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The global existence theorem
for quasi-linear wave equations with multiple speeds
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Abstract. The Cauchy problem is studied for systems of quasi-linear wave equations
with multiple speeds. We pursue the extension of the excellent method of Klainerman and
Sideris to its limit, and a unified proof is given to previous results of Agemi-Yokoyama,
Hoshiga-Kubo, Kovalyov, and Yokoyama.
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1. Introduction

The well-known commuting vector fields method of John and Klainer-
man has brought remarkable progress in the study of large-time existence
of small amplitude solutions to quasi-linear wave equations. Its feature
lies in the fact that only the energy integral argument together with the
Klainerman inequality [20], [22] suffices to prove almost global existence for
perturbed classical wave equations if quasi-linear perturbation terms are
quadratic in three space dimensions or cubic in two space dimensions. The
Klainerman inequality contains the boost operators which are members of
the generators of Lorentz rotations in the Minkowski space. In the analysis
of elastic equations as well as systems of multiple-speed wave equations, a
lack of the Lorentz invariance used to be compensated for by direct esti-
mates of the fundamental solution to obtain some L°°-decay estimates in the
late 1980’s [13], [24]. In the middle of 1990’s Klainerman and Sideris threw
a new light on the difficulty of lack of the Lorentz invariance. They have
successfully overcome it, and proved almost global existence for quadratic
quasi-linear wave equations in three space dimensions without relying on
direct estimates of the fundamental solution [23]. In their analysis Klain-
erman and Sideris made use of only the invariance of the D’Alembertian
operator under Euclid rotations, space-time scaling in addition to space-
time translations. Though the spatial divergence form is assumed in the
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nonlinearity, the equation of nonlinear elasticity just fits in and Klainerman
and Sideris have succeeded in obtaining the same almost global existence
theorem as in John [13], without troublesome estimates of the fundamental
solution. The global existence has been subsequently established by Sideris
[28], [30] in line with the enterprise of Klainerman and Sideris [23], and by
Agemi [1] in line with the thought of John [13], under what they called the
null condition, which reminds us of the null condition of Christodoulou [5]
and Klainerman [21] for relativistic wave equations.

From the point of view of non-resonance phenomena of the wave prop-
agation with different speeds, the analysis of systems of nonlinear wave
equations with multiple speeds has also attracted much attention. And this
is actually the main problem which the present paper treats. Because of the
nature of multiple speeds, a lack of the Lorentz invariance occurs, and this
kind of difficulty was first overcome by Kovalyov who employed direct esti-
mates of the fundamental solution to get some L°-time decay estimates. In
[24] Kovalyov proved global existence of small amplitude solutions to a sys-
tem of multiple-speed wave equations with some quadratic semi-linear terms
in three space dimensions or cubic semi-linear terms in two space dimen-
sions. In Proposition 2.1 of [2] Agemi and Yokoyama have introduced some
non-resonance conditions to systems of multiple-speed, cubic quasi-linear
wave equations in two space dimensions with the help of what they called
“John-Shatah’s observation” (see [14]). A decisive result has been obtained
by Hoshiga and Kubo [10], who have considered full systems of cubic, quasi-
linear equations with semi-linear terms and proved global existence of small
solutions in two space dimensions under the non-resonance conditions found
by Agemi and Yokoyama. As for full systems of multiple-speed, quadratic
quasi-linear equations in three space dimensions, Yokoyama has shown a
prominent global existence theorem under non-resonance conditions [33]. It
may be safe to say that all the proofs of Agemi and Yokoyama [2], Hoshiga
and Kubo [10], and Yokoyama [33] lie in the same line as in Kovalyov [24]
where the energy integral argument was carried out with the help of some
L% decay estimates which follow from direct estimates of the fundamental
solution.

Interestingly enough from the point of view of technical innovations,
Sideris and Tu have recently applied the techniques of Klainerman and
Sideris [23], which have been refined significantly by Sideris [29], [30], to
the problem of wave propagations with different speeds [31]. Sideris and
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Tu have found an essentially simplified proof of the outstanding theorem of
Yokoyama. [33], when the semi-linear terms are completely omitted. In this
paper we revisit the paper of Sideris and Tu to aim at getting completely
the same result as in Yokoyama [33].! Our another purpose is to explain
how to prove the same result as in Hoshiga and Kubo [10] by expanding the
enterprise of Klainerman and Sideris. To get things straight, we pursue the
extension of the excellent method of Klainerman and Sideris to its limit and
give a unified proof of the previous results [2], [10], [24] and [33], without
relying on direct estimates of the fundamental solution. In the sequels [8]-[9]
the Klainerman-Sideris method will be employed to show a simple proof of
the global or almost global existence theorem of Klainerman [20], and the
method will be combined with space-time L?-estimates of Keel, Smith and
Sogge [17] to give an essentially new proof of global solvability of quadratic,
semi-linear equations in three space dimensions.

Though we mostly follow the thought of Klainerman and Sideris 23],
Sideris and Tu [31] and rely on their tools, further efforts are demanded
to treat semi-linear terms such as H(u, u) in (3.3), (3.4). This is because
Sobolev-type inequalities in [31] and [30] are not sufficient to get desirable
time decay estimates of the semi-linear terms, especially in two space di-
mensions. We overcome this difficulty by the introduction of Sobolev-type
inequalities which are new in the enterprise of Klainerman and Sideris, and
follow from radius-angular mixed-norm inequalities containing fractional-
order Sobolev norms (see the proof of (4.20)).

Last but not least the author remarks that he does not mean to make
little of the idea of direct estimates of the fundamental solution. Indeed,
he has learned that an L'-L% estimate for inhomogeneous wave equations
plays a role in the attempt to combine the vector fields method with local
energy decay estimates for the analysis of quasi-linear equations in exterior
domains [18]. There may exist problems for which direct estimates of the
fundamental solution are still valuable.

This research was carried out when the author was a visiting researcher
at the Department of Mathematics, University of California, Santa Barbara
on leave from Tokyo Metropolitan University. It is the greatest pleasure to
thank all the member of the faculty and staff for their hospitality. Especially,

’Sogge has recently combined both the techniques in [31] and (18] to accomplish the
same purpose [32].
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he would like to express deep gratitude to Tom Sideris for the invitation
to the Department as a visiting researcher. Thanks are also due to Chris
Sogge for the invitation to the Johns Hopkins University and stimulating
conversations, and to Kazuyoshi Yokoyama for showing an interest in this
work and pointing out a mistake. Finally the author thanks the referee for
reading the manuscript carefully and giving him valuable comments.

