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Bases for the derivation modules of two-dimensional

multi-Coxeter arrangements and universal derivations
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Abstract. Let A be an irreducible Coxeter arrangement and k be a multiplicity of

A. We study the derivation module D(A, k). Any two-dimensional irreducible Coxeter

arrangement with even number of lines is decomposed into two orbits under the action

of the Coxeter group. In this paper, we will explicitly construct a basis for D(A, k)

assuming k is constant on each orbit. Consequently we will determine the exponents

of (A, k) under this assumption. For this purpose we develop a theory of universal

derivations and introduce a map to deal with our exceptional cases.
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1. Introduction

Let V be an `-dimensional Euclidean space with inner product I. Let S

denote the symmetric algebra of the dual space V ∗ over R. Denote the S-
module of R-linear derivations of S by DerS . Let F be the field of quotients
of S and DerF be the F -vector space of R-linear derivations of F . Let W ⊆
O(V, I) be a finite irreducible reflection group (a Coxeter group) and A be
the corresponding Coxeter arrangement, i.e., A is the set of all reflecting
hyperplanes of W . An arbitrary map k : A → Z is called a multiplicity
of A. We say that the pair (A,k) is a multi-Coxeter arrangement.
The S-module D(A,k), defined in Section 2, of derivations associated with
(A,k) was introduced by Ziegler [13] when imk ⊆ Z≥0 and in [1], [2] for any
multiplicity k. We say that (A,k) is free if D(A,k) is a free S-module. The
polynomial degrees (= pdeg) [7] of a homogeneous S-basis for D(A,k) are
called the exponents of (A,k). If k ≡ 1, then D(A,k) coincides with the
S-module D(A) of logarithmic derivations and (A,k) is free (e.g., [8], [7]).
More in general, when k is a constant function, (A,k) is free and we can
explicitly construct a basis using basic invariants and a primitive derivation
as in [2], [11]. In the case that k is not constant, however, we do not know
how we can construct a basis for D(A,k) even when ` = 2. The main result
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of this paper gives an explicit construction of a basis for the module D(A,k)
when ` = 2 and the multiplicity k is W -equivariant: k(H) = k(wH) for any
w ∈ W and H ∈ A.

The structure of this paper is as follows: In Section 2, we define and
discuss the universal derivations which will be used in the subsequent
sections. Theorem 2.8 is the key result there. In Sections 3 and 4, we
assume that ` = 2. Then W = I2(h) is isomorphic to the dihedral group of
order 2h. When h is odd, A itself is the unique W -orbit. Thus k is constant
and we can construct a basis (e.g., see [11], [5], [1], [2]). So we may assume
that h is even with h ≥ 4. In this case, we have the W -orbit decomposition:
A = A1 ∪ A2. Then both A1 and A2 are again irreducible arrangements if
h ≥ 6 (or equivalently if W 6= B2). The corresponding irreducible Coxeter
groups W1 and W2 are both isomorphic to I2(h

2 ). For a1, a2 ∈ Z, let
(a1, a2) denote the multiplicity k : A → Z with k(H) = a1 (H ∈ A1)
and k(H) = a2 (H ∈ A2). We classify the set {(a1, a2) | a1, a2 ∈ Z}
into sixteen cases. The first fourteen cases are listed in Table 1. We call
the fourteen cases ordinary. The remaining two cases, which are when
either (a1, a2) = (4p, 4q + 2) or (4p + 2, 4q), are called to be exceptional

(a1, a2) ζ θ1, θ2 basis for D(A, (a1, a2))
(4p + 1, 4q + 1) E(2p,2q) E, I∗(dP2)

∇θ1ζ,∇θ2ζ

(4p− 1, 4q − 1) E(2p,2q) D, I∗(dQ/Q)
(4p− 1, 4q + 1) E(2p,2q) I∗(dQ1/Q1), E
(4p + 1, 4q − 1) E(2p,2q) I∗(dQ2/Q2), E

(4p + 1, 4q) E(2p,2q)

E, I∗(dQ2)(4p + 3, 4q + 2) E(2p+1,2q+1)

(4p− 1, 4q) E(2p,2q)

D1, I
∗(dQ1/Q1)(4p + 1, 4q + 2) E(2p+1,2q+1)

(4p, 4q + 1) E(2p,2q)

E, I∗(dQ1)(4p + 2, 4q + 3) E(2p+1,2q+1)

(4p, 4q − 1) E(2p,2q)

D2, I
∗(dQ2/Q2)(4p + 2, 4q + 1) E(2p+1,2q+1)

(4p, 4q) E(2p,2q)

∂x1 , ∂x2(4p + 2, 4q + 2) E(2p+1,2q+1)

