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Riesz transforms on generalized Hardy spaces
and a uniqueness theorem

for the Navier-Stokes equations
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Abstract. The purpose of this paper is twofold. Let R; (j = 1,2,...,n) be Riesz
transforms on R™. First we prove the convergence of truncated operators of R;R; in
generalized Hardy spaces. Our first result is an extension of the convergence in L? (R™)
(1 < p < o). Secondly, as an application of the first result, we show a uniqueness
theorem for the Navier-Stokes equation. J. Kato (2003) established the uniqueness of
solutions of the Navier-Stokes equations in the whole space when the velocity field is
bounded and the pressure field is a BMO-valued locally integrable-in-time function for
bounded initial data. We extend the part “BMO-valued” in his result to “generalized
Campanato space valued”. The generalized Campanato spaces include L', BMO and
homogeneous Lipschitz spaces of order o (0 < a < 1).
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1. Introduction

Riesz transforms R; (j =1,2,...,n) on n-dimensional Euclidean space
R™, which are typical examples of singular integral operators, are very im-
portant tools for studying on partial differential equations. To study singu-
lar integral operators, the convergence of their truncated operators give us
many useful information.

The purpose of this paper is twofold. First we prove the convergence of
truncated operators of R;R; by smooth cut off functions. We consider the
convergence in generalized Hardy spaces introduced in [12]. It is known that,
for some of singular integral operators, their truncated operators converge
in LP(R") (1 < p < 00). Our first result is one of its extension. Secondly,
as an application of our first result, we show the uniqueness of nondecaying
solutions for the Navier-Stokes equation in generalized Campanato spaces
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which are the dual of generalized Hardy spaces.
We are concerned in the Navier-Stokes equation,

u—Au+ (v, V)u+Vp=0 in (0,7) x R", (1.1)
divu =0 1in (0,7) x R", (1.2)

with initial data u|;—¢g = ug, where u = u(t, ) = (uy(t,x), ..., u,(t,x)) (n >
2) and p = p(t,z) stand for the unknown velocity vector field of the fluid
and its pressure field respectively, while uy = ug(z) = (u$(z),...,us(z)) is
the given initial velocity vector field.

J. Kato [4] established the uniqueness of solutions of the Navier-Stokes
equations when the velocity field u and the pressure field p satisfy

u € L*((0,T) xR™), pe L. ((0,T); BMO), (1.3)

for bounded initial data ug. In this paper we extend the part “BMO” in his
result to generalized Campanato spaces “Li 4", where ¢ is a function from
(0,00) to itself. If ¢ =1, then £y 4 = BMO. If ¢ > 1, then £; 4 D BMO.
The definition of £; 4 is in the next section.

Galdi and Maremonti [1] showed that if u and Vu are bounded in (0, 7") x
R3, then the uniqueness of classical solutions holds provided that for some
C > 0 and some € > 0 the inequality

Ip(t, )| < C(1+ |zf)'~° (1.4)

holds. See also [6] and [15].
The assumption (1.3) does not imply (1.4). If 0 < v < 1 and

o(r) = (1.5)

@ for r>1,

1 for O0<r<l,
r

then our function space £; 4 includes BMO and contains functions f such
that

|f(z)] < Cop(1 + |z|) =C(1 + |z])* for zeR".

Therefore, our result is an extension of both Kato’s theorem and the result
of Galdi and Maremonti. Moreover, our theorem holds for £; 4 with
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) r—" for 0<r<1, (16)

b(r) = 1.6
r(log(1+7))=# for r>1,

where 8> 1ifn > 3 and 8 > 2if n = 2. In this case L1 4 includes L' UBMO

and contains functions f such that

[f(@)] < Co(1 + |z]) = C(1 + [z[)(log(2 + [2]) ™7 for = eR™

Giga, Inui and Matsui [3] pointed out that the equation (1.1), (1.2) has
trivial non-constant solutions of the form w(z,t) = b(t), p(z,t) = —b'(t)x.
Therefore, the uniqueness fails for 3 = 0 and is still open for 0 < g <1
(0<B<2ifn=2).

