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Abstract. We study pulse dynamics in one-dimensional heterogeneous media. In par-

ticular we focus on the case where the pulse is close to the singularity of codim 2 type

consisting of drift and saddle-node instabilities in a parameter space. We assume that

the heterogeneity is of jump type, namely one of the coefficients of the system undergoes

an abrupt change at one point in the space. Depending on the height of this jump, the

responses of pulse behavior are penetration, splitting, and rebound. Taking advantage

of the fact that pulse is close to the singularity, the PDE dynamics can be reduced to a

finite-dimensional system, which displays the three behaviors. Moreover it takes a univer-

sal form independent of model systems, and is valid for much more general heterogeneities

such as bump, periodic, and random cases.

Key words: reaction-diffusion equations (35K57), Bifurcation (35B32), Homoclinic and

Heteroclinic solutions (34C37).

1. Introduction

Spatially localized patterns such as pulses and spots are fundamental
objects arising in many dissipative systems such as [1, 3, 4, 14, 19, 26, 35].
One of the recent remarkable discoveries is that there is a class of localized
patterns which display a variety of dynamics such as elastic ball-like be-
haviors upon collision, self-replication, self-destruction and spatiotemporal
chaos [2, 5, 7, 12, 17, 20, 22, 23, 24, 27, 33, 34, 36, 39]. This makes a sharp
contrast with the well-known classical excitable waves as in the FitzHugh-
Nagumo (FHN) equations in which annihilation are typically observed when
they collide with others [16].

One of the origins of such rich behaviors is that the pulses have their own
internal dynamics; namely, they have a variety of instabilities depending
on parameters. For instance, saddle-node structure causes self-replication
[21], and drift bifurcation is responsible for the onset of traveling motion.
Moreover a singularity of codim 2 type, i.e., a system has a parameter where
multiple bifurcations simultaneously occur, is known to be responsible for
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the variety of outputs for scattering process [22, 25]. The pulses treated here
in this paper are asymptotically stable in homogeneous media, however we
assume that the associated parameter values are located close to the above
instabilities. One of the consequences of this assumption is the enhancement
of sensitivity to the perturbation: for instance, if the associated parameter
with traveling pulse is close to the drift bifurcation, its profile is almost
symmetric and easy to deform from the right-going pulse to the left-going
one due to the external perturbations, which is one of the characteristic
differences between FHN pulses and ours.

Behavior of such pulses or spots in heterogeneous media are not so
well-studied compared with the FHN pulses [10, 11, 28, 29] and the front
case [6, 13, 15, 38]. The aim of this paper is to show how one-dimensional
stable traveling pulses in such a class behave when there exists a spatial
heterogeneity in the media. Here we restrict ourselves to the simplest case
in which there is only one Heaviside-like abrupt change of a parameter value
which may affect the propagating manner. We will briefly discuss the bump
(two abrupt changes) and periodic cases in the concluding remarks.

To be specific, we employ two model systems: one is the Gray-Scott
model (1) and the other is the exothermic model (2) (see Section 2) and
consider the case in which one of the kinetic parameters (k for (1) or b for
(2)) changes abruptly around a point. Although we mainly deal with the
Gray-Scott model in this paper, the method employed here is also applicable
to many other systems including the exothermic model syetem. Fig. 1
schematically illustrates a traveling pulse in a heterogeneous medium, in
which the kinetic parameter varies like a smoothed Heaviside-like function so
that the propagation velocity in the right-half region is lower than that in the
left-half region. It is in a sense that the pulse goes into a bad environment.

Fig. 1. The solid line shows a profile traveling pulse schematically. The dotted
line stands for the typical profile of parameter k = k(x) in our model
system. Traveling pulses meet the heterogeneity k(x) of jump type in the
middle. For the Gray-Scott model we observe three different responses
shown in Fig. 2
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It is the case, in fact, if the parameter (k for (1) or b for (2)) is increased
as x exceeds the jump point. One may expect that pulses can go through
the jump point when the height is very low. However, it is not so clear
for higher barriers whether the pulse turns back, annihilates or splits into
two waves, in fact, it turns out that penetration does not always occur even
for arbitrary small jump when other parameters are tuned appropriately.
Fig. 2 shows three different responses for the Gray-Scott model (3) when
the pulse meets a heterogeneity of jump type in the middle. For small gap,
the pulse can penetrate into the right-half region. When the size of gap
is gradually increased, the pulse splits around the jump point, and then
it turns back. Note that the splitting of the pulse can occur without the
heterogeneous effect, i.e., spontaneous splitting as in Fig. 4 due to intrin-
sic instability of saddle-node type in which stable traveling pulses are not
observable. Here we are interested in the situation that pulses can propa-
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Fig. 2. Heterogeneity causes a variety of pulse dynamics as its height ε varies.
(a) Penetration (f = 0.026, k = 0.0557, ε = 2.0 × 10−4), (b) Splitting
(f = 0.026, k = 0.0557, ε = 7.0 × 10−4), (c) Rebound (f = 0.026, k =
0.0557, ε = 1.2× 10−3). The coefficient k(x) for the Gray-Scott model (3)
has a heterogeneity of jump type located at the center of the interval as
in Fig. 1. The computations are carried out for ∆t = 0.05, −50 ≤ x ≤ 50
and ∆x = 0.125.
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Fig. 3. The Gray-Scott model (1) has only one homogeneous state (u, v) = (1, 0)
in our paper. Two nullclines v = (f + k)/u and v =

√
f(1 − u)/u for

f = 0.026 and k = 0.0557 do not intersect.

gate stably on both sides of the jump point and splitting is caused by the
heterogeneity and occurs only once around the jump point.