Table 1. Bases for D(A, (a1, a2)) (ordinary cases) (p ≥ 0 or q ≥ 0)
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because our basis construction method in the ordinary cases does not work
for the exceptional ones. The exceptional cases are listed in Table 2. The
derivations ζ = E(s,t) are universal. We will explain how to read the two
Tables in Sections 3 and 4. Section 3 is devoted to the ordinary cases where
the main tool is the Levi-Civita connection

∇ : DerF ×DerF → DerF

with respect to I together with primitive derivations D and Di corre-
sponding to W and Wi (i = 1, 2) respectively. The recipe here is Abe-
Yoshinaga’s theory developed in [5] and [1]. The main ingredient in Section
4 is the maps

Φ(1)
ζ : DerS → D(A, (4p + 2, 4q)),

Φ(2)
ζ : DerS → D(A, (4p, 4q + 2)),

defined by

Φ(1)
ζ (θ) := Q1(∇θ ζ)− (4p + 1)θ(Q1)ζ,

Φ(2)
ζ (θ) := Q2(∇θ ζ)− (4q + 1)θ(Q2)ζ,

where Qi is a defining polynomial for Ai (i = 1, 2) and ζ is (2p, 2q)-universal.
Actually in Sections 3 and 4, we will construct bases only when either p ≥ 0
or q ≥ 0 in Tables 1 and 2. Lastly we cover the remaining cases using the
duality: the existence of a non-degenerate S-bilinear pairing

Ω(A,k)×D(A,k) −→ S,

where Ω(A,k) is the S-module of logarithmic differential 1-forms associated
with the multi-Coxeter arrangement (A,k) defined in [13], [1] and [3]. We

(a1, a2) ζ θ1, θ2 basis for D(A, (a1, a2))

(4p + 2, 4q) E(2p,2q) ∂x1 , ∂x2 Φ(1)
ζ (θ1),Φ

(1)
ζ (θ2)

(4p, 4q + 2) E(2p,2q) ∂x1 , ∂x2 Φ(2)
ζ (θ1),Φ

(2)
ζ (θ2)

Table 2. Bases for D(A, (a1, a2)) (exceptional cases) (p ≥ 0 or q ≥ 0)
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conclude this paper with Section 5 in which we present Table 4 showing the
exponents of (A,k).

Remark In addition to I2(h) with h ≥ 4 even, there exist two kinds of
irreducible Coxeter arrangements which have two W -orbits: B` (` ≥ 2) and
F4. For each of these two cases, when k is an equivariant multiplicity, a
basis for D(A,k) is constructed with a method similar to the one applied
to the ordinary cases here. Details are found in [4].

2. Universal derivations

Let A be an irreducible Coxeter arrangement. For each hyperplane
H ∈ A, choose a linear form αH ∈ V ∗ such that ker(αH) = H. The product
Q :=

∏
H∈A αH lies in S. Let ΩS be the S-module of regular 1-forms and

ΩF be the F -vector space of rational 1-forms on V . Let I∗ denote the inner
product on V ∗ induced from the inner product I on V . Then I∗ naturally
induces an S-bilinear map I∗ : ΩF × ΩF → F . Thus we have an F -linear
isomorphism

I∗ : ΩF → DerF

by [I∗(ω)](f) = I∗(ω, df) where ω ∈ ΩF , f ∈ F . Recall the S-module

Ω(A,∞) :=
{
ω ∈ ΩF | QNω and (Q/αH)Nω ∧ dαH

are both regular for any H ∈ A and N À 0
}

of logarithmic 1-forms [2]. We also have the S-module

D(A,−∞) := I∗(Ω(A,∞))

=
{
θ ∈ DerF | QNθ ∈ DerS and (Q/αH)Nθ(β) is regular for

β ∈ V ∗ whenever I∗(β, αH) = 0 for any H ∈
A and N À 0

}

of logarithmic derivations [2]. Let

∇ : DerF ×DerF −→ DerF

(θ, δ) 7−→ ∇θ δ
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be the Levi-Civita connection with respect to I. The derivation ∇θδ ∈ DerF

is characterized by the equality (∇θδ)(α) = θ(δ(α)) for any α ∈ V ∗.
For α ∈ V ∗ let S(α) denote the localization of S at the prime ideal (α) of

S. For an arbitrary multiplicity k : A → Z, define an S-submodule D(A,k)
of D(A,−∞) by

D(A,k) :=
{
θ ∈ D(A,−∞) | θ(αH) ∈ α

k(H)
H S(αH) for any H ∈ A}

from [3]. The module D(A,k) was introduced by Ziegler [13] when imk ⊆
Z≥0. Note D(A,0) = DerS where 0 is the zero multiplicity. For each k : A →
Z, define Qk :=

∏
H∈A α

k(H)
H ∈ F . Recall the following generalization of

Saito’s criterion [9]:

Theorem 2.1 (Abe [1, Theorem 1.4]) Let k : A → Z and θ1, . . . , θ` ∈
D(A,k). Then θ1, . . . , θ` form an S-basis for D(A,k) if and only if
det[θj(xi)]

.= Qk. Here .= implies the equality up to a non-zero constant
multiple.