Recently, Koch, Nadirashvili, Seregin and Sverdk [5] proved that, if a
weak solution w is in L°°((0,7") x R™), then u takes a certain explicit form
with the mild solution and a function b(¢) which is independent of z. In [5]
they assumed the divergence free condition on the test functions. In this
paper we don’t assume the divergence free condition, since we are interested
in not only velocity u but also pressure p.

Our first result for generalized Hardy spaces is an extension of Proposi-
tion 1 in Kato [4]. He proved the result for the Hardy space H! by using the
maximal characterization of H'. Then he proved his uniqueness theorem by
the duality (H')* = BMO. The proof method for our second result is as the
same as Kato’s. However, we need a new result on generalized Hardy spaces
to prove our first result. We use the atomic decomposition of functions by
general atoms. It is known that (H?)* = Lip, when a = n(1/p — 1) and
n/(n+1) <p < 1. Zorko [17] studied preduals of Morrey spaces. Our gen-
eralized Hardy spaces are a generalization of both the usual H? and Zorko’s
predual.

In the next section we state the definitions of the function spaces. The
first and second results are in Sections 3 and 4, respectively. Section 5 is
to prove a lemma on generalized Hardy spaces which is used in the proof of
the first result.

2. Definitions of function spaces

Let S be the space of rapidly decreasing functions in R” and S’ be the
space of tempered distributions in the sense of Schwartz. The space S’ is
the topological dual of S and its canonical pairing is denoted by (,). We
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denote by | f||4 the L7 norm of f for 1 < ¢ < oc.
A function ¢ : (0,00) — (0,00) is said to satisfy the doubling condition
if there exists a constant C' > 0 such that

<

(r) i
) <(C fo

A function ¢ : (0,00) — (0,00) is said to be almost increasing (almost
decreasing) if there exists a constant C' > 0 such that

c'< <

@ |3

<2

ASS
N |

o(r) < Co(s) (¢(r) = Co(s)) for r<s.

Let G be the set of all functions ¢ such that ¢(r)r™ is almost increasing and
¢(r)/r is almost decreasing. For example, ¢(r) =r®isin G if —n < a < 1.
Each ¢ € G satisfies the doubling condition.

Let ¢ : (0,00) — (0,00). For aball B = B(z,r) ={y € R" : |z—y| < r},
we shall write ¢(B) in place of ¢(r). For a function f € L} (X) and for a
ball B, let fg = |B|™! [5 f(2) dz, where | B] is the measure of the ball B.

Definition 2.1 (£,,) For 1 < g < oo and ¢ : (0,00) — (0,00), a gen-
eralized Campanato space L;4 = L4,4(R™) is defined to be the set of all
f e L{_ suchthat |f|z,, < oo, where

loc

1 /1 o)
Il =sup s (i [ 1) = fulvan)

In the above the supremum is taken over all balls B in R™.

We regard £, 4 as a space of functions modulo constants. Then L, 4 is
a Banach space equipped with the norm ||f[/z, ,. If ¢ = 1 and ¢(r) = 1,
then £ 4 is the usual BMO. If ¢ = 1 and ¢(r) = r* (0 < a < 1), then
L1 ,4 coincides with the homogeneous Lipschitz space Lip,. If ¢ is almost
increasing, then £, 4 = L1, for 1 < g < oo. If ¢(r) =77 (0 < A < n/q),
then £, 4 coincides with the Morrey space. In particular, if ¢(r) = P/
then Eq@ =L9 If1 < q1 < g < 00, then [,174) D) »qu,qS D) ‘C(I%(ﬁ‘ If ¢1 < o,
then L4 4, C L4 ¢,. Therefore, if

r~" for 0<r<l,
@  for r>1,
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then £y 4 D L' UBMO U Lip,. For the function space £ 4, see Peetre [16],
Mizuhara [7], Nakai and Yabuta [13], [14], Nakai [8], [9], [10], [11], etc. We
give a relation between S and £, 4 below.