One of our main goals is to explain the reduction from PDE dynamics
to ODE ones via pulse interaction method [5, 7, 8], and then clarify the
role of the codim 2 singularity consisting of the drift bifurcation and the
saddle-node bifurcation, which leads to the origin of various responses due
to the heterogeneity. The drift bifurcation is a deformation of wave form of
symmetry-breaking type which drives a standing pulse into a moving one
and the saddle-node bifurcation causes a sudden onset of an event such as
wave-splitting as in Fig. 4.

A remarkable thing is that the resulting finite dimensional dynamics not
only inherit the qualitative aspect of the original PDE dynamics but also
is independent of specific model systems and valid for much more general
heterogeneity including periodic and random cases.

This paper consists of 6 Sections. The model system and its properties
in homogeneous media are shown in Section 2. Section 3 numerically shows
pulse behaviors in heterogeneous media. Section 4 presents the reduction
to finite-dimensional dynamics. In Section 5 we discuss the analysis of
the principal part of the reduced equations. And then, we conclude our
discussions in Section 6.

2. Model systems

We consider the following one-dimensional reaction-diffusion system
called the Gray-Scott model [9, 30], which describes the chemical reaction
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Fig. 4. The saddle-node bifurcation of standing pulse for the Gray-Scott model.
Fig. (a) shows a schematic picture of flows near the saddle-node bifurcation
point. Here the black (gray) line indicates stable (unstable) standing pulse
solution. The unstable manifold emanating from the lower (gray) branch
of saddle-node bifurcation is responsible for the splitting from 1-pulse to
2-pulse type of solutions. Figures in (b) show the profile of standing pulse
at codim 2 point (left up) and the associated eigenfunctions: φ for trans-
lation free zero eigenvalue (right up), ψ for drift bifurcation (left bottom),
and ξ for saddle-node one (right bottom) respectively (k ≈ 0.057833, τ ≈
1.007734, f = 0.0291). The black (gray) line indicates the v-component
(u-component). The space-time plot (c) shows a pulse-splitting of the
standing pulse slightly off the saddle-node bifurcation located at k =
0.0578.

U + 2V → 3V and V → P in a gel reactor:
∂u

∂t
= Du

∂2u

∂x2
− uv2 + f(1 − u),

τ
∂v

∂t
= Dv

∂2v

∂x2
+ uv2 − (f + k)v,

t > 0, x ∈ R, (1)

where u = u(t, x) and v = v(t, x) depend on time t and position x, f > 0
and k > 0 are kinetic parameters, and Du > 0, Dv > 0 and τ are constants.
We assume that k is spatially uniform in this section. Since we study
the behavior of traveling pulse, we employ the parameter values so that
(1) becomes mono-stable, namely the nullclines intersect at only one point
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Fig. 5. Dynamics of the Gray-Scott model(1) in homogeneous media when k is
increased with f = 0.026 being fixed. Computations are done for ∆t =
0.05 and ∆x = 0.25. (a) Splitting pulse (k = 0.0550), (b) Traveling pulse
(k = 0.0560) and (c) Standing pulse (k = 0.0570)

(1, 0) (see Fig. 3).
The numerical integration of (1) is carried out with the Crank-Nichol-

son method [32] with Du = 5.0× 10−1, Dv = 2.5× 10−1, τ = 1.007734, and
time interval ∆t = 0.05 with Neumann boundary conditions.

It is known that (1) displays a variety of dynamics [21, 30, 31] depending
on k and f . Three different types of pulse dynamics such as splitting,
traveling, and standing ones are typically observed as in Fig. 5. The phase
diagram in (k, f)-plane is shown in Fig. 6. In Fig. 6, SN (DR)-line denotes
the saddle-node (drift) bifurcation of standing pulses, which are numerically
computed [32]. The broken line in Fig. 6 separating the splitting domain
and traveling one represents the Hopf-bifurcation. The intersection of SN
and DR lines is a codim 2 point located at (k, f) ≈ (0.057833, 0.0291). The
associated eigenfunctions are depicted in Fig. 4 in which ψ represents the
main deformation of the drift bifurcation and ξ for the saddle-node one.
For f = 0.026, the saddle-node bifurcation is at k = kSN ≈ 5.65092× 10−2,
the drift bifurcation at k = kDR ≈ 5.65746 × 10−2, splitting of traveling
pulses occurs in the region of k ≤ kH ≈ 0.05543, and stable traveling pulses
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Fig. 6. Phase diagram in (k, f)-plane for the Gray-Scott model (1). Here DR
stands for the drift-bifurcation, and SN for the saddle-node one of standing
pulses, respectively. The boundary separating the splitting and traveling
domains is Hopf bifurcation line of traveling pulses. The crossing point of
DR-and SN-lines is the codim 2 point.

exist when k belongs to the interval (kH , kDR). Standing pulses cease to
exist around k ≈ 0.05833, and only the trivial state (1, 0) is observable
asymptotically for k > 0.05833.