Definition 2.2 Let k : A → Z and ζ ∈ D(A,−∞)W , where the super-
script W stands for the W -invariant part. We say that ζ is k-universal
when ζ is homogeneous and the S-linear map

Ψζ : DerS −→ D(A, 2k)

θ 7−→ ∇θ ζ

is bijective.

Example 2.3 The Euler derivation E, which is the derivation charac-
terized by E(α) = α for any α ∈ V ∗, is 0-universal because ΨE(δ) = ∇δE =
δ.

For an irreducible Coxeter group W , there exist algebraically indepen-
dent homogeneous polynomials P1, P2, . . . , P` with deg P1 < deg P2 ≤ · · · ≤
deg P`−1 < deg P` by Chevalley’s Theorem [6], which are called basic in-
variants. When D ∈ DerF satisfies

D(Pj) =

{
0 if 1 ≤ j < `,

1 if j = `,
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we say that D is a primitive derivation. It is unique up to a nonzero
constant multiple. Let R := SW be the W -invariant subring of S and

T := {f ∈ R | D(f) = 0}.

Theorem 2.4 ([2, Theorem 3.9 (1)], [3, Theorem 4.4])

(1) We have a T -linear automorphism

∇D : D(A,−∞)W −→ D(A,−∞)W ,

θ 7−→ ∇Dθ

(2) ∇D(D(A, 2k + 1)W ) = D(A, 2k− 1)W for any multiplicity k : A → Z.

Note that ∇−1
D and ∇k

D (k ∈ Z) are also T -linear automorphisms.
Let x1, . . . , x` be a basis for V ∗. Put A := [I∗(xi, xj)]ij which is a non-

singular real symmetric matrix. For simplicity let ∂xj
and ∂Pj

denote ∂/∂xj

and ∂/∂Pj respectively. Note that D = ∂P`
.

Proposition 2.5 Let k ∈ Z. Here k is a constant multiplicity: k ≡ k.
Then the derivation ∇k

DE is (−k)-universal.

Proof. When k ≤ 0, the result was first proved by Yoshinaga in [12].
Assume k > 0. Recall a basis η

(−2k)
1 , . . . , η

(−2k)
` for D(A,−2k) introduced

in [2, Definition 3.1]. Then we have

[∇∂x1
∇k

DE, . . . ,∇∂x`
∇k

DE
]

=
[
η
(−2k)
1 , . . . , η

(−2k)
`

]
A−1,

which is the second equality of [2, Proposition 4.3] (in the differential-form
version). ¤

Proposition 2.6 Let ζ ∈ D(A,−∞)W be k-universal. Then

(1) the S-linear map

Ψζ : D(A,−1) −→ D(A, 2k−1)

θ 7−→ ∇θ ζ

is bijective,
(2) ζ ∈ D(A, 2k + 1)W , and



Two-dimensional multi-Coxeter arrangements 381

(3) α
−2k(H)−1
H ζ(αH) is a unit in S(αH) for any H ∈ A.

Proof. (1) Note that ∂P1 , . . . , ∂P`
form an S-basis for D(A,−1) [2, p. 823].

Let 1 ≤ j ≤ `. Then

Q∇∂Pj
ζ = ∇Q∂Pj

ζ ∈ D(A, 2k)

because Q∂Pj ∈ DerS . Thus

(∇∂Pj
ζ
)
(αH) ∈ α

2k(H)−1
H S(αH) (H ∈ A).

Pick H ∈ A arbitrarily and choose an orthonormal basis x1, . . . , x` for V ∗ so
that H = ker(x1). For i = 2, . . . , ` define gi := (Q/x1)NQ(∇∂Pj

ζ)(xi) ∈ S

for a sufficiently large positive integer N . Let s = sH denote the orthogonal
reflection through H. Then s(gi) = −gi. Thus gi ∈ x1S and

(∇∂Pj
ζ
)
(xi) = (Q/x1)−Ngi/Q ∈ S(x1).