Proposition 2.1  Assume that ¢(r)r™/9 is almost increasing and that
@(r)/r is almost decreasing. Then S is continuously embedded in L, 4. More
precisely, there exists a positive constant C such that, for all f € S,

1£llz,.. < CUIA+ 2™ flloo + 11V fllso)-

Proof. Let B = B(z,r). If r < 1, then 1 < c¢(r)/r for some constant
c¢> 0 and

(5 /[ 1760~ salv ) v

< sup |f(z) = f(Y)] < 2r[[V[lloc < 2¢0(r)[[V fllco-

r,yeB

If 7 > 1, then 1 < ¢'¢(r)r™? for some constant ¢’ > 0. Letting V(z) =
1+ |z|"*!, we have

L@ - sara) <o L ppar)
o Bl s

q 1/q c
<o) o) < <

Next we recall the definition of generalized Hardy spaces by using atoms
which are introduced in [12].

Definition 2.2 (¢, oc]-atom) Let ¢ € G. A function a on R” is called a
[¢, 0o]-atom if there exists a ball B such that

(i) suppa C B,
(i) llallo < BrRm:
(iii) [zn a(z)dz = 0.

We denote by A[g, oo] the set of all [¢, co]-atoms.

If a is a [¢, oo]-atom and a ball B satisfies (1)—(3), then, for g € £ 4,
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‘/ 7)de| = ‘/ —gp)da

< Jlafloe / 9(x) — g5| dx

S5 ), 9@ —sldr < lgles, (2)

That is, the mapping g — fRn ag dx is a bounded linear functional on £ 4
with norm not exceeding 1. Hence a is also in 8’ by Proposition 2.1.

Let U be the set of all continuous, concave, increasing and bijective
functions from [0, c0) to itself such that

U(rs)
su —0 (r—20). 2.2
22 o) 0 Y 22
For example, U(r) = rP with 0 < p < 1 satisfies (2.2).

Definition 2.3 (H[[](b’oo]) For ¢ € Gand U € U, the space H[[}b’oo] C (L1,0)"
is defined as follows:

fe Hl[}b’oo] if and only if there exist sequences {a;} C A[¢, oo] and
positive numbers {\;} such that

f= Z)\ a; in (£1,4)" and ZU (2.3)

In the above the convergence in (£; 4)* means in the weak™ topology,
that is, for every g € L1 4,

=Y [ a@lg(o) de

From U(0) = 0 and the concavity of U it follows that

UCr)<CU(r), 1<C<oo, 0<r< o0, (2.4)
Ur+s)<U((r)+U(s), 0<rs<oo. (2.5)

Actually, for 0 <t <1,
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tUGr) = (1 — U(0) +tU(r) < U((1 — )0+ tr) = U(tr).

Hence (1/C)U(Cr) < U(r) if C > 1. Moreover, for t; = r/(r + s) and
to =s/(r+s),

U(r+s)=(t1 +t2)U(r+s) <U(t1(r+s)) + Ulta(r + s))
=U(r)+Ul(s).

Then H. ([}ﬁ o] (X) is a linear space. Further, (2.5) implies

ij < U1<ZU(Aj)>. (2.6)

Therefore, if >, U(A;) < oo, then } >, A; < oo and ), Aja; converges in
(L1,4)*. In general, the expression (2.3) is not unique. Let

g =int {o (o) |

where the infimum is taken over all expressions as in (2.3). Then d(f,g) =
U(llf = gllie.a) is a metric and ng)’oo] is complete with respect to this
U

metric. If I(r) = r, then H y),oo] is a Banach space equipped with the norm
L1 gyt

In the case ¢(r) = r®* and U(r) = rP with a = n(1/p — 1) and n/(n +
1) < p < 1, the space H([Jd) >l s the usual Hardy space HP. Moreover,
L1, = BMO if o = 0 (that is, p = 1) and £ 4 = Lip,, if 0 < @ < 1 (that
is, n/(n+1) < p < 1). It is known that (H')* = BMO and (H?)* = Lip,
witha=n(l/p—1)and n/(n+1) <p < L.