Before discussing the dynamics of traveling pulses in heterogeneous me-
dia, we show several properties of them in homogeneous media. It is numer-
ically confirmed as in Fig. 7 that the above drift bifurcation at k = kDR is
supercritical, in fact, it is confirmed numerically that the propagation speed
is monotonically decreased with respect to k.

In the next section, we work in the parameter regime: f = 0.026 and
0.0555 ≤ k ≤ 0.0565 in which stable traveling pulses are observed. All the
numerical computations hereafter will be done for f = 0.026.
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Fig. 7. The propagating speed of the pulse of Gray-Scott system (1) for f = 0.026.
The drift bifurcation occurs at k = 0.056574.

Although we employed (1) as a representative system, our results in
sections 4 and 5 have much more generality. In order to illustrate it, we
also consider the following reaction-diffusion equations for the exothermic
reaction [7]:

∂u

∂t
=

∂2u

∂x2
+ κ−1[−2u + exp(u/(1 + u/5))]v,

∂v

∂t
= d

∂2v

∂x2
+ h(1 − v) − exp(u/(1 + u/5))v,

t > 0, x ∈ R, (2)

where u = u(t, x) and v = v(t, x) depend on time t and position x, and
h > 0 is a constant. We numerically integrate this system with h = 45.0,
and with time step ∆t = 1.0 × 10−5, using κ and d > 0 as control param-
eters. The system size is 10.0 with ∆x = 0.025. It turns out that this
system has a stable stationary pulse (SSP) solution, a self-replication pulse
(SRP), i.e., pulse-splitting, a stable traveling pulse (STP) solution, and a
stable oscillatory traveling pulse (SOTP) solution. Fig. 8 shows the phase
diagram of (2). The codim 2 point, i.e., the intersection of the drift bifurca-
tion (dotted line) and the saddle-node bifurcation (solid line) is located at
(d, κ) ≈ (5.9105, 0.001027). We work in the STP-regime close to the codim
2 point.

3. Pulse dynamics in heterogeneous media

We proceed to study pulse dynamics of the Gray-Scott model (1) and
the exothermic model (2) in heterogeneous media.

We introduce a heterogeneity assuming that the parameter k is a func-
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Fig. 8. Phase diagram for the exothermic model (2). Here the regions for stable
standing pulse (SSP), self-replication pulse (SRP), stable traveling pulse
(STP), and stable oscillatory traveling pulse (SOTP) are shown. DR and
SN lines stand for the same bifurcations as in Fig. 6.

tion of x, namely k(x) = k + εχ(x),
∂u

∂t
= Du

∂2u

∂x2
− uv2 + f(1 − u),

τ
∂v

∂t
= Dv

∂2v

∂x2
+ uv2 − (f + k(x))v,

t > 0, x ∈ R, (3)

where χ(x) = 1/(1 + exp(−γx)) with γ > 0 as shown in Fig. 9. The
parameter ε controls the height of the jump and γ controls the slope of the
heterogeneity. Jump-up case corresponds to ε > 0, jump-down case to ε < 0
and ε = 0 is a homogeneous case.

We integrate (1) with k(x) given by (3) using the Crank-Nicholson
method with Du = 5.0 × 10−1, Dv = 2.5 × 10−1, τ = 1.007734, ∆t = 0.05,
being the same as above for the homogeneous case. We use f = 0.026 and
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k varies in between 0.05550 and 0.05650, where the stable traveling pulse
exists. The steepness of the slope of k(x) around x = 0 is controlled by γ,
and in fact the response of pulse also depends on γ (see Section 6), however
we fix it as γ = 5.0(see Fig. 9).

Depending on k and the height of the jump ε, the response of the pulse
can be classified into three classes: penetration, splitting, and rebound as
shown in Fig. 10. Loosely speaking, for ε > 0 (jump-up), penetration always
occurs for lower barriers and rebound is observed for higher barriers. Pulse-
splitting occurs in between the above two responses and diminishes as k is
increased. Those typical behaviors are depicted in Fig. 2 when ε is increased
from 2.0 × 10−4 to 1.2 × 10−3.

The phase-diagram Fig. 10 also shows that penetration (respectively
rebound) regime expands as k is decreased (respectively increased). Recall
that the velocity of the pulse is increased as k is decreased, and therefore
for positive ε the pulse propagates faster in the left-side domain than the
right-side domain. On the other hand, for ε < 0 (jump-down), penetration
is always observed.

Next we observe the exothermic model (2) with a heterogeneity via
κ(x) = κ0 + εχ(x):

∂u

∂t
=

∂2u

∂x2
− 2κ−1

0 u + κ−1(x) exp(u/(1 + u/5))v,

∂v

∂t
= d

∂2v

∂x2
+ h(1 − v) − exp(u/(1 + u/5))v,

t > 0, x ∈ R,

(4)

where d, h, and κ0 are constants, and χ(x) = 1/(1 + exp(−γx)) with γ > 0
is the same as above for k(x) (see (3)). The parameters ε and γ respectively
control the height of the jump and the slope.
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Fig. 9. The profile of χ(x) for γ = 5.0.
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Fig. 10. Response of the pulse in heterogeneous media for the Gray-Scott model
with k(x) being given by (3) with respect to k and ε.