The author is supported by Grant-in-Aid for Scientific Research (No.
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This paper is organized as follows. After explaining the notations in the
next section, we state the main theorem in Section 3. Useful Sobolev-type
inequalities as well as crucial estimates of the null forms are collected in Sec-
tion 4. Weighted L2-norms are shown to be bounded by generalized energies
in Section 5. In Section 6 we carry out the energy estimates to complete the
proof of the main theorem. In the final section some comments are added
in accordance with referee’s instructions to mention the application of the
Klainerman-Sideris method to equations with the nonlinear terms including
the unknown functions themselves, say F(u, Ou, 8%u), because there exist
many papers covering this type of nonlinearity.

2. Notation

Mostly following Sideris and Tu [31], we explain the notation used in this
paper. Let n denote the space dimensions. Repeated indices are summed
if lowed and uppered. Greek indices range from 0 to n, and roman indices
from 1 to m. We shall consider systems of m quasi-linear equations. Points

in R™*! are denoted by (z°, z!, ..., 2") = (¢, ). In addition to the usual
partial differential operators 8, = 8/9z% (o = 0, 1, ..., n) with the ab-
breviation 8 = (8y, 01, ..., On) = (0o, V), we shall use the generators of

Euclid rotations Q = z'8y — 226, forn =2, Q = (Q1, Qo, Q3) =z AV for
n = 3, and the generator of space-time scaling S = £%0,. The set of these
v = (n? + n + 4)/2 vector fields are denoted by ' = {Tg, T'1, ..., ['y—1} =
{o, 2, S}. We employ the multi-index notation in Sideris and Tu [31] to
mean, for a = (a1, ..., ax) a sequence of indices a; € {0,...,v — 1} of
length |a| = &,

[%=T4y - Ta.
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It is convenient to set I'* = 1 if |a| = 0. Suppose that b and ¢ are disjoint
subsequences of a, allowing that |b| = 0 or |[¢| = 0. We say b+ c = a if
b + |c| = |al, b+ ¢ < a if |b] + |c] < |al.

The D’Alembertian, which acts on vector-valued functions u : ]RT‘I —
R™, is denoted by

O = Diag(Ty, ..., Om), Op = - — A,

ot?

Associated with this operator, the energy is defined as

_ %Z/Rnﬂ&guk(t, )2 + EVuk (¢, 7)) da
k=1

and the generalized energy is defined as

> Eu(), k=2,3,....

la|<r—1

Allowing a higher-order energy to grow polynomially in time but bounding
a lower-order one uniformly in time, we build up a series of estimates of the
generalized energies. The auxiliary norm

ZZ S Iewt — l2)0TouP (@)l 2y,

k=1 |a|=2 |b|<r—2
k=2,3,...

plays an intermediate role. Here and later on as well we use the notation

= /1 + |AJ? for a scalar or a vector A.

3. Results

We consider the Cauchy problem for a full system of quasi-linear wave
equations with semi-linear terms

Ou = F(Ou,6*u) in RY™ (3.1)
(n =2, 3) subject to the initial data
u(0) = ¢, O:u(0) = 1. (3.2)

We assume the k-th component of the vector function F' to be of the form:
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If n = 2, then F*(0u, 8%u) = G*(u, u, u) + H*(u, u, u), where
G*(u, v, w) = G5 P 0,ui 85078, D50,

j e 63)
HE (u, v, w) = H® 78 ut 8507 Dyt

and, if n = 3, then F*(du, 8%u) = G*(u, v) + H*(u, u), where
GE(u, v) = GP *P19,0l050,0%,  H(u, v) = H}; P 00r'Ogv? (3.4)

for real constants GZ opvs fj’lo‘ﬁ 7, Gf 1B and HZ’; *®_ In the definition of
G* of (3.3), a term is called non-resonant if (4, §) # (k, k) in its coefficient.
If (i, 4, 1) # (k, k, k) in the definition of H*(u, v, w), such terms are also
called non-resonant. Similarly in (3.4), we say the corresponding terms are
non-resonant if ¢ # k in the coefficient of Gf’ Y or (i, 7) # (k, k) in HZ oh
The remaining terms are called resonant.

As is often supposed in the theory of hyperbolic equations, the highest-
order terms are assumed to appear diagonally in the nonlinear terms. Since
our proof is based on the energy integral method, we of course suppose

Gt =GR itn=2, GPP=GP*F ifn=3 (3.5)

‘We are now in a position to recall the null condition in the setting of multiple
speeds which is proposed by Agemi and Yokoyama [2] for n = 2, Sideris and
Tu [31], Yokoyama [33] for n =3: Forevery k=1, ..., m

GhoP X Xp X, X; =0, HE X, XpX, =0 (3.6)
forall X e Ny if n =2,

G X XpXy =0, HE*X,X5=0 (3.7)
for all X € Ny if n = 3, where Ny is the hypersurface defined as

Ne={XeR"™ : X2 - E(X?+ .-+ X2 =0}. (3.8)

For the initial data ¢, 1, we assume ¢, ¥* € C*(R?), k=1, ..., m. The
aésumption of infinite times differentiability is not essential for the proof of
global existence. In our theorem, however, the assumption of compactness
of the support cannot be replaced by any other suitable decay condition at
spatial infinity for n = 2.

The main theorem of this paper is stated as follows.
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Theorem Assume n = 2, 3. Suppose that the null condition (3.6)-(3.7)
as well as the symmetry condition (3.5) are satisfied. Let k > 9. There
exist positive constants €, €1 and A with the following property: Suppose
that smooth, compactly supported initial data satisfy

4B, o(u(0)) exp[A{2E, (u(0))}’] < 3¢ (3.9)
(0=1ifn=2,0=1/2if n=23). For n =2, assume in addition
Mi—2(u(0)) < €. (3.10)

Then the problem (3.1)-(3.2) has a unique global in time solution satisfying
Ex(u(t)) < CE.(w(0) ()% and B al(u(t)) <4®  (3.11)
for allt > 0.