3. Truncated operators of R;R;

In this section we state the first result on the convergence of truncated
opetator of R;R; (1 <1i,j <mn).

First we recall the definition of truncated operators Rf ; of R;R; by
Kato [4]. Let k denote the fundamental solution of —A, i.e., —Ak = 4. Its
explicit form is
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(@) Cplz|>~™ for n > 3,
| Colog |z| for n =2,

where 1/C,, = (n — 2)(27"/2/T(n/2)) for n > 3 and 1/Cy = —2m. Let
1 € C*°(R"™) be a radial function with 0 < ¢ < 1, ¢(x) = 0 for |z| < 1,
and ¢¥(x) =1 for x| > 2. Weset A =1 —1. For 0 < ¢ < 1/2 we define
Ye(x) = P(x/€), Ae(x) = Aex), and k. = Ak so that suppke C {z: e <
|z| < 2/€}.

Definition 3.1 (Rf;) Let 1 <4,j <n. For 0 < e < 1/4, the operators
R ; are defined by R f = (0;0k.) * f for f € S'.

We consider the following condition on ¢ and U.

/OOU(W>dt<oo, if n >3,

. t )t

- (3.1)
[ R

1

Note that the functions ¢ in (1.5) and (1.6) satisfy this condition with U(r) =
r. On the other hand ¢(t) = ¢t does not satisty (3.1) for all U € Y.
Then we have the following.

Theorem 3.1 Let ¢ € G and U € U. Assume that (3.1) holds. If p € S
and [ ¢ =0, then
lim R o = RiR;p in H"™).

In particular, lim_o(—A)ke x ¢ = ¢ in ngb,oo}‘

Remark 3.1 Theorem 3.1 shows that, if ¢ € Sand [ ¢ =0, then R;R;¢p €
[¢,00]
g,

Let ¢(r) = r*(/P=1) and U(r) = 7P with n/(n +1) < p < 1 in the
theorem above. Then we have the following.

Corollary 3.2 Letn/(n+1)<p<1. IfpeS and [ ¢ =0, then

)

li_r% R ;o = RiRjp in H".
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In particular, lime_o(—A)ke x o = ¢ in HP.

The case p = 1 in the corollary was proved by Kato [4], using the
maximal characterization of H*.
Let I(r) = r. Then (3.1) with I instead of U is the following.

= ¢(t) dt
t

—r — < oo, if n >3,

(3.2)

/ ¢tlog1+t) 2

t<oo,

Note that, from (2.1) it follows that, if f € £ 4, then f can be regarded as
an element in (H y”m])*. Then, using the equality

i (D750, 8 = i (7. ()b« 00p) = 119
j:

for all p € S, we have the following.
Corollary 3.3 Assume that ¢ € G satisfies (3.2). For f € Ly 4,

EL%ZEREJajfz—aif in 8.
J:

To prove Theorem 3.1 we state two lemmas. The first lemma gives a
sufficient condition for functions to be in generalized Hardy spaces, which
will be proved in Section 5 by using atoms.

For U e U, let

Then U(rs) < U(r)U(s) for 0 < s <1 and U(r) — 0 as r — 0.

Lemma 3.4 Let ¢ € G and U € U. Let { be a continuous decreasing
function from [0, 00) to (0,00) such that £(r)r? is almost increasing for some

0 <1 and that
(o) dt
/ U(wo) T
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Define
w(x) = (1+ |z))" T e(jz|) for xe€R™

If a function f satisfies

wfeL® and f=0, (3.3)

R”

then f € H([fm}. Moreover, there exist a constant C > 0 such that

£ 1| geeer < UTHCTU(Cllwf Nloo)) (3.4)

where C' is independent of f.

Using Lemma 2 in [4], we can prove the following lemma, which is a
generalization of (4.15) in [4]. We omit the proof, since the method is the
same as in [4].

