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Bases for the derivation modules of two-dimensional

multi-Coxeter arrangements and universal derivations
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Abstract. Let A be an irreducible Coxeter arrangement and k be a multiplicity of
A. We study the derivation module D(A, k). Any two-dimensional irreducible Coxeter
arrangement with even number of lines is decomposed into two orbits under the action
of the Coxeter group. In this paper, we will explicitly construct a basis for D(A, k)
assuming k is constant on each orbit. Consequently we will determine the exponents
of (A, k) under this assumption. For this purpose we develop a theory of universal
derivations and introduce a map to deal with our exceptional cases.
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1. Introduction

Let V be an ¢-dimensional Euclidean space with inner product I. Let S
denote the symmetric algebra of the dual space V* over R. Denote the S-
module of R-linear derivations of S by Derg. Let F' be the field of quotients
of S and Derp be the F-vector space of R-linear derivations of F'. Let W C
O(V,I) be a finite irreducible reflection group (a Coxeter group) and A be
the corresponding Coxeter arrangement, i.e., A is the set of all reflecting
hyperplanes of W. An arbitrary map k: A — Z is called a multiplicity
of A. We say that the pair (A, k) is a multi-Coxeter arrangement.
The S-module D(A, k), defined in Section 2, of derivations associated with
(A, k) was introduced by Ziegler [13] when imk C Z>( and in [1], [2] for any
multiplicity k. We say that (A, k) is free if D(A, k) is a free S-module. The
polynomial degrees (= pdeg) [7] of a homogeneous S-basis for D(A, k) are
called the exponents of (A, k). If k = 1, then D(A, k) coincides with the
S-module D(A) of logarithmic derivations and (A, k) is free (e.g., [8], [7]).
More in general, when k is a constant function, (A, k) is free and we can
explicitly construct a basis using basic invariants and a primitive derivation
as in [2], [11]. In the case that k is not constant, however, we do not know
how we can construct a basis for D(A, k) even when ¢ = 2. The main result
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of this paper gives an explicit construction of a basis for the module D(A, k)
when ¢ = 2 and the multiplicity k is W-equivariant: k(H) = k(wH) for any
weW and H € A.

The structure of this paper is as follows: In Section 2, we define and
discuss the universal derivations which will be used in the subsequent
sections. Theorem 2.8 is the key result there. In Sections 3 and 4, we
assume that ¢ = 2. Then W = Iy(h) is isomorphic to the dihedral group of
order 2h. When h is odd, A itself is the unique W-orbit. Thus k is constant
and we can construct a basis (e.g., see [11], [5], [1], [2]). So we may assume
that h is even with h > 4. In this case, we have the W-orbit decomposition:
A= A; UA;. Then both A; and A, are again irreducible arrangements if
h > 6 (or equivalently if W # Bsy). The corresponding irreducible Coxeter
groups W7 and W5 are both isomorphic to Ig(%). For aq, ay € Z, let
(a1,a2) denote the multiplicity k : A — Z with k(H) = a1 (H € A;)
and k(H) = ay (H € Ay). We classify the set {(a1,a2) | a1,a2 € Z}
into sixteen cases. The first fourteen cases are listed in Table 1. We call
the fourteen cases ordinary. The remaining two cases, which are when
either (a1,a2) = (4p,4q + 2) or (4p + 2,4q), are called to be exceptional

(a1,as2) ¢ 01,02 basis for D(A, (a1, a2))
(4p+1,4¢+1) F(2p,29) E, I*(dP,)
(4p — 1,4q - 1) E(2P72‘1) D,I* (dQ/Q)
(4p—1,4¢+1)| ECr20 | 1(dQ,/Q:),E
(4p+1,4g—1)| ECP2 I"(dQ2/Q2), E
(4p + 1,4q) £ (2p,29) .
(4p + 3,4q + 2) | E@PFL.2¢+T) E, I*(dQ2)
(4p — 1,4q) E@p.29) .
(p+1.4g +2) | Bt | Do I (dQ/@Q) Vo, ¢, Vo, ¢
(4p,4g +1) E:24) )
(p12.dg+3) g BIdQ)
(4p,4g — 1) E®:24) .
(4p +2,4q + 1) | E@pHL20+D) Dy, I"(dQ2/Q2)
(4p,4q) Ep29)

Oz, 5 Oy

(4p + 2,4q + 2) | BGpt12a+1)