We integrate (4) with the system size 10.0, spatial interval ∆x = 0.025,
and time interval ∆t = 1.0 × 10−5 for d = 5.7, h = 45.0, κ0 = 0.00097,
γ = 5.0.

Fig. 11 shows the phase diagram of this system, which is qualitatively
similar to that for the Gray-Scott model (Fig. 10). When ε is increased,
the rebound regime appears; there exists a splitting region between the
penetration region and the rebound region.

A natural question arises “what is the mathematical mechanism pro-
ducing the above outputs?” It is known that pulse-splitting is associated
with the saddle-node bifurcation as shown in Fig. 4, and the transition
from standing to traveling occurs via the drift bifurcation. This suggests
that the dynamics of the pulse near the codim 2 singularity consisting of
the saddle-node and the drift bifurcation points can give us a clue to un-
derstand this variety of responses. In fact, as we will see in the sequel, our
reduction method near such codim 2 point produces the expected outputs
and allows us to reduce the whole dynamics to a finite-dimensional ODEs



218 Y. Nishiura, Y. Oyama and K. Ueda

0

1

2

3

 

5

6

 

8

 0.00097  0.000975  0.00098  0.000985  0.00099

Rebound

Splitting

Penetration

κ

ε

×10
-7

Fig. 11. Response of the pulse in heterogeneous media for the exothermic model
(2) with b(x) being given by (4).

which has a universal form independent of specific model systems.

4. Reduction to finite-dimensional dynamics

In order to study the pulse dynamics in heterogeneous media, we ana-
lyze the following general 1D reaction-diffusion system

ut = Duxx+F (u; k) =: A(u; k), t > 0, x ∈ R, (5)

in which parameter k ∈ R2 is close to the codim 2 point (see (S3)). Let
X := {L2(R)}N , u = u(t, x) = (u1, . . . , uN )T ∈ X be an N -dimensional
vector, D be a positive diagonal matrix, F : RN → RN be a smooth vector-
valued function, k = (k1 + εχ(x), k2) with k1, k2, ε ∈ R and χ(x) be a
C1-function. For (5), we assume through (S1) to (S4):



Dynamics of traveling pulses in heterogeneous media of jump type 219

(S1) There exists a k = kc := (k̃1, k̃2) ∈ R2 such that the non-trivial
standing pulse solution S(x; k) of (5) exists, i.e., A(S;kc) = 0.

We consider (5) in a neighborhood of k = kc, by using small parameters
η = (η1, η2) as k1 = k̃1 + η1 and k2 = k̃2 + η2. In order to avoid the
unnecessary complexities, we assume that (5) takes the following form

ut = A(u; kc) + (η1 + εχ(x))g1(u) + η2g2(u),

where g1 and g2 are N -dimensional vector-valued functions.
Let L be the linearized operator of A with respect to u at u = S at

k = kc, i.e., L = A′(S(x);kc), where “′” stands for Fréchet derivative with
respect to u, and L∗ be the adjoint operator of L with respect to {L2(R)}N .
(S2) The spectral set of L consists of two sets σ1 = {0} and σ2 ⊂ {µ ∈

C; Re(µ) < −γ0}, where γ0 is a positive constant.
(S3) L has a codim 2 singularity at k = kc consisting of drift and saddle-

node bifurcations besides the translation-free 0 eigenvalue. That is,
there exist three eigenfunctions φ(x), ψ(x) and ξ(x) such that

Lφ = 0, Lψ = −φ, Lξ = 0,

where φ = ∂S/∂x. Note that φ(x) and ψ(x) are odd functions, and
ξ(x) is an even function. ψ(x) represents the deformation vector with
Jordan form for the drift bifurcation, and ξ(x) the eigenfunction for
the saddle-node bifurcation.
Similar properties also hold for L∗. That is, there exist φ∗, ξ∗ and ψ∗

such that L∗φ = L∗ξ∗ = 0 and L∗ψ∗ = −φ∗, where φ∗(x) and ψ∗(x)
are odd functions and ξ∗(x) is an even function.

(S4) Each element of eigenfunctions φ, φ∗, ψ, ψ∗, ξ, and ξ∗ decays expo-
nentially as |x| → +∞.

The above assumptions are numerically confirmed for (1), in fact Fig. 12
shows the profiles of associated adjoint eigenfunctions at the codim 2 point
for the Gray-Scott model.

Remark 4.1 Under the normalization of

〈ψ, φ〉 = 〈ψ, ψ∗〉 = 0, 〈ξ, ξ∗〉 = 〈φ, ψ∗〉 = 1,

all the eigenfunctions are uniquely determined (e.g. [7]). We note that

〈φ, ξ∗〉 = 〈ξ, φ∗〉 = 〈φ, φ∗〉 = 0, 〈ψ, φ∗〉 = 1,
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Fig. 12. The profiles of the associated adjoint eigenfunctions of the linearized
operator L at the codim 2 point for the Gray-Scott model. u:gray line,
v:black line.

hold automatically.