This implies ∇∂Pj
ζ ∈ D(A,−∞) and thus ∇∂Pj

ζ ∈ D(A, 2k− 1). One has

det
[(∇∂Pj

ζ
)
(xi)

]

= det
([(∇∂xj

ζ
)
(xi)

][
∂Pi/∂xj

]−1) .= Q−1 det
[(∇∂xj

ζ
)
(xi)

]

.= Q2k−1

by the chain rule ∂xj =
∑`

s=1(∂Ps/∂xj)∂Ps and the equality det[∂Pi/∂xj ]
.=

Q. Applying Theorem 2.1 we conclude that ∇∂P1
ζ, . . . ,∇∂P`

ζ form an S-
basis for D(A, 2k− 1).

(2) By (1), ∇D ζ ∈ D(A, 2k − 1)W . Thanks to Theorem 2.4, we have
ζ ∈ D(A, 2k + 1)W .

(3) By (2), ζ(αH) ∈ α
2k(H)+1
H S(αH) for any H ∈ A. Assume that

α
−2k(H)−1
H ζ(αH) is not a unit in S(αH) for some H ∈ A. Choose an or-

thonormal basis x1, x2, . . . , x` for V ∗ so that H = ker(x1). Then ζ(x1) ∈
x

2k(H)+2
1 S(x1). Thus (∇∂xj

ζ)(x1) ∈ x
2k(H)+1
1 S(x1) for each j with 1 ≤ j ≤ `

and Q2k .= det[(∇∂xj
ζ)(xi)] ∈ x

2k(H)+1
1 S(x1), which is a contradiction. ¤

Proposition 2.7 (cf. [5, Theorem 10], [1, Theorem 2.1]) If ζ ∈ D(A,
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−∞)W is k-universal and m : A → {−1, 0, 1} is a multiplicity, then the
S-linear map

Ψζ : D(A,m) −→ D(A, 2k + m)

θ 7−→ ∇θ ζ

is bijective.

Proof. Note that D(A,m) ⊆ D(A,−1) and D(A, 2k+m) ⊆ D(A, 2k−1).
By Proposition 2.6 (1), the restriction of

Ψζ : D(A,−1) −→ D(A, 2k−1)

to D(A,m) is injective. Thus it is enough to prove Ψζ(D(A,m)) =
D(A, 2k+m). Let θ ∈ D(A,−1). Pick H ∈ A arbitrarily and fix it. Choose
an orthonormal basis x1, x2, . . . , x` with H = ker(x1). Let k := k(H) and
m := m(H). Then, by Proposition 2.6 (3), g := x−2k−1

1 ζ(x1) is a unit in
S(x1). Compute

(Ψζ(θ))(x1) = (∇θ ζ)(x1) = θ(ζ(x1)) = θ(x2k+1
1 g)

= x2k+1
1 θ(g) + (2k + 1)x2k

1 θ(x1)g

= x2k+1
1

∑̀

j=1

θ(xj)(∂g/∂xj) + (2k + 1)x2k
1 θ(x1)g

= x2k
1 θ(x1){x1(∂g/∂x1) + (2k + 1)g}+ x2k+1

1

∑̀

j=2

θ(xj)(∂g/∂xj)

= x2k
1 θ(x1)U + x2k+1

1 C,

where U := x1(∂g/∂x1) + (2k + 1)g is a unit in S(x1) and C :=∑`
j=2 θ(xj)(∂g/∂xj). Dividing the both sides by x2k+m

1 , we get

x−2k−m
1 (Ψζ(θ))(x1) = x−m

1 θ(x1)U + x1−m
1 C.

Note that ∂g/∂xj ∈ S(x1) and θ(xj) ∈ S(x1) (j ≥ 2) because θ ∈ D(A,−∞).
So one has C ∈ S(x1) and x1−m

1 C ∈ S(x1) for m ∈ {±1, 0}. Thus we conclude
that
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x−2k−m
1 (Ψζ(θ))(x1) ∈ S(x1) ⇐⇒ x−m

1 θ(x1) ∈ S(x1).

This implies that

Ψζ(θ) ∈ D(A, 2k + m) ⇐⇒ θ ∈ D(A,m)

because H ∈ A was arbitrarily chosen. This completes the proof. ¤

The following is the main result in this section.

Theorem 2.8 Let k : A → Z be a multiplicity of A. Let ζ ∈ D(A,−∞)W

be k-universal. Then ∇−1
D ζ is (k + 1)-universal.

