P )/N .
( ii ) If N is of order co-prime to p one has NG/N (PN/N) = NG(P )N/N .

2.1. Irreducible F̄p[G0]-modules
Let F̄p denote the algebraic closure of the finite field Fp. Since G0 is

p-nilpotent, the only irreducible module in the principle F̄p[G0]-block b̄0

is the trivial module F̄p (see [1, Corollary 63.3]). Since NG0(Cp) = Cp,
R. Brauer’s first main theorem (see [1, Theorem 61.7]) implies that b̄0 is the
only F̄p[G0]-block with defect group Cp. Thus every non-principal block
has trivial defect group. In particular, every non-trival irreducible F̄p[G0]-
module is projective.

By hypothesis, Cp acts without non-trivial fixed points on Q, and thus
also on the Pontrjagin dual Homab(Q, F̄∗p). By Clifford theory, one has a
natural one-to-one correspondence between the isomorphism types of non-
trivial irreducible left F̄p[G0]-modules and Cp-orbits on the set
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Homab

(
Q, F̄∗p

)] = Homab

(
Q, F̄∗p

) \ {0}, (2.3)

i.e., let F̄p(θ̄) be the irreducible F̄p[Q]-module corresponding to θ̄ ∈
Homab(Q, F̄∗p)], then

L̄Cp.θ̄ = indG0
Q

(
F̄p(θ̄)

)
(2.4)

is irreducible and every non-trivial irreducibe F̄p[G0]-module can be obtained
this way.

2.2. Irreducible Fp[G0]-modules
Let r denote the order of q+Z.p in (Z/Z.p)∗, where ∗ denote the group

of units in a ring. Then

p | qr − 1 but p - qr′ − 1 for r′ < r. (2.5)

Note that r | p − 1. In particular, every non-trivial Fq[Cp]-module has
Fq-dimension r. Hence |Q| = qr.

Let d denote the order of p + Z.q in (Z/Z.q)∗. Then

q | pd − 1 but q - pd′ − 1 for d′ < d (2.6)

and d | q − 1. Every non-trivial irreducible Fp[Q]-module has Fp-dimension
d. Let F = AutFp

(Fpd). Then one can parametrize the irreducible Fp[Q]-
modules by the F-orbits on Homab(Q,F∗pd)]. Let Mθ.F denote the irre-
ducible Fp[Q]-module corresponding to the F-orbit θ.F ⊂ Homab(Q,F∗pd)].
Then Mθ.F can be extended to an Fp[G0]-module if, and only if, p | d.
Hence in this case r = 1, and Q is cyclic of prime order. Moreover, G0 can
be identified with a subgroup of F∗pd o F . Let

¯ : Homab

(
Q,F∗pd

) −→ Homab

(
Q, F̄∗p

)
(2.7)

denote the canonical isomorphism. Clifford theory yields the following de-
scription of irreducible Fp[G0]-modules:

Case (A): If p - d, then for every F-orbit θ.F ⊂ Homab(Q,F∗pd)]

LO(θ) = indG0
Q (Mθ.F ) (2.8)
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is irreducible. Here O(θ) = Cp.θ.F denote the Cp × F-orbit containing θ.
In particular, the isomorphism classes of irreducible Fp[G0]-modules can be
parametrized by the Cp ×F-orbits on Homab(Q,F∗pd)]. Moreover,

LO(θ) ⊗Fp
F̄p =

∐

η∈R(θ)

L̄Cp.η̄, (2.9)

where R(θ) is a system of representatives of the Cp-set O(θ),

resG0
Q (LO(θ)) =

∐

ν.F⊂O(θ)

Mν.F , (2.10)

resG0
Q (LO(θ))⊗Fp F̄p =

∐

µ∈O(θ)

F̄p(µ̄). (2.11)

Case (B): If p | d, there exists an irreducible Fp[G0]-module LO(θ) for every
F-orbit O(θ) = θ.F . Moreover, assuming Cp ≤ F one has

LO(θ) ⊗Fp F̄p =
∐

η∈R(θ)

L̄Cp.η̄, (2.12)

where R(θ) is system of representatives of the Cp-set O(θ),

resG0
Q (LO(θ)) = Mθ.F (2.13)

resG0
Q (LO(θ))⊗Fp

F̄p =
∐

µ∈O(θ)

F̄p(µ̄). (2.14)

An Fp[G0]-module L is projective if, and only if, L⊗Fp
F̄p is a projective

F̄p[G0]-module. Hence one has:

Fact 2.2 A non-trivial irreducible Fp[G0]-module is projective.