Here 〈 · , · 〉 stands for L2-inner product. Let E := span{Sx, ψ, ξ}.
Our ansatz is the following

u = S(x−p)+qψ(x−p)+rξ(x−p)+ζ†(x−p)+w, (6)

where p, q, r are scalar functions of time t; p denotes the location of pulse,
q for its velocity, and r the depth of the dimple of splitting. The remaining
two terms ζ† and w belong to E⊥. More precisely ζ† = q2ζ1 + r2ζ2 + qrζ3 +
η1ζ4 + η2ζ5 with ζj ∈ E⊥ being determined by

Lζ1 +
1
2
F ′′(S)ψ2 + ψx = α1ξ,

Lζ2 +
1
2
F ′′(S)ξ2 = α2ξ,

Lζ3 + F ′′(S)ψ · ξ + ξx = α3ψ + α′
3φ,

Lζ4 + g1(S) = α4ξ,

Lζ5 + g2(S) = α5ξ.

Here αj and α′
j are constants satisfying the following equations:〈1

2
F ′′(S)ψ2 + ψx − α1ξ, ξ∗

〉
= 0,

〈1
2
F ′′(S)ξ2 − α2ξ, ξ∗

〉
= 0,

〈F ′′(S)ψ · ξ + ξx − α3ψ, φ∗〉 = 0, 〈F ′′(S)ψ · ξ + ξx − α′
3φ, ψ∗〉 = 0,

〈g1(S)− α4ξ, ξ∗〉 = 0, 〈g2(S)− α5ξ, ξ∗〉 = 0.

Let L(X;X) be all bounded bilinear operators from X to X. Since
L(X,L(X;X)) is identified with L(X × X; X), we represent (F ′(S)u)′v ∈
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L(X;L(X; X)) (u, v ∈ X) as F ′′(S)u·v ∈ L(X×X;X), and write F ′′(S)u·
u as F ′′(S)u2 for simplicity. Third-order derivatives F ′′′(S) are similarly
defined.

Let Xα be the fractional power of space X with respect to the linearized
operator L with α ∈ (3/4, 1), and || · ||α denotes the norm of Xα. Then the
remainder term w ∈ E⊥ satisfies the estimate ||w||α = O

(
|q|3+|r|3+|η|3/2

2

)
where |η|2 :=

√
η2
1 + η2

2. The proof can be done in a parallel way to [7],
however the details will be reported elsewhere. Substituting (6) into (5),
we obtain

− ṗ(φ + qψx + rξx + ζ†x +wx)+ q̇(ψ + ζ†q )+ ṙ(ξ + ζ†r)+wt

=Lw− qSx + Lζ† +
1
2
q2F ′′(S)ψ2 + qrF ′′(S)ψ · ξ +

1
2
r2F ′′(S)ξ2

+ qF ′′(S)ψ · ζ† + rF ′′(S)ξ · ζ† +
1
6
q3F ′′′(S)ψ3 +

1
2
q2rF ′′′(S)ψ2 · ξ

+
1
2
qr2F ′′′(S)ψ · ξ2 +

1
6
r3F ′′′(S)ξ3 + εχ(x)g1(S)

+ η1g1(S)+ η2g2(S)+ q(εχ(x)g′
1(S)+ η1g

′
1(S)+ η2g

′
2(S))ψ

+ r(εχ(x)g′
1(S)+ η1g

′
1(S)+ η2g

′
2(S))ξ

+
1
2
η2
1F

′′(S)ζ2
4 + η1η2F

′′(S)ζ4 · ζ5 +
1
2
η2
2F

′′(S)ζ2
5

+O
(
(|q|+ |r|+ |η|2)(|q|3 + |r|3 + |η|3/2

2 )+ |ε|(|q|+ |r|+ |η|2 + |ε|)
)
.

(7)

Taking the inner product of (7) and ψ∗(x − p), we have

ṗ = q − α′
3qr − ε〈χ(x)g1(S), ψ∗(x)〉

+ O
(
|q|3 + |r|3 + |η|3/2

2 + |ε|(|q| + |r| + |η|2 + |ε|)
)
.

Similarly, by taking the inner product of (7) with φ∗(x − p) and ξ∗(x − p),
we have the following two equations.

q̇=α3qr + qr2(−α′
3〈ξx, φ∗〉+ 〈F ′′(S)ξ · ζ3, φ∗〉+ 〈F ′′(S)ψ · ζ2, φ∗〉

+
1
2
〈F ′′′(S)ψ · ξ2, φ∗〉+ 〈∂xζ2, φ∗〉)

+ q3(〈F ′′(S)ψ · ζ1, φ∗〉+ 1
6
〈F ′′′(S)ψ3, φ∗〉+ 〈∂xζ1, φ∗〉)

+ ε〈χ(x)g1(S), φ∗〉+ q(η1〈g′
1(S)ψ, φ∗〉+η2〈g′

2(S)ψ, φ∗〉
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+η1〈F ′′(S)ψ · ζ4, φ∗〉+η1〈∂xζ4, φ∗〉
+η2〈F ′′(S)ψ · ζ5, φ∗〉+η2〈∂xζ5, φ∗〉)

+O
(
(|q|+ |r|+ |η|2)(|q|3 + |r|3 + |η|3/2

2 )+ |ε|(|q|+ |r|+ |η|2 + |ε|)
)
.