4. Preliminaries

In this section we collect several lemmas concerning commutation rela-
tions, some estimates of the null forms, and the Sobolev-type inequalities.

We begin with the commutation relations. Let [-, -] be the commuta-
tor. In addition to the well-known facts

Ba, O] =0, [, 0] =0, [S,0=-20, (4.1)

we need the commutation relations of the vector fields I' with respect to
the nonlinear terms. Recall the nonlinear terms G = (G, ..., G™) and
H = (H', ..., H™) defined in (3.3)-(3.4). Part (i) of the following lemma
implies that the null structure is preserved upon differentiation, and Part
(ii) together with (4.1) inductively shows that, for any a, the nonlinearities
of the equations (4.6), (4.7) also possess the null structure.

Lemma 4.1 (i) For any I'* the following equalities hold:

reGu, v, w) = Z Go(TPu, T, Tw), (4.2)
b+c+d+e=a
TeH(u, v, w)= > He(T%, I, T%w) (4.3)
b+ec+dte=a
ifn=2, and
I“G(u, v) Z G4(Tou, T), (4.4)

b4ctd=a
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T®H(u,v) = Y Hy(Tu, T) (4.5)
b+ctd=a
if n = 3. Here each G (resp. He) is a cubic nonlinear term of the form
which G (resp. H) has in (3.3), and each Gy (resp. Hy) is a quadratic
nonlinear term of the form which G (resp. H) has in (3.4). In particular,
Ge=G, Ho=H ifb+c+d=ain(42)-(4.3), G4 =G, Hy= H ifb+c=a
n (4.4)-(4.5). Moreover, if the original nonlinearities G and H have the
null structure (3.6)-(3.7), then so does each new nonlinearity Ge, He, Gg,
and Hy.
(i1) Let u be a smooth solution of (3.1)-(3.3). Then, for any I'®, the equal-
ttes
Oru= Y Ge(T%, T, T%w)
btctd+e=a
+ > He(Tw, T, Mw) — I Ou if n=24.6)
b-+c+d+e=a
Oru= Yy Gg(T%u, T)
b+ct+d=a
+ > Hy(Mw, %)= [ Ou if n=3 (4.7)
b+c+d=a
hold.

Proof. See Lemma 4.1 of Sideris and Tu [31]. O

The next lemma, which crucially comes into play in the estimates of
lower-order energies, is the statement of gain of additional decay in nonlin-
earities with the null structure (3.6)-(3.7).

Lemma 4.2 For any smooth scalar functions u, v, w and z, the following
inequalities hold for r > cpt/2:
|G P78 5, uBv 8, B
< C{t) [Tl |0v]|6%w| + [Ou]|Tv][8%w]
+ 10u||8v][0Tw| + (cxt — )| 0u||8v]|8%w]], (4.8)
|G P10 5 D508, wdsz]
< O~ [[Tullovl|ow]|02] + [8ul|Tv]|8w||0z] + |ul|dv|Tw]|0z]
+ |0u||8v||0w||Tz| + {cxt — 7)|0u||dv||0w]|0z]],  (4.9)
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|G 870 9,0, uBgudsw|
< C(t)~[|0Tu|8v||w] + |6%u||Tv]|Bw]|
+ [0%u||Ov||Tw] + |{ckt — 7)|0%ul|Ov]|Ow]], (4.10)
G297 0,8, 85v85w]
< O(t)~H[Tul[0%v]|0w] + |0ul|OTv||dw]
+ |8u||820||Fw| + (gt — r)|8u\|8211||8w|], (4.11)
| B 0wl
< C{t)7H[|Tu||8v]|0w] + |8u||Tv||dw)|
+ |8ul|8v|[Tw| + (ckt — r)|Ou||Ov]|Ow|] (4.12)
ifn=2, and
|G P15, u050,0]
<Cc@t)! [|I‘u|\82v| + |0u||8Tv| + {cxt — 7")|8u|[82v|], (4.13)

|G P 5 udgudyw]
< C(t)" [|Tul|8v||8w| + |8u||T0]|Bw]| + |8ul|dv||Tw|

+ (cxt — 7)|0u||dv||dw]], (4.14)

|Gy P10, 6,udpv]

< C{t)~H[|OTu||av] + |02ul|Tv| + {cxt — r)|0%ul|0v]], (4.15)

| B Baudpo|

< C@)7H|Tu||8v] + Oul[Tv] + (cxt — r)|Oul|6v]] (4.16)
ifn=23.
Proof. The proof of (4.13)-(4.14) is given by Sideris and Tu [31]. The proof
of the others is similar. 0

The following lemma is concerned with Sobolev-type inequalities.

Lemma 4.3 (i) Let n = 2. The following inequalities hold for any
smooth vector-valued functions u : Rgfl — R™, provided that the norms
on the right-hand side are finite:
(M2 9u(t, )| < CE3(u(t)), (4.17)
(r)2(est = )M?10u (t,0)] < CEY*(u(t)) + OMs(ult),  (4.18)
(r) 1 (cjt — r)|8% (¢, )| < OMay(u(?)), (4.19)
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{r >€<Cjt —r)jovl (¢, o)

< CZ > et = )00 ()5l (st ~ )00 (1), o

Jj=1|a|<1
+ CMs(u(t), (4.20)

where 0 < € < 1/2.