2.3. The second exterior square
Let p be odd. Put ∨ = HomFp( ,Fp). If R is a finite group of p′-order,

and M =
∐

1≤j≤n Mj is an F̄p[R]-module, then one has an isomorphism of
F̄p[R]-modules
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Λ2(M) '
∐

1≤j≤n

Λ2(Mj)⊕
∐

1≤i<k≤n

Mi ⊗F̄p
Mk. (2.15)

For θ ∈ Homab(Q,F∗pd)] and µ, ν ∈ O(θ) one has F̄p(µ̄) ' F̄p(ν̄)∨, if and
only if µ = −ν. This happens only if 2 | d or q = 2. Since Λ2(F̄p(µ̄)) = 0,
and

Λ2

(
resG0

Q (LO(θ))
)⊗Fp

F̄p ' Λ2

(
resG0

Q (LO(θ))⊗Fp
F̄p

)
, (2.16)

one obtains the following:

Fact 2.3 Let p be odd. Then

HomQ

(
Fp,Λ2

(
resG0

Q (LO(θ))
)) '





0 if 2 - d,
(
Fd/2

p

)p if 2 | d and p - d,

Fd/2
p if 2 | d and p | d.

(2.17)

3. The universal p-Schur-Frattini cover of a pqp-sandwich group

In this section we will study certain p-Frattini extension for a profinite
group G. For a profinite group G the Frattini subgroup Φ(G) is defined as
the intersection of all maximal closed subgroups of G. A surjective map
τ : X → G of profinite groups is called a p-Frattini extension, if ker(τ) is a
pro-p group and ker(τ) ≤ Φ(X).

3.1. p-Perfect profinite groups
Let G be a profinite group. Then

Op(G) = cl(〈A ≤ G | A of p′-order〉) (3.1)

is a closed normal subgroup of G such that G/Op(G) is a pro-p group, and
Op(G) is the minimal closed normal subgroup of G with this property. If
φ : G → H is a surjective mapping of profinite groups, then

φ(Op(G)) = Op(H). (3.2)

A profinite group G will be called p-perfect, if G = Op(G). Note that if
φ : X → G is a p-Frattini extension of the p-perfect group G, then X is also
p-perfect. For p-perfect profinite groups one has also the following.
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Proposition 3.1 Let G be a p-perfect profinite group. Then Op(Z(G)) ≤
Φ(G).

Proof. Suppose there exists a maximal closed subgroup M of G not con-
taining A = Op(Z(G)). Then G = A.M . Let r be a prime number co-prime
to p, and let R ∈ Sylr(M) be a Sylow pro-r subgroup of M . Then R is also
a Sylow pro-r subgroup of G. Let gR be any Sylow pro-r subgroup of G.
Since g = a.m with a ∈ A and m ∈ M , gR ≤ M showing that M contains
all Sylow pro-r subgroups of G. Hence M contains Op(G), a contradiction.

¤
3.2. The universal p-Frattini extension

Every profinite group G has a universal p-Frattini extension πG : G̃p →
G, i.e., if τ : X → G is p-Frattini extension, then there exists a homomor-
phism of profinite groups τ◦ : G̃p → X making the diagram

G̃p
τ◦ //_______

πG

ÂÂ@
@@

@@
@@

X

τ
ÄÄ¡¡

¡¡
¡¡

¡¡

G

(3.3)

commute. Moreover, τ◦ is surjective. The universal p-Frattini extension is
unique up to isomorphism. For further details see [10, Section 2.2].

Let G̃c
p = G̃p/[G̃p, ker(πG)], and let πc

G : G̃c
p → G denote the induced

map. Then πc
G : G̃c

p → G is the universal central p-Frattini extension, i.e.,
it has the universal property of (3.3) for every central p-Frattini extension
τ : H → G. In general, this extension is quite difficult to analyze. Moreover,
even if G is a finite group, G̃c

p can be infinite, e.g., for G = Cp one has G̃c
p '

Zp, where Zp denotes the additive group of the p-adic integers. However, if
G is a finite p-perfect group, then πc

G : G̃c
p → G coincides with the p-Schur

cover of G. In particular, in this case

ker(πc
G) ' H2(G,Zp) (3.4)

equals the p-Schur multiplier of G, and thus G̃c
p is also finite.