ṙ=α1q
2 +α2r

2 + ε〈χ(x)g1(S), ξ∗〉+α4η1 +α5η2

+ q2r(−α′
3〈ψx, ξ∗〉+ 〈F ′′(S)ξ · ζ1, ξ∗〉+ 〈F ′′(S)ψ · ζ3, ξ∗〉

+
1
2
〈F ′′′(S)ψ2 · ξ, ξ∗〉+ 〈∂xζ3, ξ∗〉)+ r3(〈F ′′(S)ξ · ζ2, ξ∗〉

+
1
6
〈F ′′′(S)ξ3, ξ∗〉)+ r(η1〈g′

1(S)ξ, ξ∗〉+η2〈g′
2(S)ξ, ξ∗〉

+η1〈F ′′(S)ξ · ζ4, ξ∗〉+η2〈F ′′(S)ξ · ζ5, ξ∗〉)+
1
2
η2
1〈F ′′(S)ζ2

4 , ξ∗〉

+η1η2〈F ′′(S)ζ4 · ζ5, ξ∗〉+ 1
2
η2
2〈F ′′(S)ζ2

5 , ξ∗〉

+O
(
(|q|+ |r|+ |η|2)(|q|3 + |r|3 + |η|3/2

2 )+ |ε|(|q|+ |r|+ |η|2 + |ε|)
)
.

Using the following notations,

Γ0(p) =−
∫ ∞

−∞
χ(x)g1(S(x − p)) · ψ∗(x − p)dx,

Γ1(p) =
∫ ∞

−∞
χ(x)g1(S(x − p)) · φ∗(x − p)dx, (8)

Γ2(p) =
∫ ∞

−∞
χ(x)g1(S(x − p)) · ξ∗(x − p)dx, (9)

and

M11 = α3,

M30 = 〈F ′′(S)ψ · ζ1, φ∗〉 +
1
6
〈F ′′′(S)ψ3, φ∗〉 + 〈∂xζ1, φ∗〉,

M12 = 〈F ′′(S)ξ · ζ3, φ∗〉 + 〈F ′′(S)ψ · ζ2, φ∗〉 +
1
2
〈F ′′′(S)ψ · ξ2, φ∗〉

+ 〈∂xζ2, φ∗〉 − α′
3〈ξx, φ∗〉,

N20 = α1,

N02 = α2,

N21 = 〈F ′′(S)ξ · ζ1, ξ∗〉 + 〈F ′′(S)ψ · ζ3, ξ∗〉 +
1
2
〈F ′′′(S)ψ2 · ξ, ξ∗〉

+ 〈∂xζ3, ξ∗〉 − α′
3〈ψx, ξ∗〉,
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N03 = 〈F ′′(S)ξ · ζ2, ξ∗〉 +
1
6
〈F ′′′(S)ξ3, ξ∗〉,

µ1 = a1η1 + a2η2,

µ2 = α4η1 + α5η2 + c1η
2
1 + c2η1η2 + c3η

2
2,

µ3 = b1η1 + b2η2,

a1 = 〈g′
1(S)ψ, φ∗〉 + 〈F ′′(S)ψ · ζ4, φ∗〉 + 〈∂xζ4, φ∗〉,

a2 = 〈g′
2(S)ψ, φ∗〉 + 〈F ′′(S)ψ · ζ5, φ∗〉 + 〈∂xζ5, φ∗〉,

b1 = 〈g′
1(S)ξ, ξ∗〉 + 〈F ′′(S)ξ · ζ4, ξ∗〉,

b2 = 〈g′
2(S)ξ, ξ∗〉 + 〈F ′′(S)ξ · ζ5, ξ∗〉,

c1 =
1
2
〈F ′′(S)ζ2

4 , ξ∗〉,

c2 = 〈F ′′(S)ζ4 · ζ5, ξ∗〉,

c3 =
1
2
〈F ′′(S)ζ2

5 , ξ∗〉,

we can rewrite the above equations as

ṗ = q − α′
3qr + εΓ0(p)

+O
(
|q|3 + |r|3 + |η|3/2

2 + |ε|(|q| + |r| + |η|2 + |ε|)
)
,

q̇ =
(
M30q

2 + M11r + M12r
2 + µ1

)
q + εΓ1(p)

+O
(
(|q| + |r| + |η|2)(|q|3 + |r|3 + |η|3/2

2 )
+ |ε|(|q| + |r| + |η|2 + |ε|)

)
,

ṙ = N20q
2 + N02r

2 + N21q
2r + N03r

3 + µ3r + µ2 + εΓ2(p)

+O
(
(|q| + |r| + |η|2)(|q|3 + |r|3 + |η|3/2

2 )
+ |ε|(|q| + |r| + |η|2 + |ε|)

)
.

(10)
Using the following notation,

q̃ = q + Kqr, r̃ = r + e3r
2, dt = (1 + e1r)dτ,

µ′
1 = µ1 + Kµ2, µ′

2 = µ2, µ′
3 = µ3,

where K = −M30/N20, e1 = −N03/N02, e3 = K − e1/2 − N21/2N20, and

C0 = M11, C1 = M12 −
N02M30

N20
− M11

(
3N03

2N02
− M30

N20
− N21

2N20

)
,

C2 = N02, C3 = N20,
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we rewrite (10) in the following form:

ṗ = q̃ − (K + e1 + α′
3)q̃r̃ + εΓ0(p)

+O
(
|q̃|3 + |r̃|3 + |η|3/2

2 + |ε|(|q̃| + |r̃| + |η|2 + |ε|)
)
,

˙̃q = µ′
1q̃ + C0q̃r̃ + C1q̃r̃

2 + εΓ1(p)

+O
(
(|q̃| + |r̃| + |η|2)(|q̃|3 + |r̃|3 + |η|3/2

2 )
+ |ε|(|q̃| + |r̃| + |η|2 + |ε|)

)
,

˙̃r = µ′
2 + C2r̃

2 + C3q̃
2 + µ′

3r̃ + εΓ2(p)

+O
(
(|q̃| + |r̃| + |η|2)(|q̃|3 + |r̃|3 + |η|3/2

2 )
+ |ε|(|q̃| + |r̃| + |η|2 + |ε|)

)
.