(ii) Let n = 3. The following inequalities hold for any smooth vector-
valued functions u : Ri’_"’l — R™, provided that the norms on the right-hand
side are finite:

(M2 |u(t, z)| < CEy*(u(t)), (4.21)
(rY2 (et —7)|Bul (¢, ©)| < CEy*(u(t)) + CMs (u(t)), (4.22)
(r)|Bu(t, z)| < CE3*(u(t)), (4.23)
(r){(cjt — r)%|0ul (¢, 2)| < CE3"* (u(t)) + CM; (u(t)), (4.24)
(r)(cjt — r)|8%W (¢, @)| < CMu(u(t)). (4.25)

Proof. Part (i) is proved in Lemma 1 of Sideris [29] except (4.20), and
Part (ii) is shown in Lemma 6.1 of Sideris and Tu [31] except (4.22) (see
also Proposition 3.3 of Sideris [30]). Hence (4.20) and (4.22) remain to be
shown. The proof of (4.20) starts with the following radius-angular mixed-
norm inequality which has been proved in Hidano [6] (see also Lemma 3.4
in [7]):

1/2 1 n
([ brwPds) <Ol g<s<f. 42
gn—1

Set ¢ = 1 — 5 for 1/2 < s < 1. Let us simply denote u?, c; by u, c,
respectively. For r» > 1 it follows from (4.26) and the Sobolev embedding
on S! that

r¥|(ct — r)Ou(t, x)|

<C>d >or ( / |{ct — r)0*QPu(t, m)|2dw) v

la]=1 [b]<1
<C Y0 > et = 1) QPu(®)ll -
la|=1[b|<1
<O Y Y et —rorQtu(t)Salliet — marQPult)F. (4.27)

la|=1 p|<1



Systems of gquasi-linear wave egquations with multiple speeds 617

On the other hand, for » < 1, we proceed as follows. Let & be a smooth,
compactly supported function in R? such that ®(z) = 1 for |z| < 1, =0 for
|z| > 2. Without loss of generality we may assume ct > 3. It then follows
from the Sobolev embedding and (4.27) that

|{ct — r)Ou(t, z)| < (1 + ct)|®(x)du(t, z)|

2
< C(L+et)|@du(t)| gz < C(L+ct) Y IVH(RDu(t))] 12
i=1
2

<O +et) Y IVOul)llia(orcn) + C(L+ct) sup |Dult, =)
2

< C’Z Il (ct — rYViOu(t)|| 2 + C sup |{ct — r)ou(t, z)|

i=1 |z|>1
< CMs(u(t))
+C 33 et = nE L ulgallict - O L] (4.28)
lal=1]b|<1

Therefore, the inequality (4.20) is a consequence of (4.27)-(4.28).
As for (4.22), we start with the following inequality

P1/2 ( /S 2 |v(rw)|4dw> v Cllolg (4.29)

(see (3.16) of Sideris [30]). For r > 1, (4.22) is an immediate consequence of
the Sobolev embedding on S? and (4.29). For » < 1 we have only to modify
the argument in (4.28) properly. O

Lemma 4.4 Let n = 2. Suppose that, for every t > 0, smooth and scalar
functions u = u(t, x) are compactly supported in {x € R? : |z| < ct + R}
with suitable constants ¢ > 0 and R > 0. Then the inequality

1

(Ct——T)u(t < Crl|Vu(t) |l r2w2) (4.30)

L2(R2)

holds for a constant Cr with Cr — 00 as R — oo.

Proof. See Lemma 1.2 of Lindblad [26], where this lemma is proved for
n = 3. As is pointed out in, e.g., Lemma 3.3 of Katayama [16], this lemma
is actually valid for n = 2 as well. O
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5. Weighted L?-estimates

It is necessary to bound the weighted L%-norm My (u(t)) by EL? (u(?))
for the completion of the energy integral argument. We carry out this by
starting with the next crucial inequality due to Klainerman and Sideris [23],
estimating the nonlinear terms carefully, and doing a bootstrap argument.

Lemma 5.1 (Klainerman—-Sideris inequality) Let x > 2. The inequality
M) < (B ) + Y e+nrule)  (61)
lal<r—~2

holds for any smooth function u with the finite norms on the right-hand
side.

Proof. See Lemma 3.1 of Klainerman and Sideris [23] and Lemma 7.1 of
Sideris and Tu [31]. Note that their proof is obviously valid for n = 2 as
well as n = 3. g

Lemma 5.2 Let u be a smooth solution of (3.1)-(3.4). Set ' = [(k —
1)/2] + 3. Then for all |a] < x —2
)¢+ r)Oreu(t)] o2
< C(BY? (w(t)) + My (u(t))) 2 EY?(w(t)) + CEq (u(t)) M (u(t))
+ CEY? (u(t)) EY? (u(t)) My (u(t)) if n=2 (5.2)
(¢ + )BT u(d)]] 2
< CEY? (u(t)) BY?(u(t)) + C My (u(t)) EY? (u(t))
+ CEY(u(t))Mu(ult)) if n=3. (5.3)
Proof. 'We may focus on the estimate of the L2-norm of t{II'%u(t) because

that of rO0I"u(¢) is treated in a similar (in fact, easier) way. Set p = [(k —
1)/2]. We start with n = 2. It immediately follows from (4.6) that

tO0%u(t)l|z2<C Y t[|0T% (£)AT W (£)°T %! (£)| 2

|b|+lc|+|d|
_ + [|OTPu (£)8T % (1) AT %l (t)]| 2] . (5.4)

Supposing |b|+|c| < p without loss of generality, we bound the second norm
as
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<) T P et — )Y POT (8) | oo
X ()2 (it — r)20T ! (t)|| oo | OT % (1) L2
<) TC(BY? (w(®) + Mu (u(t))) B2 (u(t)) (5.5)
by (4.18). For the first norms on the right-hand side of (5.4), we sort them
out into two groups: [b]+ |c| < por |d| < p—1. The first group is estimated
as
()T 20T (1) oo || (r) /20T (2) | oo
x [t — )T (1) 2
<O) T B (u(t)) My (u(t)) (5.6)

by (4.17). Otherwise, assuming |[b| < p as well as |d| < p— 1 without loss of
generality, we get

<)) 20T U (8) | oo | OT 0 (£) | 1.2
x [(rY % (et — )T % (£)]| oo
<CH) B (ult)) M (u(t)) B (u(®)) (5.7)

k=1
by (4.17), (4.19), which completes the proof of (5.2).