Table 1. Bases for D(A, (a1, a2)) (ordinary cases) (p > 0 or g > 0)
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because our basis construction method in the ordinary cases does not work
for the exceptional ones. The exceptional cases are listed in Table 2. The
derivations ¢ = E(®! are universal. We will explain how to read the two
Tables in Sections 3 and 4. Section 3 is devoted to the ordinary cases where
the main tool is the Levi-Civita connection

V : Derp x Derg — Derp

with respect to I together with primitive derivations D and D; corre-
sponding to W and W; (i = 1,2) respectively. The recipe here is Abe-
Yoshinaga’s theory developed in [5] and [1]. The main ingredient in Section
4 is the maps

<I>él) : Derg — D(A, (4p + 2,4q)),
o : Ders — D(A, (4p, 49 + 2)),

defined by

oM (0) := Q1(V4 €) — (4p + 1)0(Q1)C,
02 (0) = Qa(V C) — (49 + 1)0(Q2)C,

where Q); is a defining polynomial for A; (i = 1,2) and ¢ is (2p, 2¢)-universal.
Actually in Sections 3 and 4, we will construct bases only when either p > 0
or ¢ > 0 in Tables 1 and 2. Lastly we cover the remaining cases using the
duality: the existence of a non-degenerate S-bilinear pairing

QA k) x D(A k) — S,

where (A, k) is the S-module of logarithmic differential 1-forms associated
with the multi-Coxeter arrangement (A, k) defined in [13], [1] and [3]. We

(a1, a2) ¢ 61,602 | basis for D(A, (a1, a2))
(dp+2,4q) | P20 [ 8,,,0,, | 0 (61), 01 ()
(4p,4q +2) | ECP20) | 8,,,8,, | @2 (61), 21 (62)

Table 2. Bases for D(A, (a1, a2)) (exceptional cases) (p > 0 or g > 0)
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conclude this paper with Section 5 in which we present Table 4 showing the
exponents of (A, k).

Remark In addition to Iy(h) with h > 4 even, there exist two kinds of
irreducible Coxeter arrangements which have two W-orbits: By (¢ > 2) and
F,. For each of these two cases, when k is an equivariant multiplicity, a
basis for D(A, k) is constructed with a method similar to the one applied
to the ordinary cases here. Details are found in [4].

2. Universal derivations

Let A be an irreducible Coxeter arrangement. For each hyperplane
H € A, choose a linear form ay € V* such that ker(ay) = H. The product
Q = [[yeqan lies in S. Let Qg be the S-module of regular 1-forms and
Qr be the F-vector space of rational 1-forms on V. Let I* denote the inner
product on V* induced from the inner product I on V. Then I'* naturally
induces an S-bilinear map I* : Qp X Qp — F. Thus we have an F-linear
isomorphism

I*: QF — DerF
by [I*(w)](f) = I[*(w,df) where w € Qp, f € F. Recall the S-module
Q(A, 00) == {w € O | QVw and (Q/ay)Vw A day
are both regular for any H € A and N > O}

of logarithmic 1-forms [2]. We also have the S-module

D(A, —o0) :=1"(2(A, 00))
= {0 € Derp | QN0 € Derg and (Q/a)V0(B) is regular for
B € V* whenever I*(3,ay) =0 for any H €
Aand N > 0}

of logarithmic derivations [2]. Let

V: Derg x Derp — Derg

(0,0) — Vg o
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be the Levi-Civita connection with respect to I. The derivation Vyd € Derp
is characterized by the equality (Vgd)(a) = 0(0(x)) for any o € V*.

For a € V* let S(,) denote the localization of S at the prime ideal (a) of
S. For an arbitrary multiplicity k : A — Z, define an S-submodule D(A, k)
of D(A, —) by

D(A,k) := {6 € D(A,—0) | (ap) € a;(H)S(QH) for any H € A}

from [3]. The module D(A, k) was introduced by Ziegler [13] when imk C
Z>(. Note D(A, 0) = Derg where 0 is the zero multiplicity. For each k: A —
Z, define Q¥ := [] Hed alg(H) € F. Recall the following generalization of

Saito’s criterion [9]:

Theorem 2.1 (Abe [1, Theorem 1.4]) Letk: A — Z and 04,...,0, €
D(A,k). Then 64,...,0; form an S-basis for D(A,k) if and only if
det[0;(z;)] = Q¥. Here = implies the equality up to a non-zero constant
multiple.