Replacing

ρ =
|C1|
C2

q̃,

ω =
|C1|
C2

(
r̃ +

µ′
3

2C2

)
,

τ =
C2

2

|C1|
t,

µ̃1 =
C2

2

|C1|
µ′

1,

µ̃2 =
C3

2

C2
1

µ′
2,

θ1 =
C0

C2
,

θ2 =−C3

C2
,

ε̃ =
C2

1

C3
2

ε,

and omitting the tildes for simplicity we finally reach the following form



Dynamics of traveling pulses in heterogeneous media of jump type 225



ṗ =
1
C2

ρ − K + e1 + α′
3

|C1|
ρω +

|C1|
C2

2

εΓ0(p)

+O
(
|ρ|3 + |ω|3 + |η|3/2

2 + |ε|(|ρ| + |ω| + |η|2 + |ε|)
)
,

ρ̇ = ρ(sµ1 + θ1ω) + εΓ1(p)

+O
(
|ρω2| + (|ρ| + |ω| + |η|2)(|ρ|3 + |ω|3 + |η|3/2

2 )
+ |ε|(|ρ| + |ω| + |η|2 + |ε|)

)
,

ω̇ = µ2 + ω2 − θ2ρ
2 + εΓ2(p)

+O
(
(|ρ| + |ω| + |η|2)(|ρ|3 + |ω|3 + |η|3/2

2 )
+ |ε|(|ρ| + |ω| + |η|2 + |ε|)

)
,

(11)

where s = sign[C1] = ±1.
The qualitative behaviors of (2) can be classified into eight categories

depending on the signs of θ1, θ2 and s, however, for definiteness, we assume
the following, which is one of interesting cases in applications.

We impose the following assumption.
(S5) We assume that C1 6= 0, and C2, θ1, θ2 > 0.
It is known that (S5) is numerically confirmed at the codim 2 point of the
saddle-node and drift bifurcations for (3) and (4). For instance, using the
eigenfuctions depicted in Fig. 12, we have θ1 ≈ 0.93, θ2 ≈ 0.11.

We fix |µ1| to be sufficiently small and take µ2 = O(|µ1|2−ν) and ε =
O(|µ1|2−ν) (2/3 < ν < 1). Then, in the first equation of (11), O(ρ) becomes
the leading order, and we discard the terms higher than ρ. In the second
and third equations of (11), we consider the regime where ρ = O(|µ1|1−ν)
and ω = O(|µ1|1−ν), and discard the terms of the order higher than |µ1|2.
Then the principal part of (11) is

ṗ = ρ/C2,

ρ̇ = ρ(sµ1 + θ1ω) + εΓ1(p),

ω̇ = µ2 + ω2 − θ2ρ
2 + εΓ2(p).

(12)

Loosely speaking, here ρ stands for the pulse velocity, and ω corresponds to
the amplitude of the splitting. It should be noted that the finite dimensional
system (12) has a universal form, namely it depends only on the singularities
and heterogeneities. In particular, recalling (8) and (9), (12) preserves the
same form even for general χ(x) such as spatially periodic and random
functions.
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5. Dynamics of the principal part of ODEs

5.1. Homogeneous case
For ε = 0, i.e., the homogeneous case, the second and third equations

of (12) are independent of p. It is therefore sufficient to study the following
system: {

ρ̇ = ρ(sµ1 + θ1ω),

ω̇ = µ2 + ω2 − θ2ρ
2.

(13)

The equilibrium points with ρ = 0 correspond to the standing pulse so-
lutions, and those with ρ 6= 0 correspond to the traveling pulse solutions.
There exist an unstable standing pulse solution

E+
1 : (ρ, ω) = (0, +

√
−µ2),

and a stable one up to the drift bifurcation point

E−
1 : (ρ, ω) = (0, −

√
−µ2).

These two standing pulses merge at µ2 = 0 and form the saddle-node bifur-
cation point as shown in Fig. 13(a). E−

1 loses its stability at µ2 = −µ2
1/θ2

1

and a drift bifurcation occurs there. At µ2 = −µ2
1/θ2

1, stable equilibrium
points with ρ 6= 0

E±
2 : (ρ, ω) =

(
±

√
(µ2 + µ2

1/θ2
1)/θ2, −sµ1/θ1

)
(14)

bifurcate from E−
1 . Note that E+

2 (respectively E−
2 ) with ρ > 0 (ρ < 0)

represents a right (left)-going traveling pulse solution. It is easy to verify
by simple computation that E±

2 is locally stable, i.e., the bifurcation is
supercritical. Fig. 13(a) shows the schematic bifurcation diagram for (13)
with sµ1 > 0 being fixed. Fig 13(b) shows the phase portraits of (13) as
µ2 is varied. From Fig 13(b), it is easy to see that the unstable manifolds
emanating from E±

1 are connected to E±
2 . In the sequel we mainly work in

Region II and III (see Fig. 13) where E±
2 exist.