As for n = 3 we first observe by (4.7) that the L2-norm of tOI is
estimated as in (5.4). Since the quadratic, quasi-linear terms have already
been treated by Sideris and Tu [31], we have only to bound the L2-norm of
quadratic, semi-linear terms such as

)| 008wt (8)OT%u? ()| 2, [b] + || < & — 2. (5.8)
Assuming [b| < p without loss of generality, we estimate (5.8) as
< (et = YOO (t) || oo + [[{r) T u? (8)]| oo ) |OT 0 (2)]| 2
1/2 2
<C(EM*(u()) + My (u(t))) EY2 (u(t))
+ CE? (u(t) B (u(t)) (5.9)
by (4.22) and (4.23). O
Lemma 5.3 Letk > 9, u = k—2. There exist small, positive constants eg,
€1 with the following property. Suppose that, for a local smooth solution u of
(3.1)-(3.4), the supremum of E,i/Q (u(t)) on an interval [0, T) is sufficiently
small so that
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sup EL/?(u(t)) < e (5.10)
0<t<T

may hold. For n = 2, assume in addition

M, (w(0)) < e1. (5.11)
Then

My (u(t)) < CEM?(u(t)), 0<t<T (5.12)
and

M (u(t)) < CEY?(u(t)), 0<t<T (5.13)

hold with a constant C independent of T'.

Remark This lemma is actually valid for k > 8. We have assumed x > 9
for the latter use.

Proof. Set p/ = [(u—1)/2] +3. We start with n = 2. It follows from
Lemma 5.1 and Lemma 5.2 that for 0 <t < T

M, (u(t))SCEl/Q(u(t)) + C(E”Q( ®)
My (uw())?EY? (u(t)) + CEp (u(t)) My (u(t))
+ CE” 2(u(®) B (u(t)) My (u(?))
<0E1/2< (£)) + C (0 + My (u(t)))* BY *(u(2)
+ CeB M, (u(t)) + CeB M, (u(t))
<CEY?(u(t)) + Ce3 M (u(t)) + CM2(u(t)), (5.14)
which immediately yields
My(u(t)) < CEY2(u(t)) + OM2(u(t)) < Ceo + CM2(u(t)) (5.15)

because € is sufficiently small. Since M, (u(0)) is small enough and M, (u(t))
is continuous on [0, T'), we see that

M, (u(t)) <Cleo), 0<t<T (5.16)

for a constant C(gg) with C(eg) — 0 as g — 0. Inserting (5.16) into (5.15),
we finally get the estimate (5.12). As for (5.13), we first note that the
inequality &' := [(k—1)/2]+3 < u holds. Proceeding as in (5.14) and using
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(5.12), we easily see that
Mo (u(t)) < CEY?(u(t)) + Ce3 My (u(t)) + CEY?(u(t)),  (5.17)

which yields (5.13).
As far as the case n = 3 is concerned, we have only to repeat essentially
the same argument as in Lemma 7.3 of Sideris and Tu [31]. O

6. Energy estimates

Following the strategy in Sideris [30], Sideris and Tu [31], we accom-
plish the energy integral argument by deriving a pair of coupled differential
inequalities for a higher-order energy FE, (u(t)), k > 9 and a lower-order
energy I, (u(t)), 4 = Kk — 2. Since the equation is quasi-linear, we must ac-
tually consider modified energies which are equivalent to the original ones
for small solutions.

For initial data (¢, %) with (¢¥, 9*) € C(RM)XCPR™) (k= 1,...,m),
let us assume E,l/ 2 (w(0)) < e for a sufficiently small £ > 0 such that 2 < &
(see (5.10) for &g). By the standard local existence theorem we know that
a unique smooth solution exists locally in time. Suppose that Ty is the
supremum of all 7' > 0 for which Eﬁ/ ? (u(t )) <2 forall 0 <t<T. Itis

shown that Ef/ 2( (t)) < 2¢ on the closed interval 0 < ¢t < Tp, therefore we
can continue the local solution to all time.
Suppose 0 < t < Tp in what follows. Denote by (-, -) the scalar product

in R™, we have foreach [ =1, ...,k (k > 9)
Ej(ut)= > / (Or%u(t), & %u(t))dz
la|<i-1

= / GE aﬁ'yéaauiaguj6785Pauk8tfaukdx
|1<|k:<7n

+ > / (Ge(Ty, Tu, T%), 8,T%)dz
btect+dte=a
la|<I-1, d#a

+ Z / TPy, Tu, T%), 8;%)dx
b+c+dte=a

_ / (r®, Oy, BT °uwdz, it n=2, (6.1)
RZ
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Ej(u(t))= Z / Gf’amaauiaﬁ&yf‘“ukatfaukd:c
|1§k§m R3
al=l-1

+ Z /R3(Gd(f‘bu, Iu), 8T *u)dx

b+ctd=a

|a]<I—1, c#a
+ > / (Hy(Tbu, T°u), 8,0%u)d

b+ct+d=a R3
- / (T° Ou, T dz, i n =3, (6.2)

R3

The loss of derivatives which has occurred in the first term on each right-
hand side is prevented by the symmetry condition (3.5) as follows:

/R GO0, 00,051 OTF da
= / G570, (8ouBpu? 85T u* 8, 7wk ) das
Gy b6 [a, (Oa i’ 8507 ) D5 T uk BT
+ 8! Og 95T w040, T u* | da
=8, /R G300 B BT 1w d
—~ /R | G370, (Do 050 ) O5T*uF O T uF da
— /R? %GZ “ﬁVéaauiaﬁujat ((%I‘auk&,F“uk)da:

1 . .
=0 /2 inJ O‘ﬁ)“snzﬁauzaguj&gI‘“uk&YI‘auk dx
R

- GZ am‘s&, (8aui85uj) dsT*u*9, " dz
R

1 ‘ )
+ / 5@5.“;&57‘5@(aauzaﬂuﬂ)aéraukavraukdx. (6.3)
RQ

(n) = diag(1, —1, —1)) for n = 2, and
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/ G P78, 850, T O, T da
_5, / ~ G0 48Tk, TP da
_ /R3 Gf’aﬁvayaauiaﬂraukatrauk dx
N /R 3 %Gf’aﬂvataauiaﬁraukavrauk dz (6.4)

(n] = diag(1, —1, =1, —1)) for n = 3 as was shown in Sideris and Tu [31]
on page 484. Therefore, introducing the modified energy
Ey(u(t)):=Ei (u(t))
> / =G5 PN 9ot 9u7 95T 8,10k d (6.5)
la|=1—1