Proof. It is classically known [8] that ξj := I∗(dPj) ∈ D(A,1)W (j =
1, . . . , `) form an S-basis for D(A,1). By Proposition 2.7, ∇ξj ζ ∈ D(A, 2k+
1)W (j = 1, . . . , `) form an S-basis for D(A, 2k + 1). Since ∇D∇ξj

ζ ∈
D(A, 2k− 1)W (j = 1, . . . , `) by Theorem 2.4, we can write

∇D∇ξj
ζ =

∑̀

i=1

fij∇∂Pi
ζ

with W -invariant polynomials fij ∈ R because of Proposition 2.6 (1). Then
fij is a homogeneous element with degree mi + mj − h < h, where h is
the Coxeter number, and fij belongs to T = {f ∈ R | Df = 0}. Since
mi + m`+1−i − h = 0, det[fij ] ∈ R. Apply ∇−1

D to the both sides to get

∇ξj
ζ = ∇−1

D

∑̀

i=1

fij∇∂Pi
ζ =

∑̀

i=1

fij∇∂Pi
∇−1

D ζ.

Since ∇ξj
ζ ∈ D(A, 2k+1)W (j = 1, . . . , `) form an S-basis for D(A, 2k+1),

we have det[fij ] ∈ R×. This implies that ∇∂Pj
∇−1

D ζ (j = 1, . . . , `) form an
S-basis for D(A, 2k+1). Since ∇−1

D ζ ∈ D(A, 2k+3) by Proposition 2.6 (2)
and Theorem 2.4, we conclude that

∇∂xj
∇−1

D ζ =
∑̀

i=1

(∂xj
Pi)∇∂Pi

∇−1
D ζ (j = 1, . . . , `)

form an S-basis for D(A, 2k + 2) by Theorem 2.1. ¤



384 A. Wakamiko

3. The ordinary cases

In the rest of this paper we assume dimV = ` = 2 and W = I2(h)
such that h ≥ 4 is an even number. The orbit decomposition A = A1 ∪
A2 satisfies |A1| = |A2| = h/2. Recall the equivariant multiplicities k =
(a1, a2), a1, a2 ∈ Z, defined by

k(H) =

{
a1 if H ∈ A1,

a2 if H ∈ A2.

Let x1, x2 be an orthonormal basis for V ∗. Suppose that P1 := (x2
1 +

x2
2)/2 and P2 are basic invariants of W . Then deg P2 = h and R = SW =
R[P1, P2]. Let Wi be the (normal) subgroup of W generated by all reflections
through H ∈ Ai (i = 1, 2). Let Qi =

∏
H∈Ai

αH and Ri := SWi (i = 1, 2).
Let D be a primitive derivation corresponding to the whole group W . Then
it is known [10, (5.1)] that

D
.=

1
Q

(−x2∂x1 + x1∂x2).

Lemma 3.1 Define

D1 := Q2D
.=

1
Q1

(−x2∂x1 + x1∂x2), D2 := Q1D
.=

1
Q2

(−x2∂x1 + x1∂x2).

Then

(1) R1 = R[P1, Q2], R2 = R[P1, Q1] and R = R[P1, Q
2
1] = R[P1, Q

2
2],

(2) −x2(∂Q2/∂x1) + x1(∂Q2/∂x2)
.= Q1 and −x2(∂Q1/∂x1) +

x1(∂Q1/∂x2)
.= Q2,

(3) D1(P1) = D2(P1) = 0, D1(Q2) ∈ R× and D2(Q1) ∈ R×.

Proof. Thanks to the symmetry we only have to prove a half of the state-
ment. Since Q and Q1 are both W1-antiinvariant, Q2 = Q/Q1 is W1-
invariant and Q2

2 is W -invariant. Note that Q2 is a product of real linear
forms. So Q2 and P1 are algebraically independent. Since

|A1| = h/2 = (deg Q2 − 1) + (deg P1 − 1),

we have R1 = R[P1, Q2]. Similarly we obtain R = R[P1, Q
2
2]. This proves
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(1). The Jacobian

−x2(∂Q2/∂x1) + x1(∂Q2/∂x2) = det
(

∂P1/∂x1 ∂Q2/∂x1

∂P1/∂x2 ∂Q2/∂x2

)
6= 0

is equal to Q1 up to a nonzero constant multiple, which is (2). Compute

D1(P1) = Q2D(P1) = 0, 2D1(Q2) = 2Q2D(Q2) = D(Q2
2) ∈ R×.

This proves (3). ¤

The Euler derivation E = I∗(dP1) = I∗(x1dx1+x2dx2) = x1∂x1 +x2∂x2

satisfies E(α) = α for all α ∈ V ∗ and belongs to D(A, (1, 1)).

Proposition 3.2 A basis for D(A, (a1, a2)) is given in Table 3 for −1 ≤
a1 ≤ 1, −1 ≤ a2 ≤ 1.