3.3. p-Schur-Frattini extension
A p-Frattini extension τ : X → G is called a p-Schur-Frattini extension,

if
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ker(τ) ∩Op(X) ≤ Z(Op(X)). (3.5)

Hence for such an extension the induced map τ◦ : Op(X) → Op(G) is a
central p-Frattini extension (see Proposition 3.1).

Let G̃s
p = G̃p/[Op(G̃p), ker(πG) ∩Op(G̃p)], and let πs

G : G̃s
p → G denote

the induced map. Then πs
G : G̃s

p → G is a p-Schur Frattini extension, and it
is universal, i.e., for any p-Schur-Frattini extension τ : X → G there exists
a map τ◦ : G̃s

p → X making the corresponding diagram (3.3) commute.
The map τ◦ must be surjective. The usual standard argument shows that
the extension πs

G : G̃s
p → G is unique up to isomorphism. The following

proposition shows that it can be analyzed easily.

Proposition 3.2 Let G be a profinite group, let πs
G : G̃s

p → G be the
universal p-Schur-Frattini extension of G, and consider the commutative
diagram

{1} // Op(G̃s
p)

πs
◦

²²

// G̃s
p

//

πs
G

²²

G̃s
p/Op(G̃s

p) //

πs
q

²²

{1}

{1} // Op(G) // G // G/Op(G) // {1}
(3.6)

Then πs
◦ coincides with the p-Schur cover of Op(G), and πs

q coincides with
the universal p-Frattini extension of G/Op(G).

Proof. The induced map G̃p/Op(G̃p) → G̃s
p/Op(G̃s

p) is an isomorphism.
Hence cdp(G̃s/Op(G̃s

p)) ≤ 1 (see [10, Proposition 2.2]). As

G̃s
p/Op

(
G̃s

p

)/
Φ

(
G̃s

p/Op(G̃s
p)

) −→ G/Op(G)
/
Φ(G/Op(G)) (3.7)

is an isomorphism, πs
q : G̃s

p/Op(G̃s
p) → G/Op(G) coincides with the universal

p-Frattini extension.
Let τ : B → Op(G) denote the universal p-Frattini extension of Op(G).

By construction, πs
◦ : Op(G̃s

p) → Op(G) is a central extension, and thus a
p-Frattini extension (see Proposition 3.1). Thus one has a surjective map

τ◦ : B/[B, ker(τ)] −→ Op
(
G̃s

p

)
. (3.8)
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As cdp(Op(G̃p)) ≤ 1, there exists a map γ : Op(G̃p) → B making the dia-
gram

Op(G̃)

πs
◦

²²

γ // B

τ

²²
Op(G) Op(G)

(3.9)

commute. Since τ is a Frattini extension, γ is surjective. Hence the induced
map

γ◦ : Op
(
G̃s

p

) −→ B/[B, ker(τ)] (3.10)

is also surjective. The same argument as used in the proof of [10, The-
orem 2.5(c)] then shows that γ◦ ◦ τ◦ is an isomorphism. Hence γ◦ is an
isomorphism. ¤

Remark 3.3 Note that G̃s
p/Op(G̃s

p) is a free pro-p group. Let P ∈
Sylp(G̃s

p). Then the induced map P → G̃s
p/Op(G̃s

p) is a split surjection.
Hence the upper row in the diagram (3.6) is a split short exact sequence of
profinite groups.

3.4. The universal p-Schur-Frattini extension of a pqp-sandwich
group

Let p be odd, and let S = S(Q,P0) be a pqp-sandwich group. Again we
denote by d the order of p + Z.q in (Z/Z.q)∗. By construction, one has

Op(S) = P0 oQ. (3.11)

By Ip = Qp/Zp we denote the standard injective Zp-torsion module. For
a finitely generated Zp-module W we denote by W∨ = HomZp(W, Ip) its
Pontrjagin dual. We have to consider three cases separately.