Lemma 3.5 Let { be a continuous decreasing function from [0,00) to
(0,00) such that £(r) > (1 +1r)"""! and that

TEI&E(T) =0ifn >3, TILI{)IOE(T') logr =0 if n=2.
Define
w(z) = (1+ |z))"TH(|z]) for = e€R™
Ifp eS8 and [ =0, then
b [ (o — RuRshu]. =0

Proof of Theorem 3.1. If (3.1) holds, then there exists a continuous de-
creasing function m such that lim, .., m(r) = 0 and that

/100U<tfn<zt))>it<oo, if n >3,

/1WU<W)C?<OO, if n = 2.



Riesz transforms on generalized Hardy spaces it

Actually, if [[“U(F(t)) % < oo, F(t) = ¢(t)/t or ¢(t)log(1 +r)/t, then we
can take a positive increasing sequence {r;} and a continuous decreasing
function m such that

and

Then, by (2.4),

We may assume that m(r)r” is almost increasing for some small v > 0. Let
¢ be a continuous decreasing function from [0, 00) to (0,00) such that, for
r=>1,

m(r), if n > 3,
r) = { :
m(r)/log(l+7), ifn=2.

Then £ satisfies the assumption of both Lemmas 3.4 and 3.5.

Let ¢ € S and [¢ = 0. Then Rf,p € S and [ Rf ;o = 0. Hence
R o € H#’OO] by Lemma 3.4. Note that [ R;Rjp = 0. Then [(R§ ;¢ —
RiRjp) = 0. By Lemma 3.5 we have [|(Rf ;¢ — RiRjp)w[/oc < co. Hence

RS ;0 — RiR;jp € H™ by Lemma 3.4. It follows that RiR;p € Hi ™.
Moreover, using both Lemmas 3.4 and 3.5, we have

| RS ;¢ — R,-RjngHy,oo] < U Y (CU(C||(R ;¢ — RiRj@)wllss)) — O,

as € — 0. O
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4. Uniqueness theorem

In this section, we show the uniqueness theorem for the Navier-Stokes
equation. It is well known (see [3]) that for initial data ug € L*°(R™) the
equations (1.1), (1.2) admit a unique time-local (regular) solution u with

n
p= Z R;Rju;u; (modulo constants).
ij=1

Following J. Kato [4], by a solution in the distribution sense we mean a
weak solution in the following sense.

Definition 4.1 We call (u, p) the solution of the Navier-Stokes equations
(1.1), (1.2) on (0,7) x R™ with initial data ug in the distribution sense if
(u,p) satisfy divu =0 in &’ for a.e. ¢ and

/0 {(u(s), 0sP(s)) + (u(s), A®(s)) + ((u @ u)(s), VO(s))
+ (p(s), div ®(s)) } ds = —(uo, 2(0)) (4.1)

for ® € C1([0,T] x R™) satisfying ®(s,) € S(R") for 0 < s < T, and
®(T,-) =0, where ((u®@u), VP) = szﬂ(uiuj,aicbj).

Now we state the second result.

Theorem 4.1 Assume that ¢ € G satisfies (3.2). Let ug € L™ with
divug = 0. Suppose that (u,p) is the solution of (1.1), (1.2) in the distribu-
tion sense satisfying

ue L¥((0,T) xR™), pe€ Li,.((0,T); L1,4) (4.2)

Then (u, Vp) is uniquely determined by the initial data ug. Moreover, Vp =
>oij=1 VRiRu'w in 8" for a.e. t.

We give examples of ¢ € G satisfying (3.2). To get a larger class of £; 4
we need to choose a bigger ¢ € G, since L1 4, C L1,4, for ¢1 < ¢o.