(a1, a2) basis for D(A, (a1, a2)) exponents of (A, (a1, a2)) their difference

(1, 1) E, I∗(dP2) 1, h− 1 h− 2

(1, 0) E, I∗(dQ2) 1, (h/2)− 1 (h/2)− 2

(0, 1) E, I∗(dQ1) 1, (h/2)− 1 (h/2)− 2

(1,−1) I∗(dQ2/Q2), E −1, 1 2

(0, 0) ∂x1 , ∂x2 0, 0 0

(−1, 1) I∗(dQ1/Q1), E −1, 1 2

(0,−1) D2, I
∗(dQ2/Q2) 1− (h/2),−1 (h/2)− 2

(−1, 0) D1, I
∗(dQ1/Q1) 1− (h/2),−1 (h/2)− 2

(−1,−1) D, I∗(dQ/Q) 1− h,−1 h− 2

Table 3. The exponents of (A, (a1, a2)) (−1 ≤ a1 ≤ 1,−1 ≤ a2 ≤ 1)

Proof. Let ω0 = −x2dx1 + x1dx2. Note that ω0 ∧ dα = −α(dx1 ∧ dx2)
for any α ∈ V ∗. It is easy to see that each of dP1, dP2, dQ1, dQ2, dQ1/Q1,

dQ2/Q2, ω0/Q, ω0/Q1 and ω0/Q2 belongs to Ω(A,∞) defined in Section 2.
Note that D = I∗(ω0)/Q and Di = I∗(ω0)/Qi (i = 1, 2). Thus all of the
derivations in the table lie in D(A,−∞) = I∗(Ω(A,∞)).

If P is W -invariant, then I∗(dP ) ∈ D(A, (1, 1)). Therefore I∗(dQ1) ∈
D(A, (0, 1)) and I∗(dQ2) ∈ D(A, (1, 0)) because of Lemma 3.1 (1). We
thus have I∗(dQ1/Q1) ∈ D(A, (−1, 1)) and I∗(dQ2/Q2) ∈ D(A, (1,−1)).
Since QD = Q1D1 = Q2D2 lies in DerS , we get D ∈ D(A, (−1,−1)),
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D1 ∈ D(A, (−1, 0)) and D2 ∈ D(A, (0,−1)). Now apply Theorem 2.1 noting
Lemma 3.1 (2). ¤

Lemma 3.3 When h ≥ 6 is even, Di is a primitive derivation of the
irreducible Coxeter arrangement Ai (i = 1, 2).

Proof. By Lemma 3.1 (3). ¤

For s, t ∈ Z with t− s ∈ 2Z, define

E
(s,t)
1 := ∇−t

D ∇t−s
D1

E, E
(s,t)
2 := ∇−s

D ∇s−t
D2

E.

Proposition 3.4
(1) If t ∈ Z≥0 and t− s ∈ 2Z, then E

(s,t)
1 is (s, t)-universal,

(2) If s ∈ Z≥0 and s− t ∈ 2Z, then E
(s,t)
2 is (s, t)-universal.

Proof. It is enough to show (1) because of the symmetry of the statement.

Case 1. When h ≥ 6 is even, A1 is an irreducible Coxeter arrangement
of h/2 lines. By Lemma 3.3, D1 is a primitive derivation of A1. Thus

∇∂x1
∇t−s

D1
E, . . . ,∇∂x`

∇t−s
D1

E

form an S-basis for D(A, (2(s− t), 0)). Note that D1 = Q2D satisfies

w1D1 = D1, w2D1 = det(w2)D1

for any w1 ∈ W1, w2 ∈ W2. Since W1 is a normal subgroup of W , D(A1,

−∞)W1 is naturally a W -module and the map ∇n
D1

: D(A1,−∞)W1 →
D(A1,−∞)W1 is a W -equivariant bijection when n is even. Thus ∇t−s

D1
E ∈

D(A,−∞)W . This implies that∇t−s
D1

E is (s−t, 0)-universal when t− s ∈ 2Z.
Apply Theorem 2.8.

Case 2. Let h = 4. Then W is of type B2. We may choose an or-
thonormal basis for V ∗ with Q1 = x1x2 and Q2 = (x1 + x2)(x1− x2). Then

D1 = − 1
x1

∂x1 +
1
x2

∂x2

and
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∇2n
D1

E = −(4n− 3)!!
(
x1−4n

1 ∂x1 + x1−4n
2 ∂x2

) ∈ D(A,−∞)W (n > 0),

∇−2n
D1

E =
1

(4n + 1)!!
(
x4n+1

1 ∂x1 + x4n+1
2 ∂x2

) ∈ D(A,−∞)W (n ≥ 0),

where (2m− 1)!! =
∏m

i=1(2i− 1). Thus

∇∂x1
∇2n

D1
E

.= x−4n
1 ∂x1 , ∇∂x2

∇2n
D1

E
.= x−4n

2 ∂x2 (n ∈ Z).