Case 0: 2 - d. From the universal coefficient theorem, the Hochschild-
Lyndon-Serre spectral sequence and Fact 2.3 one concludes that

H2(Op(S),Zp)∨ = H2(Op(S), Ip) = H2(P0, Ip)Q

= HomQ(Fp,Λ2(P∨0 )) = 0. (3.12)
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Hence H2(S,Zp) = 0. The universal p-Schur-Frattini cover of S coincides
with the pull-back of the diagram

Zp
// Cp

S̃s
p

//___

OOÂ
Â
Â

S

OO

(3.13)

Case 1.A: p - d, 2 | d. Put e = d/2. Then

〈 , 〉 : Fpd × Fpd −→ Fpe , 〈x, y〉 = x zpe − xpe

z, x, z ∈ Fpd , (3.14)

is a skew-symmetric Fpe -linear form. Moreover, the set Fpd × Fpe with
multiplication

(x, y) · (x′, y′) = (x + x′, y + y′ + 〈x, x′〉), x, x′ ∈ Fpd , y, y′ ∈ Fe
p, (3.15)

is a group which we will denote by UT3(Fpe). It is isomorphic to the group
of uni-triangular matrices of rank 3 over the field Fpe .

By definition, q | pe +1. Hence the cyclic group Cq has a natural action
on UT3(Fpe). Moreover, every homomorphism θ ∈ Homab(Q,F∗pd) can be
extended uniquely to a homomorphism θ̃ ∈ Homgr(Q,Aut(UT3(Fpe))) given
by

θ̃(g).(x, y) = (θ(g).x, y), x ∈ Fpd , y ∈ Fpe . (3.16)

Let H = (UT3(Fpe))p o Q such that P0 o Q coincides with the canonical
quotient H/ Z(Op(H)), and put S0 = H oCp. The same calculation as in
Case 0 shows that S̃s

p coincides with the pull-back of the diagram

Zp
// Cp

S̃s
p

//___

OOÂ
Â
Â

S0

OO

(3.17)

Case 1.B: p | d, 2 | d. Put f = d/p and e = d/2. As in Case B we may
construct a group H = UT3(Fpe)oQ. Let g be a generator of Cp. Then
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g.(x, y) = (xpf

, ypf

), g.a = apf

, (x, y) ∈ UT3(Fpe), a ∈ Q, (3.18)

defines a left action of Cp on H. Let S0 = H oCp. Then S̃s
p coincides with

the pull-back of the diagram (3.17).

3.5. The groups Yp(m) as subgroups
The following fact can be proved easily using the pull-back property.

Fact 3.4 Let p be odd, and let P be a finite p-group containing a cyclic sub-
group C ' Cpm and an elementary abelian p-subgroup A with the following
properties:

( i ) dimFp
(A) = p;

( ii ) C ≤ NP (A);
(iii) Cp ≤ CentP (A);
(iv) as Fp[C/Cp]-module A is projective;
( v ) C ∩A = {1}.

Then A.C ≤ P is a subgroup isomorphic to Yp(m).

From Fact 3.4 one concludes the following.

Proposition 3.5 Let p be odd, and let τ : G → S be a finite p-Schur-
Frattini extension of a pqp-sandwich group S. Then G contains a subgroup
isomorphic to Yp(m) for some m ≥ 1.

Proof. Let πs
S : S̃s

p → S denote the universal p-Schur-Frattini extension.
Then there exists a map τ◦ : S̃s

p → G making the diagram

S̃s
p

τ◦ //

πs
S ÂÂ>

>>
>>

>>
G

τ
¡¡¢¢

¢¢
¢¢

¢¢

S

(3.19)

commute. We have to deal with three cases separately.

Case 0: 2 - d. Let C ≤ S̃s
p be a complement to Op(S̃s

p) in S̃s
p , and let

B = Op(Op(S̃s
p)). Put C◦ = τ◦(C) and B◦ = τ◦(B). Then C◦ is cyclic of

order pm, C◦ ≤ NG(B◦) and Cp
◦ ≤ CentG(B◦)). Then B◦ is a projective

Fp[C◦/Cp
◦ ]-module. Let A◦ ≤ B◦ be a projective Fp[C◦/Cp

◦ ]-submodule of
dimension p. If m = 1, A◦.C◦ ' Yp(1). If m > 1, B◦ ∩ Ω1(C

p
◦ ) is a
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trivial Fp[Op(G)]-submodule of B◦, and thus B◦ ∩ Ω1(C
p
◦ ) = {1}. Hence

C◦ ∩A◦ = {1}, and, by Fact 3.4, A◦.C◦ ' Yp(m).

