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LP-boundedness of wavelet multipliers

Bolin MA and M. W. WONG
(Received October 23, 2002; Revised February 12, 2003)

Abstract. We give conditions on the symbol ¢ in L>®(R"™) to ensure that the cor-
responding wavelet multiplier is a bounded linear operator on L?(R™) and on LP(R™),
4/3 <p< 4.
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1. Wavelet Multipliers

Let o € L°°(R™). Then we define the linear operator T, : L*(R") —
L*(R™) by

Tou = (o01)¥, ue L*R"),

where 4 is the Fourier transform of u defined by

R—oo

4(€) = lim (2m)"/2 / e y(g)dr, ¢ €R",
el<R

the convergence is understood to take place in L*(R") and (od)Y is the
inverse Fourier transform of o4i. It is a consequence of Plancherel’s theorem
that T, : L?(R™) — L?(R") is a bounded linear operator.

Let 7 : R® — U(L?(R™)) be the unitary representation of the additive
group R™ on L?(R™) defined by

(m(&)u)(z) = e®*u(z), =, €eR?,

for all functions u in L2(R"), where U(L?(R™)) is the group of all unitary
operators on L2(R"). Let ¢ be any function in L2(R™) N L*®(R") such that
lell2 = 1, where || ||, denotes the norm in LP(R™) for 1 < p < co. Then it
has been proved in the paper [5] by He and Wong that
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(o, pv) = (2m)~" / (1w, 7(E)P) (), v) dE (L.1)

for all functions « and v in the Schwartz space S, where ( , ) is the inner
product in L2(R™).

Let 0 € L*(R™) U L®(R"). Then for all functions v in S, we define
By pu by

n

(o, iy ) = (27) / o (€)(w, T©)e) (n(E)p, v) dE, veES. (1.2)

Then it can be proved easily that P, ,u € L2(R") for all u in S and Py,
initially defined on S, can be extended to a bounded linear operator from
L%(R") into L?(R™). In fact, we have the following theorem of He and Wong
in [5], which is formulated as Theorem 19.6 in the book [10] by Wong.

Theorem 1.1 Let 0 € LP(R"), 1 < p < co. Then there exists a unique
bounded linear operator Py ,,: L*(R™) — L*(R™) such that

1o, pll < (2) P02 {0 lp,

where || ||+ is the norm in the C*-algebra of all bounded linear operators from
L2(R™) into L*(R™), and for all functions u and v in L3(R™), (Py ,u, v)
is given by (1.2) for all simple functions o on R™ for which the Lebesgue
measure of the set {£ € R™: g(§) # 0} is finite.

Remark 1.2 Let o € L®(R"™). Then it has been proved in the paper [5]
by He and Wong that the bounded linear operators Py, L?(R") — L%(R")
and ¢T,%: L?(R") — L?(R") are equal. Henceforth we denote ¢©T,% by
P, ,. By (1.1) and (1.2), the bounded linear operator Py, ,: L2(R") —
L?(R") is a variant of a localization operator first studied in [1], [2], 3] and
[4], and extensively in the book [10] by Wong. Had the “admissible wavelet”
@ in (1.2) been replaced by the function ¢y on R™ given by @o(z) = 1
for all z in R”, we would have obtained T, : L?(R?) — L?(R") instead
of P, ,: L*(R") — L%(R"). In other words, the bounded linear operator
P, ,: L2(R") — L?(R™) would have been a Fourier multiplier. Since the
function ¢ in the bounded linear operator P, ,,: L?(R™) — L?(R™) plays the
role of the admissible wavelet in a localization operator, it is natural to call
the bounded linear operator Py, ,: L2(R") — L%(R™) a wavelet multiplier.

The results on wavelet multipliers hitherto obtained are on L?(R"). See,
for instance, the works [3], [4], [5] and [10]. In the paper [9] by Wong, the
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LP-boundedness of localization operators associated to left regular repre-
sentations is studied and the techniques therein can be employed to obtain
similar results on the LP-boundedness of wavelet multipliers for 1 < p < 0.
The aim of this paper is to give another set of results on the IP-boundedness
of wavelet multipliers by reducing the problem to the corresponding one on
Fourier multipliers.