Definition 2.2 Let k : A — Z and ¢ € D(A, —o0)", where the super-
script W stands for the W-invariant part. We say that ¢ is k-universal
when ( is homogeneous and the S-linear map

\I/C : Ders — D(.A, 21{)
0+— Vy(
is bijective.
Example 2.3 The Euler derivation E, which is the derivation charac-

terized by E(a) = « for any a € V*, is 0-universal because Vg (0) = Vs E =
J.

For an irreducible Coxeter group W, there exist algebraically indepen-
dent homogeneous polynomials Py, Ps, ..., P, with deg Py < deg P, < --- <
deg P;—1 < deg P; by Chevalley’s Theorem [6], which are called basic in-
variants. When D € Derp satisfies

D(p)) =

0 if1<j<d,
1 ifj=¢,
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we say that D is a primitive derivation. It is unique up to a nonzero
constant multiple. Let R := S" be the W-invariant subring of S and

T:={f e R|D(f) =0}

Theorem 2.4 (]2, Theorem 3.9 (1)], [3, Theorem 4.4])

(1) We have a T-linear automorphism

Vp : D(A, —0)" — D(A, —o0)W,
0 — VDH

(2) Vp(D(A,2k + 1)) = D(A, 2k — 1)V for any multiplicity k : A — 7Z.

Note that V' and V% (k € Z) are also T-linear automorphisms.

Let x1,...,2, be a basis for V*. Put A := [I*(z;,x;)];; which is a non-
singular real symmetric matrix. For simplicity let 0., and dp, denote 0/0x;
and 0/0P; respectively. Note that D = Jp,.

Proposition 2.5 Let k € Z. Here k is a constant multiplicity: k = k.
Then the derivation VHE is (—k)-universal.

Proof. When k < 0, the result was first proved by Yoshinaga in [12].
Assume k > 0. Recall a basis n%f%), . ,néf%) for D(A, —2k) introduced
in [2, Definition 3.1]. Then we have

Vo, VHE, ..., Vo, VHE] = [ B el V7

which is the second equality of [2, Proposition 4.3] (in the differential-form
version). O
Proposition 2.6 Let ¢ € D(A, —00)"V be k-universal. Then
(1) the S-linear map
Ue: D(A,—-1) — D(A,2k—-1)
60— Vy(

1s bijective,

(2) ¢ € D(A,2k+ 1)V, and
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(3) aEZk(H)_lC(oaH) is a unit in S, for any H € A.

Proof. (1) Note that dp, ,...,0p, form an S-basis for D(A, —1) [2, p. 823].
Let 1 < j < /. Then

QVap ¢ = Vqop,C € D(A, 2k)

because Qdp; € Derg. Thus

(Vor, ¢) () € aff ™™ S0y (H € A).

Pick H € A arbitrarily and choose an orthonormal basis x1, ..., z, for V* so
that H = ker(xy). For i = 2,...,/¢ define g; := (Q/x1)NQ(Vo, ()(x;) € S
for a sufficiently large positive integer N. Let s = sy denote the orthogonal
reflection through H. Then s(g;) = —g;. Thus g; € 15 and

(Vapj (i) = (Q/x1) Ngi/Q € Sy

This implies Vo, ¢ € D(A, —00) and thus Vp, ¢ € D(A,2k —1). One has

det [(Vapj ¢)(zi)]
= det ([(Va,, ¢) (2:)] [0P;/0u;] ) = Q' det [(Va,, Q) (@:)]
- QQk—l

by the chain rule 9., = Z§=1 (OP;/0x;)0p, and the equality det[0P;/0x;] =
Q. Applying Theorem 2.1 we conclude that Vp, (..., Vg, ¢ form an S-
basis for D(A,2k — 1).

(2) By (1), Vp ¢ € D(A,2k — 1), Thanks to Theorem 2.4, we have
Ce DA 2%+ 1)V,

2k(H)+1

(3) By (2), ¢(am) € ajy S(ay) for any H € A. Assume that
aﬁQk(H)_lC(aH) is not a unit in S, for some H € A. Choose an or-
thonormal basis z1,xa,...,xy for V* so that H = ker(x1). Then ((x1) €

2128 (0,. Thus (Vo, ()(@1) € i 7S, for each j with 1< j < ¢
and Q% = det[(varj O (zy)] € xfk(H)“S(m), which is a contradiction. [