Case 1.A: 2 | d, p - d. As in Case 0, let C ≤ S̃s
p be a complement to Op(S̃s

p)
in S̃s

p . Let

X =
{
(x, 0) ∈ UT3

(
Fd/2

p

) | x ∈ Fd/2
p

}
, (3.20)

and let B = 〈Xc | c ∈ C 〉 ≤ S̃s
p . Put B◦ = τ◦(B), C◦ = τ◦(C). Then

C◦ is cyclic of order pm, B◦ is an elementary abelian p-subgroup of G,
C◦ ≤ NG(B◦), Cp

◦ ∈ CentG(B◦). Moreover, as Ω1(C
p
◦ ) ≤ CentG(Op(G))

and B◦∩Z(Op(G)) = {1}, one has C◦∩B◦ = {1}. By construction, one has
an isomorphism

B◦ ' indC◦/Cp
◦

{1} (X) (3.21)

as Fp[C◦/Cp
◦ ]-modules. Hence B◦ is a projective Fp[C◦/Cp

◦ ]-module. By
choosing an appropriate submodule A◦ as in Case 0, one shows that B◦.C◦
contains a subgroup isomorphic to Yp(m).

Case 1.B: 2 | d, p | d. Put f = d/p. As in Case 0, let C ≤ S̃s
p be a

complement to Op(S̃s
p) in S̃s

p . Let F : Fpd → Fpd , F (x) = xp, denote the
standard Frobenius automorphism, and put F0 = F f . Then F0 has order
p and is acting non-trivially on Fpd/2 . Let x ∈ Fpd/2 , F0(x) 6= x, and put
X = spanFp

(F k
0 (x) | k ≥ 0). Then A ≤ S̃s

p , where

A =
{
(x, 0) ∈ UT3

(
Fpd/2

) | x ∈ X
}
, (3.22)

is an elementary abelian subgroup of order p. Moreover, C ≤ NS̃s
p
(A), Cp ≤

CentS̃s
p
(A), and A is a projective Fp[C/Cp]-module. Using Fact 3.4 and the

same argument used in Case 1.A one shows that τ◦(A.C) is isomorphic to
Yp(m) for some m ≥ 1. ¤
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4. The Main Theorem

4.1. G. Glauberman’s version of J. G. Thompson’s p-nilpotency
criterion

Let P be a finite p-group. Then

J(P ) = 〈A ≤ P abelian
∣∣ |A| maximal〉 (4.1)

is called the Thompson subgroup2 of P . In [2, Theorem 14.11], G. Glauber-
man proved the following version of J. G. Thompson’s p-nilpotency criterion
(see [9]).

Theorem 4.1 (G. Glauberman, J. G. Thompson) Let p be a prime num-
ber, let G be a finite group and let P ∈ Sylp(G). If p = 2 assume also that G

is S4-free. Then G is p-nilpotent if, and only if, CentG(Z(P )) and NG(J(P ))
are p-nilpotent.

From this nilpotency criterion one can deduce the following straight
forward consequence.

Corollary 4.2 Let G be a finite group, and let P ∈ Sylp(G), p odd.
Assume that for all R / P , R 6= 1, the subgroup NG(R) is p-nilpotent. Then
G is p-nilpotent.

4.2. The proof
Proof of the Main Theorem. For simplicity put X2 = xslim2 and Xp =
slimp for p odd. Let P ∈ Xp be a p-group of minimal order with the property
that P 6∈ DNp, and let G be a finite group of minimal order such that
P ∈ Sylp(G), P ' P and that NG(P ) is p-nilpotent. From the minimality
of G follows:

Conclusion 1 Let H ≤ G be a proper subgroup of G containing P . Then
H is p-nilpotent.

Note that C2 o C2 is isomorphic to the Sylow 2-subgroup of S4.
Thus, by hypothesis, for p = 2 the group G is also S4-free. The sub-
groups CentG(Z(P )) and NG(J) both contain the Sylow p-subgroup P .
By J. G. Thompson’s p-nilpotency criterion and the minimality of G not
both of them can be proper (see Conclusion 1). Thus one has either

2This is the version of the Thompson subgroup used by G. Glauberman in [2].
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G = CentG(Z(P )), or G = NG(J), where J = J(P ) and therefore:

Conclusion 2 Op(G) 6= {1}.
From Fact 2.1(ii) one deduces:

Conclusion 3 Op′(G) = {1}.
Since Ḡ = G/Op(G) is non-trivial, there exists a normal subgroup M

of G such that M/Op(G) is a minimal normal subgroup in Ḡ. Thus, either
M/Op(G) is of p′-order, or M/Op(G) ' S × · · · × S for some non-abelian
finite simple group S, which order is divisible by p. The second case cannot
occur:

Conclusion 4 M/Op(G) is of p′-order.