This implies that ∇t−s
D1

E is (s − t, 0)-universal when s − t ∈ 2Z. Apply
Theorem 2.8. ¤

We say that a pair (a1, a2) is exceptional if

a1 ∈ 2Z and a1 − a2 ≡ 2 (mod 4).

If (a1, a2) is not exceptional, then we call (a1, a2) ordinary. We may apply
Propositions 3.2 and 2.7 to get the following proposition:

Proposition 3.5 Suppose that (a1, a2) is ordinary and that either p ≥ 0
or q ≥ 0 in Table 1. Then ∇θ1ζ, ∇θ2ζ form an S-basis for D(A, (a1, a2))
as in Table 1, where E(s,t) stands for E

(s,t)
1 if t ≥ 0 or it stands for E

(s,t)
2 if

s ≥ 0.

4. The exceptional cases

Suppose that (a1, a2) ∈ Z2 is exceptional. Write

(a1, a2) = (4p + 2, 4q) or (a1, a2) = (4p, 4q + 2) (p, q ∈ Z).

Proposition 4.1 Suppose that ζ is (2p, 2q)-universal. Then the map

Φ(1)
ζ : DerS −→ D(A, (4p + 2, 4q))

θ 7−→ Q1(∇θζ)− (4p + 1)θ(Q1)ζ

is an S-linear bijection. Similarly the map

Φ(2)
ζ : DerS −→ D(A, (4p, 4q + 2))

θ 7−→ Q2(∇θζ)− (4q + 1)θ(Q2)ζ
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is an S-linear bijection.

Proof. It is enough to show the first half because of the symmetry. Let
θ ∈ DerS . We first prove that Φ(1)

ζ (θ) ∈ D(A, (4p + 2, 4q)). Let Hi ∈ Ai

and αi := αHi
(i = 1, 2). Since ζ ∈ D(A, (4p + 1, 4q + 1)) by Proposition

2.6 (2), write

ζ(α1) = α4p+1
1 f1, ζ(α2) = α4q+1

2 f2 (f1 ∈ S(α1), f2 ∈ S(α2)).

Compute

[
Φ(1)

ζ (θ)
]
(α1)

= Q1(∇θζ)(α1)− (4p + 1)θ(Q1)ζ(α1)

= Q1

(
θ(α4p+1

1 f1)
)− (4p + 1)θ(Q1)α

4p+1
1 f1

= Q1α
4p+1
1 θ(f1) + (4p + 1)f1α

4p
1 Q1θ(α1)− (4p + 1)f1α

4p+1
1 θ(Q1)

= Q1α
4p+1
1 θ(f1)− (4p + 1)f1α

4p+2
1

{
(1/α1)θ(Q1)− (Q1/α2

1)θ(α1)
}

= Q1α
4p+1
1 θ(f1)− (4p + 1)f1α

4p+2
1 θ(Q1/α1) ∈ α4p+2

1 S(α1).

Also

[
Φ(1)

ζ (θ)
]
(α2)

= Q1(∇θζ)(α2)− (4p + 1)θ(Q1)ζ(α2)

= Q1

(
θ(α4q+1

2 f2)
)− (4p + 1)θ(Q1)α

4q+1
2 f2

= Q1α
4q+1
2 θ(f2) + (4q + 1)f2α

4q
2 Q1θ(α2)− (4p + 1)f2α

4q+1
2 θ(Q1)

∈ α4q
2 S(α2).

This shows Φ(1)
ζ (θ) ∈ D(A, (4p + 2, 4q)). Next we will prove that Φ(1)

ζ (∂x1)

and Φ(1)
ζ (∂x2) form an S-basis for D(A, (4p + 2, 4q)). Define M(θ1, θ2) :=

[θi(xj)]1≤i,j≤2. Then



Two-dimensional multi-Coxeter arrangements 389

det M
(
Φ(1)

ζ (∂x1),Φ
(1)
ζ (∂x2)

)
= det M

(
Q1∇∂x1

ζ, Q1∇∂x2
ζ
)

− (4p + 1) det M
(
Q1∇∂x1

ζ, (∂x2Q1)ζ
)

− (4p + 1) det M
(
(∂x1Q1)ζ, Q1∇∂x2

ζ
)
.