Proposition 2.7 (cf. [5, Theorem 10], [1, Theorem 2.1]) If ¢ € D(A,
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—o0)W is k-universal and m : A — {—1,0,1} is a multiplicity, then the
S-linear map

Ue: D(A,m) — D(A, 2k + m)

0+— Vy(

is bijective.
Proof. Note that D(A,m) C D(A,—1) and D(A,2k+m) C D(A,2k—1).
By Proposition 2.6 (1), the restriction of

Ue: D(A,—1) — D(A,2k-1)

to D(A,m) is injective. Thus it is enough to prove ¥ (D(A,m)) =
D(A,2k+m). Let 6 € D(A, —1). Pick H € A arbitrarily and fix it. Choose
an orthonormal basis x1,xo,...,2y with H = ker(x1). Let k := k(H) and
m := m(H). Then, by Proposition 2.6 (3), g := x72*7'¢(z;) is a unit in
S(z,)- Compute

(e(0))(21) = (Vo )(a1) = 0(C(x1)) = O(x7* g)
=27 0(g) + (2k + 1)23%0(21)g

£
=i 0(x;)(0g/0;) + (2k + 1)2T*0(21)g

j=1

l
= 27%0(21){z1(0g/0x1) + (2k + 1)g} + 27T " 0(x;)(dg/0x;)
j=2

= 22%0(2)U + 2251 C,

where U := z1(dg/0z1) + (2k + 1)g is a unit in Sy,) and C :=
Z§:2 0(x;)(dg/dz;). Dividing the both sides by z2**™ we get

xf%*m(\IJC(G))(ml) =2, ™0(x,)U + 217 "C.

Note that 0g/0x; € S5,y and 0(x;) € S(z,) (j > 2) because 0§ € D(A, —o0).
So one has C € S(,,) and z; "C € S(,,) for m € {£1,0}. Thus we conclude
that
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27T (0)) (1) € Spayy == 27 "0(21) € S(ay)-
This implies that
V¢ (6) € D(A, 2k + m) <= § € D(A, m)

because H € A was arbitrarily chosen. This completes the proof. O
The following is the main result in this section.

Theorem 2.8 Letk: A — 7Z be a multiplicity of A. Let ( € D(A, —oc0)W
be k-universal. Then V3,'C is (k + 1)-universal.

Proof. 1t is classically known [8] that & := I*(dP;) € D(A, DY (j =
1,...,¢) form an S-basis for D(A, 1). By Proposition 2.7, V¢, ¢ € D(A, 2k +
W (j = 1,...,¢) form an S-basis for D(A,2k + 1). Since VpVe,¢ €
D(A,2k — 1)V (j =1,...,¢) by Theorem 2.4, we can write

¢
VpVe, ¢ =Y fijVor(

i=1

with W-invariant polynomials f;; € R because of Proposition 2.6 (1). Then
fij is a homogeneous element with degree m; + m; — h < h, where h is
the Coxeter number, and f;; belongs to T' = {f € R | Df = 0}. Since
m; + met1—; —h =0, det[f;;] € R. Apply Vgl to the both sides to get

¢ ¢
Ve, (=Vp' ) fijVor (=) fiiVar, Vp'C.
i=1 i=1
Since V¢, ¢ € D(A,2k+1)V (j =1,...,¢) form an S-basis for D(A,2k+1),
we have det[f;;] € R*. This implies that Vaop, V¢ (j=1,...,¢) form an
S-basis for D(A, 2k +1). Since V;'¢ € D(A, 2k + 3) by Proposition 2.6 (2)
and Theorem 2.4, we conclude that

l
Vo, Vp'¢=> (0, P)Vop, Vp'¢ (G=1,....0)
=1

form an S-basis for D(A, 2k + 2) by Theorem 2.1. O
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3. The ordinary cases

In the rest of this paper we assume dimV = ¢ = 2 and W = I(h)
such that A~ > 4 is an even number. The orbit decomposition A = A; U
As satisfies |A;| = |A2] = h/2. Recall the equivariant multiplicities k =
(a1,a2), ai,as € Z, defined by

aq ifHGAl,
k(H) =

ay if H € As.

Let x1,x2 be an orthonormal basis for V*. Suppose that P, := (x% +
73)/2 and P, are basic invariants of W. Then deg P, = h and R = SV =
R[Py, P5]. Let W; be the (normal) subgroup of W generated by all reflections
through H € A; (1 = 1,2). Let Q; = [[c 4, o and R; = SWi (i =1,2).
Let D be a primitive derivation corresponding to the whole group W. Then
it is known [10, (5.1)] that

D (_x28x1 +.1‘18I2).