1<k<m

for n = 2, and

Ey(u(t)):=E(u(t))
By / SGR A 0T B, TR dr (6.6)
lal=l—1

1<k<m

for n = 3, we finally have

Ej (u(t))
= Z / [y, TCu, T%), 8;1%) da
b+c+d+te=a
la|€l—1, d#a
Z / GlC 0‘5758 auiﬁguj)aaf‘aukatl““uk dz
'1“<'kl<,i
/ Gk aﬁw@ auiﬁﬁuj)&gfauk&yf‘auk dx
- R2
s‘z;
+ > / Tu, Tu, T%), ;T%u) de
b+ctd+e=a

- / (%, Olu, BT dz it n=2, (6.7)
RZ
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Ei(u(t))
= Y /R 3<Gd(I‘bu, Tu), 8;%u) dz
(ol St oya
- > / GP P19 B,ul T uk 8T " da
—,. ., /R3
eem
1 .
+ Z / §Gf’am@taauzagf‘“ukﬁﬁ‘“ukda:
_ R3
L eom
+ > /R ) (Hy(TPu, T°u), 8,0%) dz
b+-ct+d=a
_ / (T%, Olu, 8T dz i n=3. (6.8)
R3

We also note that, under the smallness of E,l/ 2 (u(t)) (0 < ¢t < Tp) with
i = K — 2, the inequality

%El (w®) < Bu®) <2B(u®), 1=1,...,x (6.9)

holds by the Sobolev embedding.

We plan our energy integral method, allowing the higher-order energy
E.(u(t)) (k > 9) to grow polynomially in time but bounding the lower-
order energy E,(u(t)) (1 = x — 2) uniformly in time. Let us start with
the estimate of the higher-order energy. Setting [ = & in (6.7), we have for
n=2

B, (u(t))
<> > ortutoreul 0P T 4wl | 12| 0T ul| 2

i, 5,1 |a]<k—1 Ibl+lel+dI<]al
d#a

+>0) > [lorbuareul OT | 12|07 %u| 2. (6.10)

i J: b lalSk—1 [bl+|e|+|d|<|al

Set ¢ = [x/2]. Note that ¢+ 3 < u because of kK > 9. Supposing |b|+|c| < g
without loss of generality, we bound the second term as
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| 0T 20 AT 0 OT 4| 2
< ) M) ¥ et — )P OT u | oo
X [[(r)3(est — r)M20T<w || oo | OT 0 1.
< Ct) M (B2 (u(t) + Ma(u(t))) By (u(t)
< C() 7 By (u(t) By (u(t)). (6.11)

Here we have employed (5.12) at the third inequality. As for the first terms
on the right-hand side of (6.10), we sort them out into two groups: |b| +
|| < gorldl <g—1. The first group is estimated as in (5.6) and (6.11):

|| 0T ut 0w’ H2T %t 2
< Ct) M (EY2 (ut)) + My (ult)))* M (u(t))
< Ot B (ult) By (ult)). (6.12)

Otherwise, assuming |b] < ¢ in addition to |d| < ¢ — 1 without loss of
generality, we get as in (5.7)

|8TPu AT u? 52T %l | .2
< C) T B (u(t) My (u(t)) B (u(t))
< O E, (u(®) EY? (u(t)). (6.13)

Taking account of the equivalence between F; and E;, we get from (6.10)-
(6.13)

By (u(t)) < C) T Eu(ut)) Ex(u(?)). (6.14)
Let us turn our attention to n = 3. It follows from (6.8) that

Bl (u(t))

<CY . > N aruietTew | pa | T e

3,7 |a|<k—1 IBl+lc|<|a]
cta

+CY > Y |lortutoreud| e[| 0T || e (6.15)

4,7 la|<k—1 [bl+]c|<]al
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For the first term which is the contribution from the quasi-linear parts, we
may follow Sideris and Tu [31] to get

[T°u 9T ud || 12 < C(t) L EL? (u(t)) EL? (u(t)) (6.16)
(see [31] on page 485). On the other hand, the second term is treated in
quite the same way as in (5.8)-(5.9):

| 6T Ut | 12

< O (B (u(0) + My (u(®)) B (u(t))

+ EX2(u(t)) EX? (u(t)))

< OB (u(t) B (u(t)). (6.17)
Taking account of (6.9) again, we finally have

Er(u(®) < OO By (ul(®) Ex (u(®)). (6.18)

Note The almost global existence theorem of John and Klainerman which
was shown under the hypothesis (H;) of [15] follows from (6.18).

Lower-order Energy The crucial part in the proof of global existence is
to bound the lower-order energy E,(u(t)) (4 = x — 2) uniformly in time.
For the purpose we exploit an improved decay rate of solutions inside the
cone as well as the difference of propagation speeds to sharpen the decay
estimates presented above, when |a| < p.

Set ¢g :=min{¢;/2 :i=1,...,m}and p =k —2 (k > 9). Setting
I =pin (6.7) and (6.8), we estimate the resulting terms on the right-hand
side. Divide the integral region R? or R® into two parts: inside the cone
{(t, z) : |z| < cot} and away from the origin {(¢, z) : |z| > cot}.

Inside the cone Here we exploit an improved decay rate of solutions. Let
us start with n = 2. The contribution from the quasi-linear terms is
bounded by

> > 10Tt w 9P T %! || r2 gty 10T 0| 2. (6.19)

iy 7y U |a|<p—1 fbl+lel+ld|<]al
40,0 al<p e

We may suppose |b| < [1/2] without loss of generality. It then follows from
(4.18) and (5.12) that
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|60 wt AT u? 520 %0t || 2
< (7| (cit = 7)1 | Loo <oty 10T 0 | oo
X [[{eit = )T || L2(r<coty
< OO (B (wl®)) + Mipjaa (u())) il 2o (u(8) M (u(2))
< CW)T2EY2 (u(t)) B (u(t)), (6.20)
where we have used |b| +3 < [1/2] + 3 < , |c| +3 < k. Concerning the

contribution from the semi-linear parts, we see from (6.7) that it is bounded
by

> D 18T O w ST | L2 oty |OT *ul 2. (6.21)
4,1 la|<p—1 [bl+|cl +]d] <]al

Since u is supported in {|z| < ¢*¢t + R} for a constant R > 0 and ¢* :=

max{c; : 1 =1, ..., m}, it follows from (4.20) that for |z| < cpt
(&)1 ~Mortut (¢, x)|
2 1
< (B, (u(®) + Mipes(u(t)), 0<n< 5 (6.22)

Assuming [b] + |¢| < [1/2] without loss of generality, we proceed
18T AT w? BT | L2 (<
< O () 0T | oo <oty
X [[{est — )20 w7 || Loo <oty [ OT | 2

< OB, (u(d)) + Mipgra (u(?)