Proof of Conclusion 4. Suppose M/Op(G) ' S × · · · × S for some finite
simple group S, which order is divisible by p. Note that for p = 2, X2 is
q-closed. Hence the minimality of P implies that G/O2(G) is 2-nilpotent.
A contradiction, and hence we may assume that p is odd.

The subgroup M.P is not p-nilpotent and contains P . Thus G = M.P

(see Conclusion 1). Let P̃ = P ∩M ∈ Sylp(M). Then NG(P̃ ) = P.NM (P̃ ),
and by Conclusion 1, NM (P̃ ) is p-nilpotent. Thus the minimality of P

implies that P = P̃ , and G = M . Thus by Fact 2.1(i) and the minimality
of P , Ḡ = G/Op(G) is simple and isomorphic to S. Let P̄ = P/Op(G). For
R̄ / P̄ , R̄ 6= 1, let R / P denote the normal subgroup of P containing Op(G)
such that R̄ = R/Op(G). Then

NG(R)/Op(G) = NḠ(R̄). (4.2)

By construction, NG(R) is a proper subgroup of G containing P and thus
p-nilpotent (see Conclusion 1). Hence NḠ(R̄) is p-nilpotent. Thus by Corol-
lary 4.2, G/Op(G) is p-nilpotent, a contradiction, and this yields the claim.

¤

Note that CentM (Op(G)) is a normal subgroup, and

CentM (Op(G)) = Z(Op(G))×Op′(CentM (Op(G))). (4.3)

Thus Conclusion 3 implies that CentM (Op(G)) ≤ Op(G). In particular, M

is not p-nilpotent. Hence G = M.P (see Conclusion 1).
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Let q 6= p be a prime number dividing the order of M , and let Q ∈
Sylq(M). By the previously mentioned remark, Op(G).Q is not p-nilpotent.
The Frattini argument implies that G = M.NG(Q), and hence Op(G).NG(Q)
contains a Sylow p-subgroup of G. By Conclusion 1, G = Op(G).NG(Q). In
particular, M = Op(G).Q and Q is an elementary abelian q-group.

Let P◦ ∈ Sylp(NG(Q)). Then Op(G).P◦ is a Sylow p-subgroup of G, and
we may assume that P = Op(G).P◦. As M is not p-nilpotent, Conclusion 1
implies that G = Op(G).Q.P◦.

Since G 6= M , there exists an element g ∈ P◦ \M = P◦ \ Op(G) such
that g.M ∈ Z(P◦.M/M) is order p. Put C = 〈g〉 ≤ P◦. By construction,
Cp ≤ P◦ ∩Op(G) and Op(G).C is normal in P .

Suppose that Q is a trivial Fp[C]-module. Then Q ≤ CentG(C) and
thus P, Q ≤ NG(C.Op(G)). Hence C.Op(G) is normal in G, a contradiction.
Thus there exists a non-trivial irreducible Fp[C]-submodule Q0 ≤ Q. As
CentG(Op(G)) is a p-group, Q0 is acting non-trivially on Op(G). In partic-
ular, Op(G).Q0 is not p-nilpotent. Let G̃ = Op(G).Q0.C. By construction,
one has NG̃(Op(G).C) = Op(G).C (see Fact 2.1(i)). Thus the minimality of
P and G imply that G = G̃ and P = Op(G).C. Note that NG(P ) = P and
G/M ' Cp.

Conclusion 5 If p = 2, then G is a 2q2-sandwich group. If p is odd, then
G/Φ(G) is a pqp-sandwich group and

{1} −→ Φ(G) −→ G −→ G/Φ(G) −→ {1} (4.4)

is a p-Schur-Frattini extension.