Of pivotal importance in this paper is the notion of an admissible
wavelet of the representation 7: R* — U(L?(R"™)). Following the book
[10] by Wong, a function ¢ in L?(R") satisfying [l¢||2 = 1 and

[ o, m(y) d < o0

is said to be an admissible wavelet of m: R* — U(L%*(R")). For every
admissible wavelet ¢, we define the wavelet constant c, by

o= [ om0 i

It can be found on page 111 of the book [10] by Wong that the set of
admissible wavelets for m: R® — U(L?(R")) consists of all functions ¢ in
L?(R™) N L4(R™) for which |jp|l2 = 1, and for every admissible wavelet ¢,

cp = (2m)"[lll3.

2. The Main Results

We state in this section the main results. They are proved in Section 4.
A technical lemma that we need for the proofs of the main results is given
in Section 3.

Theorem 2.1 Let o € L®°(R"™) be such that there exist positive constants
C, a1 and ag for which

o(O)] < ClgI™™, §#0, (2.1)

and

(Vo) < [€]7*, §#0. (2.2)

If a1 + ag > n, then for every admissible wavelet ¢ of the representation
m: R* — U(L%(R")), the wavelet multiplier P, ,: L*(R™) — L*(R™) is a
bounded linear operator.
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Theorem 2.1 is an L2-boundedness result. A genuine LP-boundedness
result is given in the following theorem.

Theorem 2.2 Let o € L®(R"™) be such that there exist positive constants
C, a1 and ag for which (2.1) and (2.2) are valid. If a1 > n/2 and a1 +
az > n, then for every admissible wavelet ¢ of the representation m: R™ —
U(L*(R™)) and 4/3 < p < 4, the wavelet multiplier P, ,: LP(R™) — LP(R")
1s a bounded linear operator.

Remark 2.3 If ¢ € L2(R?) N L®(R") and ¢ € L*®(R™), then the LP-
boundedness of wavelet multipliers is an easy consequence of that of Fourier
multipliers, which can be found in many references such as the paper [7] by
Seeger and Sogge, and the book [8] by Stein.

3. A Lemma

The following lemma is motivated by a result in the paper [6] by Ma
and Hu.

Lemma 3.1 Let 0 € L™°(R") be such that there exist positive constants
C, a1 and ag for which (2.1) and (2.2) are valid. If a1 + ag > n, then
the Fourier multiplier T, is a bounded linear operator from L*3(R™) into
LA(R™).

Proof. Let 1o and 9 be functions in C§°(R™) such that
supp(¢o) S {§ € R™: [¢] < 1},
1
supp(¢) € {6 €ER™: 5 <l < 2}

and
D i(€) =1, £eRm
i=0

where

w©=v(5), eem

For j =0,1,2,..., welet o; be the function on R"™ defined by
0i(§) = ¥;(€)o(€), £eR™
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Then we get
a(§) =) 0;(€), EEeR™
=0

If we denote by T} the Fourier multiplier 7;,;, then by Minkowski’s inequal-
ity,
IToflla < D ITifllas FES.
§=0

So, it is sufficient to prove that there exist positive numbers C' and € such
that

1T flla < C27% fllays (3.1)

forall finSand j=0,1,2,.... Toprove (3.1), we let K; be the kernel of
Ty, i.e., Kj =05 for j =0,1,2,.... For j =0, (3.1) is trivially true. For
j # 0, we write

(o]
Kj(z) =Y Ki(z), z€R",
=0

where

X

Ki(z) = qp(i)Kj(x), z € R

Then for [ # 0, we can use (2.1) to obtain a positive constant C; such that

o(5)en ™ [ ety

S012j(n—a1), z € R",

55 ()=

which implies that

1K # flloo < C12T00 | 1. (3.2)
On the other hand, we have

Koo < 279
and hence we get a positive constant Cy such that

KL 5 flls < o277 f]|a. (3.3)



642 B. Ma and M.W. Wong

Since 1 is supported away from the origin, it follows that for every multi-
index «,