X (E|1cﬁQ (u(®)) + Miagys (u®))) By (u(t))
< Oy~ /DT ES2 (u(t)). (6.23)
Hence the estimate inside the cone has been finished.

Turning our attention to n = 3, we see from (6.8) with [ = p that the
contribution from the quasi-linear terms is bounded by

Z Z Z Hal—‘buiaQI‘cuj“LQ(r<cot) ||8Pau||L2> (6'24)

4,7 a|<p—1 lbl+lel<lal
c#a

which is estimated as

< CWTPEY? (u(t) By (ult)) (6.25)
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(see [31] on page 486).
On the other hand, the contribution from the semi-linear terms is
bounded by

S Y 0wyl s (626
&7 lal<pu—11]bl+|cl<]al
which we deal with as follows. Suppose |b] < [p/2] without loss of generality.
Employing (4.24) and the Hardy inequality, we get

8T B0 | 2r oty

_ i 1 c,.j
< (&) |Ir{eit — ) POT U poo oty ~{est — 7)o

L2(r<cot)
< O™ (Bl (ut) + Mipj2a (u(t)))
x (B2, (w(t)) + Mgz (u(t)))
< C(t)3PEY? (u(t)) B (u(t), (6.27)

as desired.

Away from the origin Here the difference of propagation speeds comes into
play. Moreover, we employ the null condition (3.6) for the estimates of
resonance terms.

Non-resonance Let us start with non-resonance terms. Qur task for n = 2
is to estimate the contribution from quasi-linear terms

3 ST Y ertuiaredd 02Tt O uE | 1 s oy
(5,526, k. ) lal g1 BlHIel a1l

(6.28)

as well as the contribution from semi-linear terms

Z Z Z ||8Fbui6Fcuj8qu18tI‘auk ||L1 (r>cot)
(i, 4, )7 (k. k. k) |a| <p—1 [b|+Hel+]d|<[q|
(6.29)

In estimating the L!'-norm in (6.28) we separate two cases: i = j = [ or
otherwise. In the former case, noting 7 # k, we have
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|67 %2 AT u* 8° T OT U || 11 (r5 )
< ()| (r) /20T || oo |OT w2
X |[(eit — mYOPT% | 2| | (r) 2 (et — r)1 /200" | oo
—3/2 ;1/2 1/2
<o By s (u() Bl (ult))
X Migo (u(t)) (B + Mo (u()))
1/2 2
< OG0Bl (u(t) By (u(t) M (w()) B, (u(2)
< C{t) "By (u(t)) By (ult)). (6.30)
Otherwise, it is easy to get
0T b OT °ud 02T u AT U* || 11 (5 o)
< ()72 (it — r) 20T oo
X [(r) 2 (ejt — r)/20Tw || oo || {cit — )BT | 2| 6T *u¥ | 12
< C(t) ™2 B (u(®)) Bu(u(t)). (6.31)
As for (6.29), we may suppose 7 # k without loss of generality. We separate
two cases: |b] < [u/2] —1 or |c| + |d| < [u/2]. If |b] < [u/2] — 1, we may
suppose |c| < [u/2] as well, and obtain
[T o0 6T 0! AT U T U™ (| 11 (r> gty
< (072 (r) (it — ) 2O | oo (o
x (|00 ud A%t || o1 ()2 (et — 1) /20T %U" | Lo (rs oty
_ 1/2
<c(y~®? (E|b{+2( (£)) + Mipjps (u(t))) Bi? (w(t)) BR/? (u(?))
1/2
% (B (u(t)) + Mgy (u(t)))
< C) 2B (u(t)) Eu(ult)). (6.32)
Otherwise, we have |c| + |d| < [1/2] and it suffices to modify the argument
n (6.32) properly. Therefore the estimates of non-resonance terms have
been completed for n = 2.

For n = 3 the estimates are carried out as follows. We first collect the
contributions from quasi-linear terms

S>> 0T utePreuw T 1t s oty (6.33)

(i,9)7(k, k) |a] Sp—1 Ibl+Iel<lal
c#a
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and from semi-linear terms

Z Z Z | TP utoreu? 5,T %" 21 (r>cot)- (6.34)

(i, 5)#(k, k) |a|<p—1 |b|+|c|<|al

We again separate two cases in estimating the L'-norm in (6.33): i = j or
otherwise. In the former case, because of 7 # k, we can proceed as

18056 P LU AT " | 11 (r5 oy

< ()72 O0% 2| (est — )BT | 2 [|{r) (et — ) /20T ¥ | oo

< O 2B (u(t) My (u(0)) (B (4(8)) + Migys (u(2)))

< O 32E, (u(®t) EX? (u(t)). (6.35)
Otherwise,

[T w8 8T || L2 (155t [|OT 0| L2

< (&3 2Y(r) (et — r)2OT U oo || (c5t — ) OPT e | L2 B (ult))

< O™ (B s (u(®)) + Mipjaa (u(2))) Miggs2 (w(8) By (u(t)

< C3PEY2 (u(t)) Eu(u(t)). (6.36)

As for the estimate of (6.34), we may suppose i # k. If the propagation
speeds satisfy ¢; < ¢k, then

0700 0T “w? B, T%u* || 11 (o)

< ()72 u’ AT || 1 || (r) (ert — 1) /2OTUP | oo (cqparac(erren)ty2)
+ () 732 0T BT u® || 11 || {r) (it — ) 20T U | oo s (cr-ten)ty2)

< C)3PEY2 (u(t) Eu(u(t) (6.37)

by (4.24). Otherwise, we have ¢; > ¢ and it is enough to modify (6.37)
properly. Hence we have finished the estimates of non-resonance terms away
from the origin.