Let

o(r) r=" for 0<r<1l,
" r(log(1+7))=# for r>1,
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where § > 1if n > 3 and § > 2 if n = 2. Then ¢ satisfies (3.2) and the
theorem holds. In this case £ 4 D L' UBMO and L1, 4 contains functions
f such that

[f(2)] < Co(1 + |z[) = C(1 + |z|)(log(2 + |z])) ™7 for zeR™

Moreover, if v > 1 and

rm for 0<r <1,
o(r) = { r(log(1 + 7))~ t(log(1 +log(1 + 7))~ for r>1 if n >3,
r(log(1 + 7)) %(log(1 +log(1 +7)))™" for r>1 if n=2,

then ¢ satisfies (3.2) and the theorem holds. In this case £1 4, D L' UBMO
and £ 4 contains functions f such that

|f(x)| < Cop(1 4 |z|) for xeR".

To prove Theorem 4.1 we need the following.
Theorem 4.2 (J. Kato [4]) Let1<i,5,1 <n.
(i) For fe L™,

lim (R ;f,0) = (RiR; f, )
for all p € S with [ ¢ = 0. Moreover,
li_rg R; ;0 f = OR;R;f in S
(ii) For f € S withdivf=0,0<e<1/4,
iR;jfj =0 in S
j=1

(iii) For f € BMO,

g%z:lR;,jajf:—aif in 8.
J:
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In [4] Kato proved his uniqueness theorem by using Theorem 4.2. In
the same way we can prove Theorem 4.1 by using Theorem 4.2 (i), (ii) and
Corollary 3.3 instead of Theorem 4.2 (iii). See [4] for the detail.

5. Proof of the lemma on generalized Hardy spaces

In this section we prove Lemma 3.4. Let

1

MOW-B@) = 150 o

1f (W) = B | dy-

Then (Lemma 2.4 in [14]) there exists a constant C' > 0 dependent only on
n such that

2s
|fB(a:,r) — fB(x,s)‘ <C Mo(faB(l',t))

r

dt

forx e R", 0 <r<s. (5.1)
In general, if © : (0,00) — (0, 00) satisfies the doubling condition, then

O(r) = (log2)™* v @y) dt ~ . (9£t) dt. (5.2)

T T

Proof of Lemma 3.4. Let f satisfy the condition (3.3). First we show that
fg is integrable for all g € £ 4 and that f € (£1,4)*. Next we show that
f € HY>l and that (3.4) holds.

Part 1. For g € £, 4, we show

| 15@)9(@) - ga)ldo < Cluf |l .. (5.9

where By = B(0,1). Then, combining with the integrability of f, we have
the integrability of fg. Moreover, from [ f = 0 it follows that

f(x)g(x) dx| = f(@)(9(x) — gB,) da| < Cllwflloollgllz, -

’ R R

This implies that f € (£q1,4)".
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To show (5.3), let B; = B(0,27) and let
Lo:Bo, LJ:BJ\B]_l (_]:1,2,)

Then, using (5.1), (5.2) and MO(g, B(0,t)) < ¢(t)||g||z1.4, we have

]B|/ — 9B, | dr < |B|/ —9B,;|dx + 9B, — 9B,
2J+1
( o(2) + C / )ugu,,-l,¢
2]+
<c[ ¢ 20 gt gl g (5.4)

Let W(r) = (14 7)""%(r). Then w(z) = W(|z|). Note that W is
almost increasing and satisfies the doubling condition. Then there exists a
constant Cy > 0 such that

Jwflloo
Hence, by (5.4),
[ 5@ — g5l ds
= |f(x)(9(x) — 9B, )| dx
= 1
<> (essols@)15,1( 5 [, 1)~ gl ae)
N )
< 00w - 7 [ SR sl .
In the following, we prove
=2 P ()
> W@j)/1 A0 4t < . (5.5)
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Since W, ¢ and ¢ satisfy the doubling condition, we have by (5.2)

S e [ (g [ )
[ />/< i)
/1w¢t)</ o >d [ </ ess@s”>dt

50/ gz;w(/ms“)dt C/

Note that there exists a positive constant C' such that

(1) ()
m SCU(“@)) for t>1.