L1
Q
Lemma 3.1 Define

1 1
D1 = QQD = 7(—%'28:1;1 + .71318952), D2 = QlD = 7(—$261;1 + l‘lan).

Q1 Q2
Then
(1) Ry =R[P,Q2], Ry =R[P,Q1] and R = R[PlaQ%] = R[PDQ%];
(2) —$2(8Q2/81‘1) + .%'1((9@2/81‘2) = Ql and —$2(8Q1/6$’1) +

3?1(3@1/8372) = QQ;
(3) Dl(Pl) = DQ(Pl) = 0, Dl(Qg) € R* and DQ(Ql) e R*.

Proof. Thanks to the symmetry we only have to prove a half of the state-
ment. Since @ and @)1 are both Wi-antiinvariant, Q2 = Q/Q1 is Wi-
invariant and Q3 is W-invariant. Note that Qs is a product of real linear
forms. So @2 and P; are algebraically independent. Since

|A1] = h/2 = (deg Q2 — 1) + (deg P, — 1),

we have R; = R[P;,Qs]. Similarly we obtain R = R[P;,Q3]. This proves



Two-dimensional multi-Cozxeter arrangements 385

(1). The Jacobian

_.%'Q(an/a:Cl) + xl(an/axz) — det <8P1/8:c1 8Q2/8x1> 0

8P1/8.732 8@2/8$2

is equal to Q1 up to a nonzero constant multiple, which is (2). Compute

Di(P1) = Q2D(Py) =0, 2D1(Q2) =2Q2:D(Q2) = D(Q3) € R*.

This proves (3). O

The Euler derivation E = I*(dPy) = I*(x1dz1 +22dxe) = 2105, + 220,
satisfies E(a) = « for all & € V* and belongs to D(A, (1,1)).

Proposition 3.2 A basis for D(A, (a1, az)) is given in Table 3 for —1 <
a1 <1, -1 <a, < 1.

(a1,a2) | basis for D( ,(a1,a2)) | exponents of (A, (a1,a2)) | their difference
1,1) T* (dPy) Lh—1 h—2
(1,0) E I*(dQ2) 1,(h/2) -1 (h/2) — 2
©,1) (dQy) L(h/2)—1 (h/2) —2
(1,-1) I*(ng/Qg),E -1,1 2
(0,0) Das s O 0,0 0
(—1,1) I (dQ:/Q:), E 1.1 2
(0,*1) DQ,]*(dQ2/Q2) 1*(]1/2),*1 (h/2)72
(—1,0) D1,I*(dQ1/Q1) 1—(h/2),—1 (h/2)—2
(—1,-1) D, T (dQ/Q) T—h -1 h—2

Table 3. The exponents of (A, (a1,a2)) (-1 <a1 <1,-1<as <1)

Proof. Let wy = —xadx1 + x1dxe. Note that wo A da = —a(dzy A dxs)
for any a € V*. It is easy to see that each of dPy,dPs,dQ1,dQ2,dQ1/Q1,
dQ2/Q2,wo/Q,wy/Q1 and wy/Q2 belongs to (A, o) defined in Section 2.
Note that D = I*(wy)/Q and D; = I*(wp)/Q; (i = 1,2). Thus all of the
derivations in the table lie in D(A, —o0) = I*(Q(A, c0)).

If P is W-invariant, then I*(dP) € D(A,(1,1)). Therefore I*(dQ1) €
D(A,(0,1)) and I*(dQ2) € D(A,(1,0)) because of Lemma 3.1 (1). We
s have 101/ & DUk (~1,1) and I"(0Q2/Qs) € DAL 1),
Since @D = Q1D; = Q2D lies in Derg, we get D € D(A,(—1,-1))

)
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Dy € D(A,(—1,0)) and Dy € D(A, (0,—1)). Now apply Theorem 2.1 noting
Lemma 3.1 (2). O

Lemma 3.3 When h > 6 is even, D; is a primitive derivation of the
irreducible Cozeter arrangement A; (i =1,2).

Proof. By Lemma 3.1 (3). O
For s,t € Z with t — s € 27, define

ESY = ViV B, ESY = VViIiE.