Proof of Conclusion 5. Let p = 2. Since Q acts non-trivially on O2(G),
Q acts non-trivially on O2(G)/Φ(O2(G)). Thus Ḡ = G/Φ(O2(G)) is not
p-nilpotent, and for P̄ = P/Φ(O2(G)), one has NḠ(P̄ ) = P̄ . Thus the
minimality of P implies that Φ(O2(G)) = {1}, and O2(G) is elementary
abelian. Let G0 = G/O2(G). The F2[Q]-module A = O2(G) must have a
non-trivial composition factor (see Conclusion 3). Hence the F2[G0]-module
B = O2(G) must have a non-trivial irreducible composition factor B0 (see
Section 2.2). Since B0 is projective and injective, it is a direct summand of
B. Thus the previously mentioned argument shows that O2(G) = B. Since
B is a projective F2[G0]-module, the extension {1} → B → G → G0 → {1}
must split. Hence G is a 2q2-sandwich group.
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Let p be odd. By Conclusion 3, Φ(G) is a p-group. As G =
Op(G).NG(Q), there exists a maximal subgroup M1 containing NG(Q) and
D = M1 ∩Op(G) 6= Op(G). Since Φ(Op(G)) ≤ Φ(G) (see [5, Section 3, Hilf-
satz 3.3]), M1 contains Φ(Op(G)). In particular, D is normal in Op(G). As
G = Op(G).M1, D is normal in G. Assume there exists a normal subgroup
N of G satisfying M1 ∩ Op(G) � N � Op(G). Then N is not contained
in M1 and thus N.M1 = G. In particular, for all g ∈ Op(G) there exists
x ∈ N , and y ∈ M1 such that g = xy. But y = x−1g ∈ M1 ∩ Op(G). Thus
g ∈ N , a contradiction.

Hence D is a maximal normal subgroup of G properly contained in
Op(G). In particular, B = Op(G)/D is an irreducible Fp[G0]-module, where
G0 = G/Op(G). Let P1 ∈ Sylp(M1). Since M1/D ' G0, NM1(P1) = P1.
Thus by the minimality of P , M1 is p-nilpotent, and therefore M1 = NG(Q).
As D is normal in M1, Q ≤ CentG(D). Since D is normal in G, one
has gQ ≤ CentG(D), or equivalently D ≤ CentG(gQ) for all g ∈ G. In
particular,

D ∩Op(G) ≤ Z(Op(G)). (4.5)

Suppose that B is a trivial Fp[G0]-module. Then Q ≤ CentG(Op(G)/D),
and therefore Q ≤ CentM (Op(G)) and Op′(G) 6= {1}, a contradiction (see
Conclusion 3). This implies that the irreducible Fp[G0]-module B is non-
trivial. In particular, it is projective (see Section 2.2) and the extension
{1} → B → G/D → G0 → {1} splits. Thus G/D is a pqp-sandwich group.
Hence Φ(G/D) = {1}.

Suppose there exists a maximal subgroup M2 of G not containing D.
Then G = D.M2, and M2/(M2 ∩ D) ' G/D. In particular, for P2 ∈
Syl2(M2) one has NM2(P2) = P2 (see Fact 2.1(i)), and M2 is not p-nilpotent,
a contradiction to the minimality of P . Hence D is contained in every
maximal subgroup of G, i.e., D ≤ Φ(G). By (4.5), the extension (4.4) is a
p-Schur-Frattini extension. ¤

By Fact 2.2, every 2q2-sandwich group contains a subgroup isomorphic
to the dihedral group D8, a contradiction.

For p odd, every finite p-Schur-Frattini extension of a pqp-sandwich
group contains a subgroup isomorphic to Yp(m) for some m ≥ 1 (see Propo-
sition 3.5). Again a contradiction, and the theorem is proved. ¤
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4.3. Subclasses of DNp

Let X be a class of finite groups. Then X is called s-closed, if G ∈ X and
H a subgroup of G implies that H ∈ X. Simarly, X is called q-closed, if for
all G ∈ X and normal subgroups N of G follows that G/N ∈ X. From the
counterexamples mentioned in the introduction (see Example 1.1(b)) one
concludes the following.

Proposition 4.3 The class xslim2 is a maximal s- and q-closed subclass
of DN2; for p odd the class slimp is a maximal s-closed subclass of DNp.

Proof. Let p be odd, and let Let Xp be a s-closed class of finite p-groups
containing slimp and being contained in DNp. Suppose there exists P ∈
Xp \ slimp. Then P contains a subgroup isomorphic to Yp(m), m ≥ 1.
Since Xp is s-closed, Yp(m) ∈ Xp and thus Yp(m) ∈ DNp. Let G be the
group described in Example 1.1(b) and let β : G → Cp denote the canonical
homomorphism. The pull-back H of the diagram

Cpm // Cp

H //____

OOÂ
Â
Â

G

β

OO
(4.6)

is not p-nilpotent, for P ∈ Sylp(H) one has NG(P ) = P and P ' Yp(m).
Thus Yp(m) 6∈ DNp, a contradiction. The case p = 2 follows by a similar
argument. ¤
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