Note

x1

(∇∂x1
ζ
)

+ x2

(∇∂x2
ζ
)

= ∇Eζ = {1 + h(p + q)}ζ

because∇∂x1
ζ, ∇∂x2

ζ are a basis for D(A, (4p, 4q)) and pdeg ζ = 1+h(p+q).
Thus

detM
(
Φ(1)

ζ (∂x1),Φ
(1)
ζ (∂x2)

)

= Q2
1 det M

(∇∂x1
ζ,∇∂x2

ζ
)− (4p + 1)Q1x2(∂x2Q1)

1 + h(p + q)
detM

(∇∂x1
ζ,∇∂x2

ζ
)

− (4p + 1)Q1x1(∂x1Q1)
1 + h(p + q)

det M
(∇∂x1

ζ,∇∂x2
ζ
)

=
{

Q2
1 −

(4p + 1)Q1(x1(∂x1Q1) + x2(∂x2Q1))
1 + h(p + q)

}
det M

(∇∂x1
ζ,∇∂x2

ζ
)

.=
{

1− (4p + 1)h
2(1 + h(p + q))

}
Q2

1Q
4p
1 Q4q

2 =
2− h(2p− 2q + 1)

2(1 + h(p + q))
Q4p+2

1 Q4q
2 .

Note that 2 − h(2p − 2q + 1) 6= 0 and 1 + h(p + q) 6= 0 because h ≥ 4.
Therefore Φ(1)

ζ (∂x1) and Φ(1)
ζ (∂x2) form an S-basis for D(A, (4p + 2, 4q))

thanks to Theorem 2.1. Thus Φ(1)
ζ is an S-linear bijection. ¤

We may apply Proposition 4.1 to get the following proposition:

Proposition 4.2 Suppose that (a1, a2) is exceptional and that either p ≥ 0
or q ≥ 0 in Table 2. Then, for i = 1, 2, Φ(i)

ζ (θ1) and Φ(i)
ζ (θ2) form an S-basis

for D(A, (a1, a2)) as in Table 2.

Proposition 3.4 asserts that E
(s,t)
1 is (s, t)-universal when s − t ∈ 2Z,

t ≥ 0 and that E
(s,t)
2 is (s, t)-universal when t − s ∈ 2Z, s ≥ 0. So Tables

1 and 2 show how to construct a basis for D(A, (a1, a2)) when a1 ≥ 0 or
a2 ≥ 0. We will construct a basis for D(A, (a1, a2)) in the remaining case
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that a1 < 0 and a2 < 0. Let

Ω(A,k) := (I∗)−1(D(A,−k))

=
{
ω ∈ Ω(A,∞) | I∗(ω, dαH) ∈ α

−k(H)
H S(αH) for all H ∈ A}

.

Theorem 4.3 (Ziegler [13], Abe [1, Theorem 1.7]) The natural S-bilinear
coupling

D(A,k)× Ω(A,k) −→ S

is non-degenerate and provides S-linear isomorphisms:

α : D(A,k) → Ω(A,k)∗, β : Ω(A,k) → D(A,k)∗.

Thus we have the following proposition:

Proposition 4.4 Let (a1, a2) ∈ (Z<0)2 and x1, x2 be an orthonormal
basis. Let θ1, θ2 be an S-basis for D(A, (−a1,−a2)). Then

η1 := g11∂x1 + g21∂x2 , η2 := g12∂x1 + g22∂x2 ,

form an S-basis for D(A, (a1, a2)). Here

(
g11 g12

g21 g22

)
=

(
θ1(x1) θ1(x2)
θ2(x1) θ2(x2)

)−1

= Qa1
1 Qa2

2

(
θ2(x2) −θ1(x2)
−θ2(x1) θ1(x1)

)
.

5. Conclusion

Let A be a two-dimensional irreducible Coxeter arrangement such that
|A| is even with |A| ≥ 4. We have constructed an explicit basis for
D(A, (a1, a2)) for an arbitrary equivariant multiplicity k = (a1, a2) with
a1, a2 ∈ Z. Our recipes are presented in the Tables 1, 2, Propositions 3.5,
4.2 and 4.4. Lastly we show Table 4 for the exponents.
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a1 a2 a1 − a2 exponents of (A, (a1, a2)) their difference

odd odd ≡ 0 (mod 4) (a1+a2−2)h
4 + 1, (a1+a2+2)h

4 − 1 h− 2

odd odd ≡ 2 (mod 4) (a1+a2)h
4 + 1, (a1+a2)h

4 − 1 2

odd even (a1+a2−1)h
4 + 1, (a1+a2+1)h

4 − 1 (h/2)− 2

even odd (a1+a2−1)h
4 + 1, (a1+a2+1)h

4 − 1 (h/2)− 2

even even (a1+a2)h
4 , (a1+a2)h

4 0

Table 4. The exponents of (A, (a1, a2)) (a1, a2 ∈ Z)
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