Proposition 3.4
t € Z>g andt — s € 24, then "7 1s (s, t)-universal,
1) Ift € Z>o and 27, then B i wersal
S € ZL>g and s —1t € 27, then s (s, t)-universal.
2) If s € Zsg and s — t € 27, then ES™ is (s, t)-universal

Proof. 1t is enough to show (1) because of the symmetry of the statement.

Case 1. When h > 6 is even, A; is an irreducible Coxeter arrangement
of h/2 lines. By Lemma 3.3, D; is a primitive derivation of A;. Thus

Vaxl VtD_lSE, . ,Vaze VESE
form an S-basis for D(A, (2(s —t),0)). Note that D1 = Q2D satisfies
'lU1D1 = Dl, U)Q.Dl = det(wg)Dl

for any wy € Wi, wy € Wa. Since Wi is a normal subgroup of W, D(A;,
—00)" is naturally a W-module and the map V7 : D(A;, —oco)™ —
D(A1, —00)™ is a W-equivariant bijection when n is even. Thus Vi, °E €
D(A, —00)"'. This implies that VESE is (s—t, 0)-universal when t — s € 2Z.
Apply Theorem 2.8.

Case 2. Let h = 4. Then W is of type Bs. We may choose an or-
thonormal basis for V* with Q1 = x129 and Q2 = (21 + 22)(x1 — x2). Then

1

€2

1
Dl - _78.’21 + aafz
T

and
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VIE = —(4n — 3)1(z]" "0, + 257 1"0,,) € D(A,—0)V  (n > 0),
1

—2n _
Vb, B = (4n+ 1N

(wil"+laml + :1:3”“(9362) € D(A,—x)V  (n>0),

where (2m — 1)!! = []:%,(2¢ — 1). Thus
2n - . —4n 2n - —4n
Vo, Voo E=27""0s,, Vo, VP E=2,""0,, (n€Z).

This implies that VtD_lsE is (s — t,0)-universal when s —t € 2Z. Apply
Theorem 2.8. U

We say that a pair (a1, az2) is exceptional if
a € 27 and a; — az = 2 (mod 4).

If (a1, as2) is not exceptional, then we call (a1, az) ordinary. We may apply
Propositions 3.2 and 2.7 to get the following proposition:

Proposition 3.5 Suppose that (a1, a2) is ordinary and that either p > 0
or ¢ > 0 in Table 1. Then Vg,(, Vg,( form an S-basis for D(A, (a1, a2))
as in Table 1, where EY) stands for Efs’t) if t > 0 or it stands for Eés’t) if
s> 0.

4. The exceptional cases
Suppose that (aj,as) € Z? is exceptional. Write
(a1,a2) = (4p +2,4q) or (a1,az) = (4p,4q+2) (p,q € Z).
Proposition 4.1  Suppose that ¢ is (2p, 2q)-universal. Then the map
<I>él) : Ders — D(A, (4p + 2,4q))
0 — Q1(Vo() — (4p + 1)0(Q1)¢
is an S-linear bijection. Similarly the map
®%) : Ders — D(A, (4p,4q +2))
0 — Q2(Vo() — (4g + 1)0(Q2)¢
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is an S-linear bijection.

Proof. It is enough to show the first half because of the symmetry. Let
§ € Derg. We first prove that @él)(Q) € D(A,(4p + 2,4q)). Let H; € A,
and a; := ag, (i = 1,2). Since ( € D(A, (4p + 1,4q + 1)) by Proposition
2.6 (2), write

Clar) = a"™ 1, Claz) =™ o (fi € San)s f2 € Sas))-

Compute

@ (0)] (o)
= Q1(VeC)(a1) — (4p + 1)0(Q1)¢(an)
= Q1(0(”" 1)) — (dp+ 1)O(Q1)a" 1
= Q"M O(f1) + (dp + 1) fraPQi6(ar) — (4p + 1) fra1P T O(Q1)
= Quay" " 0(f1) — (4p + 1) f107" " {(1/01)0(Q1) — (Q1/0)8(0n) }
= Q1" T0(f1) — (dp+ 1) fron?T20(Q1 /) € 2P S(ay).
Also
[@¢7(0)] (a2)
= Q1(VoC)(az) — (4p + 1)0(Q1){ (a2)
= Q1(0(ax" f2)) — (4p + 1)0(Q1) ™ f
= Q1ay"0(f2) + (4g + 1) f057Q16(xz) — (4p + 1) f05710(Q1)
€ @37S(ay)-
This shows . (8) € D(A, (4p + 2,4q)). Next we will prove that &L (9, )