Resonance The resonance terms remain to be estimated away from the
origin. It is just the place where the null condition comes into play. Without
the null condition, the solution may become singular in finite time (see, e.g.,
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John [12]). In view of Lemma 4.2 and (6.7)-(6.8), the estimate is reduced
to bounding

Z Z Z <t>_1 (“Fb_'_lukarcukazrduk||L2('r>cot)

1<k<m |aj<p—1 [bi+lcl+ldI<]al
d#a

+ ||TbukoT e ur o 1y k | 22(r>ot)

+ || {cxt — 7">8Fbuk8I‘cuk82quk||Lz(7.>60t)) 10T %u| 1.2

+ >y S @I R Or et O | 2 s ey
1<k<m Ja|<p—1|b|+|c[+|d|<]al

+ {ext — )T PuFOT UFOT || 12 sy ) |OT ul 1.2 (6.38)

for n =2, and

Yo > OTHIT T UM | gy

1<k<m|a|<p—1 |b|+lc|<|a|
C a

+ ||arbukarc+luk”L2(r>cot)
+ [[{ext - T)afbuk62F°uklle (r>cor)) 107wl 2
+ Z Z Z ”Fb+1 koreu k||L2 (r>cot)
1<k<m |a|<p—1 |b|—l—|c|<|a|
+ ||{cxt — r>8I‘bu’°8FCuk|IL2(T>COt)) |01 %u|| 72 (6.39)
for n = 3. Here, by b+ 1, we mean any sequence of length |b| + 1.

Using (4.19) and Lemma 4.4, we estimate the first norm on the right-
hand side of (6.38)

(ty=1/2 1 ToHLukarent (r) /2 (cpt — 782 u*
<ckt — ’f‘> L2(r>cpt)
1
< ($)—1/2 b+1, k okl s o
< {t) —<th — T>I‘ U L2||3I‘ u¥|| L
x |2 ept — 7O TF || Loo
< OBV (u(t)) Bu(u(t). (6.40)

Assuming |b| < |¢| without loss of generality, we estimate the second and
third norms on the right-hand side of (6.38) as
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(&) T2 1(r) /2T U || oo g oty BT | .0 | OT 1 1.2
+ (&) 72 2OT 0 | oo s oty [ OT | ool ext — ) 0P T | 2

< C(t)yM2EY2 (u(t)) By (w(t)). (6.41)
The remaining terms in (6.38) are estimated as
1
-1 b+1, ko N1/27, 4 o\1/2
(t) (th_ﬂl“ w(r)y ' (cept — 1)

x ATuF (r)12 (cpt — 7)1/ 20000k

L2(r>cpt)
+ (&) M) et — )M
x OLPuk (r) 2 (et — 1) /20T uF O || Lo (s oty
< C{) T EM2 (u(t)) By (u(t)), (6.42)

thanks to (4.18) and Lemma 4.4.
Collecting (6.40)-(6.42), we have shown that (6.38) is estimated as

s SO TPEY2 (u(t) B (u(®)). (6.43)

Only (6.39) remains to be bounded. The first term of (6.39), which is the
contribution from the quasi-linear terms, has already been estimated by
Sideris and Tu [31] as

o SO ES B (u(t)). (6.44)

The second term of (6.39), which is the contribution from the semi-linear
terms, is estimated as

(&2 ()T RO | sy
+ (&) T2 r) M2 (ext — 1) OTPUFOTUF | 2y
< O PEY (u(t) B (ult)), (6.45)

thanks to (4.21) and (4.22). We have therefore proved that (6.39) is bounded
as

- < OO PEL (ut) Bu(w(®) (6.46)

as desired. )
Collecting the estimates of £, (u(t)) and taking (6.9) into account, we
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have obtained
B, (u(®))
<C)” 3/2131/2( () B (ult))
+ O () B/DTER (u(t))
+C{t 3/2E B, (u(®))

<Cit)y” <3/2 1 B (u(t)) By (u(t)) (6.47)
for n = 2, and

E),(u(®) < C{t)~¥2EY? (u(t)) B, (u(?)) (6.48)
for n = 3.

Now we are ready to complete the proof of our main theorem. Assuming
E1/2( (t)) < 2¢ (0 <t < Ty) for a sufficiently small e such that 2¢ < g¢ for
go in (5.10), we get from (6.14), (6.18)

By (u(t) < Ex(u(0) ()" ifn=2,
Eq(u®) < Ec(u(0)) ()9 ifn=3.
Inserting this into (6.47)-(6.48), we have

%Eﬂ (w(®) < Bu(u()) < Bu(u(0)) exp[AE (u(0))] (6.49)

(0 =1forn=2,=1/2 for n = 3). Recalling the assumption on the size of
data (3.9), we have finally obtained

EY*(u(t)) < V3e, 0<t<To. (6.50)

The last inequality proves that the norm Ell/ 2 (u(t)) is strictly smaller than
2¢ on the closed interval [0, Tp]. The proof of the main theorem has been
completed. 0

7. A note on the Klainerman-Sideris method

In obedience to the referee’s report we give some comments on the
Klainerman-Sideris method. It indeed seems interesting to consider further
applications of the superb method to the problem of global existence for
systems of equations which include the unknown w itself in the nonlinear
term. An example of physical importance has been studied by Ozawa, Tsu-
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taya and Tsutsumi [27], where it is shown by the method of the X, p-space
due to Bourgain [3]-[4], Kenig, Ponce and Vega [19] that the Klein-Gordon-
Zakharov system, which has different speeds and includes unknown func-
tions themselves in the quadratic nonlinear term, has a unique small global
solution in three space dimensions. On the one hand, the Klainerman-
Sideris inequality includes the radial vector field S = 2%8,, on the other
hand the use of radial vector fields is not compatible with the analysis of
Klein-Gordon equations because of the presence of the mass term. Unfor-
tunately, the excellent method of Klainerman and Sideris does not seem
efficient in the analysis of such an intriguing system of physical importance,
which all the more underscores the necessity for making efforts to make new
progress in the method of commuting vector fields.

Finally the author would like to take this opportunity to mention that,
in the absence of mass terms, the problem of global solvability of systems of
fully nonlinear wave equations with multiple speeds has been studied in the
elaborate works due to Hoshiga and Kubo [11], Kubota and Yokoyama [25]
in two and three space dimensions, respectively. In their analysis the use of
radial vector fields has made a comeback due to the absence of mass terms.
They have also made better use of some refined L*-estimates of solutions
themselves to inhomogeneous equations which directly follow from estimates
of the fundamental solution.
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