2J+1

IN

Actually, letting

cmli(mi) ) e

we have, by the concavity and increasingness of U,
(1) c*P(t) (1)
1) < < —
te(t) vi) = U< ) ) — v t(t) )’

c*o(t)
t0(t)

§W2<2>/ t)dtSC/IOOU<%>C?

Part 2. Now we show that f € Hl[}ﬁ’oo} and that (3.4) holds. Define A;

since

<1 and c¢*<1.

Hence

27 +1




Riesz transforms on generalized Hardy spaces 83

and a;(z), 7 =0,1,2,..., as

[wf|lso
W (29)

Ajaj(w) = (f(x) — fj)xz, (v),

)\j =C |Bj‘¢)(Bj)7

where
o =2C0w, fj=I|L;|™" /L f(z) dz.
Then
/aj(:n) dx =0, suppa; C Bj,
and
lajloo < 2,7 (esssup |£(@)| + 1£51) < Ay~ (2esssup | ()]
z€L, z€L;
- 1
<07 (200 505 ) = s
Hence aj, j =1,2,..., are [¢, oo]-atoms and the equality

F@)xb,. (x) = Naj(x) + > fixz, (x)
=0 =0

holds. Next, to decompose the second term of the right hand side into atoms,
let {n;} be the sequence defined as

m= [ f@de=0. mi= [ fayde j=012..
R” R\ B;
This sequence satisfies

nj = Mj+1 =/ f(z)dz = |L;lf;.

L;
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Therefore

Z fixz, ()
=0

(mj —mj+0)|Li|  xe, (2)

I
NE

<.
I
o

o

<L
Il
iR

If £t > 1, then

/ / /OO 1 ds
Re\B(0,¢) W( Wi(s ¢ U(s)s? s270

< C /OO ds tn
ot ), s20 E(t)t Wi(t)

1 | Bj|
de < CY S
/R"\Bj w(x) VW (2)
Therefore
1 |w oo Bj—1l
|77-§/ |f(z dm§|wfoo/ ——dx < Oy — 21—
1S fon,, TN =lwdlle | o = O i

Define \) and a}(z), j =1,2,..., as

;o lwfl
N = oyt 1B 10(B)).

Ny () = 05 (1L~ xr, (2) = [Lioal ™ xe, o, (@),

where

2n

CW‘B] 1||IJ] 1| ! CWQn—l

n; (1L xe, (2) = [Li—1l 7 xe,_ 0 (2) = M1 | L X2

(@)
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Then
/a;(x) dxr =0, suppaj C By,
and
[0}lloe < X gl < e
A = |Bjlo(B;)
Hence af;, j = 1,2,..., are [¢, oo]-atoms and the equality

F@)xB,. (@) =Y Naj(@) + > Niah (@) = st | L]~ xz, (2)
j=0 Jj=0

holds. Note that

2 ()
: —=dt j
W(27) /1 " —0 as j—0,

since the sum (5.5) converges. Then, for all g € £ 4, we have by (5.4)

' /Rn N1 L |~ XL, ()9 () d

< sl (s [ ) 9(o)] )

[0 f oo Brn Lot
oo = ([ At lallews +lasl ) — 0 (m o)

This shows
F= Naj+> Nidy in (L14)"
§=0 j=1

Moreover, letting ¢* be as in (5.6), we have
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D UM+ ) UWN,)

§=0 J=1

S ot Bilo(B, e 1Bil(B)
-y ( o 21 >+ZU(2H fll L2 1))

=0

K:A

S P2 )
<230 Gl
for some constant C' dependent on only ¢, £ and n. From

CH) _
2i0(27) =

1(7=0,1,2,...) and " <1,
it follows that
c*p(27) = c*p(27)
v(Clusln g ) < OCluflv (5557

< U(Clufl)0 ek ).

By the property (5.2) we have

i o(gek)~ [Cu(S) e

Hence

D UM+ ZU (X}) < CU(Cllwf o).

j=0 j=1
This shows f € H[[}z)’oo] and (3.4).
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