and (I)él)(f)m) form an S-basis for D(A, (4p + 2,4q)). Define M (60;,03) :=
[0i(x;)]1<i,j<2. Then
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det M (2 (8,,), L (8s,)) = det M(Q1Vo,, ¢, Q1V,,C)
— (4p + 1) det M (Q1Va,, ¢, (82,Q1)C)
— (4p + 1) det M ((9,,Q1)¢, @1V, C).
Note
21(Va,, ¢) +22(Vo,,¢) = Ve¢ ={1+h(p+ )}

because Vy, (, Vy, ( are a basis for D(A, (4p,4q)) and pdeg ¢ = 1+h(p+q).
Thus

det M (0 (8,,), 8 (8,,))

(Ap+ 1)Q122(02,0Q1)

=Q%?det M (Vs ¢,V —
Ql € ( lec 3¢2<) 1+h(p+q)

det M (Vawl C) Van C)

(4p + 1)Q171(04, Q1)

Ry s det M (Va,, ¢, Va,, ()

— {Q2 _ (4p + 1)Q1(l‘1(8w1Q1) + 352(8352@1))
' 1+h(p+q)

. . (4p+1)h PP 4 _2—h<2p—2q+1) Ap+-2 4
‘{1 2<1+h<p+q>>}Q1Q1pQ2q‘ M+hiprg) O %"

} det ]\J(Vaz1 (, Vaw ()

Note that 2 — h(2p —2¢+ 1) # 0 and 1 + h(p + q) # 0 because h > 4.
Therefore @gl)(ﬁml) and @él)(am) form an S-basis for D(A, (4p + 2,4q))
thanks to Theorem 2.1. Thus @E_l) is an S-linear bijection. U

We may apply Proposition 4.1 to get the following proposition:

Proposition 4.2  Suppose that (a1, a2) is exceptional and that either p > 0
orq > 01n Table 2. Then, fori=1,2, ‘1321)(91) and @é”(@g) form an S-basis
for D(A, (a1,a2)) as in Table 2.

Proposition 3.4 asserts that Egs’t) is (s,t)-universal when s —t € 27,
t > 0 and that Eés’t) is (s,t)-universal when t — s € 2Z, s > 0. So Tables
1 and 2 show how to construct a basis for D(A, (a1,a2)) when a; > 0 or
az > 0. We will construct a basis for D(A, (a1, az2)) in the remaining case
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that a; < 0 and ag < 0. Let

Q(A') k) = (I*)_l(D('A7 _k))
= {w € QA, 00) | I"(w,dap) € a;lk(H)S(aH) for all H € A}.

Theorem 4.3 (Ziegler [13], Abe [1, Theorem 1.7])  The natural S-bilinear
coupling

D(Ak) x QA k) — S
is non-degenerate and provides S-linear isomorphisms:
a:D(Ak) - QAk)", [B:QAk) — D(Ak)".

Thus we have the following proposition:
Proposition 4.4 Let (a1,a2) € (Z<o)? and x1,75 be an orthonormal
basis. Let 01,02 be an S-basis for D(A, (—a1,—az2)). Then
m = 9110z, + 9210z,, N2 := g120z, + 92204,

form an S-basis for D(A, (a1, az2)). Here
<g11 912) _ <91($1) 91(332))_1 _ (a1 )a2 ( 92@2) —91(332))
921 g22 02 (x1) O2(z2) V2 \—by(21) O1(z1) )7
5. Conclusion

Let A be a two-dimensional irreducible Coxeter arrangement such that
|A| is even with |A| > 4. We have constructed an explicit basis for
D(A, (a1,a2)) for an arbitrary equivariant multiplicity k = (a1, as2) with
a1, as € Z. Our recipes are presented in the Tables 1, 2, Propositions 3.5,
4.2 and 4.4. Lastly we show Table 4 for the exponents.

Acknowledgement The author expresses his gratitude to Professor Hi-
roaki Terao for his patient guidance and many helpful discussions. He also
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aq as a] — a9 exponents of (A, (a1, az)) their difference

odd | odd | = 0(mod 4) | (arta2=2h 4 (atet2h h—2

odd | odd |=2(mod 4) | {tah g (et 2

odd | even W—i—l, W—l (h/2) —2

even | odd W +1, W -1 (h/2) —2

even | even (altfz)h, (altfz)h 0

Table 4. The exponents of (A, (a1,a2)) (a1,a2 € Z)
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