/n z%P(z) dz =0
and

| lalelie)] dz < oo
Hence for all £ in R”, we get

K (©)l=2"(2m) ™

[ oite-mic) dn'

=(2m) /2 /Rn a5(€ — 27M)ep(n) dn‘

—2n) 2| [ {o5(6) - 27 (Voi)(€)}i(n) dn‘ ,

Rn

where ¢’ is a point on the line segment joining ¢ and & — 27*y. Thus, there
is a positive constant C3 such that

KL(©)] < Cs279%2, ¢eR™
Hence, by Plancherel’s theorem, we get
1K * fllz < C32799227Y | fll2,  f € L*(R™). (3.4)
By (3.3), (3.4) and an interpolation, we get a positive constant C4 such that
[5G % flls < Cozderttloamallo™ | flly, - f e LXR™),  (3.5)

where t is a positive number with 0 < ¢ < 1. Using an interpolation of (3.2)
and (3.5), we get a positive constant Cs such that

”KJI % f||4 < 052—]'((11+t(a2—a1)/2—n/2)2—lt/2“f”4/3

for all simple functions f on R™ such that the Lebesgue measure of {z €
R™ : f(x) # 0} is finite. Thus, for all these simple functions f on R", we
obtain by summing over [ a positive constant Cg such that

IT5flla = || K; * flla < Cg27dlerttlazan)/2=n/2)) ¢ o,

Since t is an arbitrary number in (0, 1), we can choose ¢ close enough to 1
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such that
tlaz —a 1 n
a + % = §(a1 + (1 —t)as + taz) > 5
Therefore (3.1) is valid and the proof of Lemma 3.1 is complete. O

4. Proofs of the Main Results

To prove Theorem 2.1, let f € S. Then, by Holder’s inequality and
Lemma 3.1, we get a positive constant C' such that

1Po, o Fll2=ll(¢To) fll2 < lloll4llTo (@) lla
<Cllellal@fllass < Clielilf112

and the proof is complete.
To prove Theorem 2.2, we use the same notation as in the proof of
Lemma 3.1. If a; = n/2, then we get a positive constant C such that

T38| (T A@Fd = | lose)fe)Pds

. 9J+1
<IFIZ [ lose)Pas < IR [ dr = CumalfIg

20—
forall fin Sand j =0,1,2,.... If ag > n/2, then we also get positive
constants C' and C’ such that

IT5fl3= | [T (@)Pdz= | |oj(€)f(&)Pde
R™ Rn

R 9J+1
<IAIE [ los©Fds < AR [ rn-tar < )11

27—

for all f in S and 7 = 0,1, 2,.... From the above two cases, we get a
positive constant C such that
ITifll2 < Cllfll, feS, (4.1)

for j =0, 1, 2, .... By an interpolation of (3.1) and (4.1), there is a positive
constant C' such that

1T fllg < C27°N £, fES,



644 B. Ma and M.W. Wong

for j=0,1,2,..., where § = 4e(r — 1)/r, and ¢ and r satisfy

4 27
1 <= = ) 4.2
STS 3 179, (4.2)
Summing over j, we obtain a positive constant C such that
ITofllg < Clifll-,  fES. (4.3)

By (4.1) and a duality argument, we have

1T fllo < Cllfll2s f €S (4.4)

By an interpolation of (3.1) and (4.4), we get a positive constant C' such
that

ITifllg < C27 fllr,  fES,

where g and r satisfy
4<r<2 _2r
3~ R g

and A = 2¢(2 — r)/r. Summing over j, we get a positive constant C' such
that

(4.5)

ITsfllg < Clifllr, fES. (4.6)

Now, let f € S. For 4/3 < p < 4, let g1 be such that p/4+ 1/q1 = 1, i.e.,
q1 = 4/(4 — p). Then, using Holder’s inequality, (4.3), (4.6), 7 = 4p/(4 + p)
and ¢ = pg1 = 4p/(4 — p), we get a positive constant C such that

1o, 0 fllo=[(¢To?) fllp < llal|To(@)lpg:
<Cllellal@fllap/atp) < CllellZl fllp

for all f in §. This completes the proof of Theorem 2.2.
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