5.2. Heterogeneous case
The heterogeneous perturbations Γ1(p) and Γ2(p) (see (8) and (9)) are

functions of p and are independent of ε, µ1 and µ2. Typical profiles for the
Gray-Scott model (3) with the hetrogeneity χ(x) = 1/(1 + exp(−γx)) are
shown in Fig. 14. They are negative-valued functions. Γ1 converges to 0 as
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Fig. 13. Schematic bifurcation diagram (Fig. a) and Phase portrait (Fig. b) for
(13) with fixed sµ1 > 0. Here SSP and USP are stable and unstable
standing pulse respectively. STP is stable traveling pulse. Gray line
corresponds to existence region of STP, and dark gray line is for SSP.
Black and white circles indicate stable and unstable solution respectively.
In Region II, unstable manifolds emanating from E±

1 connect to E±
2 .

p → ±∞ because S(x) is an even function and φ∗ is an odd function. Γ2

converges to Γ̄2 < 0 as p → +∞ because ξ∗ is an even function. In general
Γ1(p) and Γ2(p) depend on the profiles of χ(x) as well as model system
and do not always take negative values, however the above asymptotic be-
haviors are guaranteed for single jump heterogeneity, since they come from
the symmetry of eigenfunctions. Hereafter, for definiteness, we assume the
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_

 0

 +

p

Γ1

0

,Γ2

Γ1
Γ2

Fig. 14. The profiles of the heterogeneous perturbations for jump type: black
line for Γ1 and gray line for Γ2, which is obtained numerically for the
Gray-Scott model.

following for Γ1(p) and Γ2(p).
(S6) Γ1(p) is a negative function which decays exponentially to 0 as p →

±∞, and it has the minimum at p = 0. Γ2(p) is a negative function
which decays exponentially to 0 as p → −∞ and approaches a negative
constant Γ̄2 as p → +∞.

First note that the system (12) does not have equilibria from (S6), however
they can be defined asymptotically for |p| → +∞ in the projected (ρ, ω)-
space thanks to the limiting properties of the heterogeneity limp→+∞ Γ1(p)
= 0 and limp→+∞ Γ2(p) = Γ̄2 < 0. The equilibrium points for p → +∞ in
(ρ, ω)-space are given by

Ẽ±
1 : (ρ, ω) =

(
0, ±

√
−µ2 − εΓ̄2

)
,

Ẽ±
2 : (ρ, ω) =

(
±

√
(µ2 + εΓ̄2 + µ2

1/θ2
1)/θ2, −µ1/θ1

)
.

Since limp→−∞ Γ1(p) = 0 and limp→−∞ Γ2(p) = 0, the traveling pulse solu-
tions for p → −∞ remains the same as in the homogeneous case, i.e., E±

2

(see (14)).
Our problem can be formulated as follows. Starting from E+

2 for p =
−∞ and trace the behavior of its orbit as t → ∞, namely characterize
the behavior of the one-dimensional unstable manifold emanating from E+

2
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in 3D phase space. Our analysis in this paper is, however, focused on
the behavior of the orbits starting from the initial data (p0, ρ0, ω0) =
(p(0), ρ(0), ω(0)) with some conditions, where p0 is sufficiently negative
large, ρ(0) > 0, and ω(0) < 0.

The onset of splitting is the aftereffect of the unstable manifold of the
saddle-node bifurcation of the stationary pulse (Fig. 4) and may be expected
to occur when the orbit is driven by heterogeneous terms to a point near
ρ = 0 of Fig. 13(b) III, or the unstable manifold of E+

1 of Fig. 13(b) II. In
order to have a splitting, it is necessary for ω to grow in time. In view of
the third equation of (12), it is clear that the sign of

λ(t) := µ2 − θ2ρ
2(t) + εΓ2(p(t))

is important for such a growth. In fact, if λ(t) < 0 holds for all t > 0,
then splitting does not occur provided that ω(0) < 0 and p(0) is sufficiently
small and negative. Based on the above discussions, we give the definitions
of penetration, splitting, and rebound in terms of ODEs.

Definition 5.1 When (ρ, ω) converges to Ẽ+
2 as t → +∞, the dynamics

is called penetration.

Definition 5.2 When ω > δ for some finite δ, the dynamics is called
splitting.

Since we study (12) in the neighbourhood of codim 2 point, the size of (ρ, ω)
is small and hence the constant δ in the above definition can be taken to be
arbitrary finite number.

Definition 5.3 When (ρ, ω) converges to E−
2 as t → +∞, the dynamics

is called rebound.

Fig. 15 shows the phase diagram for (12) with respect to µ2 and ε.
It essentially inherits the original PDE dynamics shown in Fig. 10 and
Fig. 11. There exist three regions: penetration, splitting and the rebound,
and splitting region exists in between the penetration and the rebound
regions. Note that, since Γ1 and Γ2 are negative, the heterogeneity makes
ρ and ω decrease. That is, if the initial condition is close to E+

2 , then ρ =
O(

√
µ2 + µ2

1/θ2
1) for arbitrary t (see the proofs of Lemmas in the sequel).

We now consider two typical transitions among penetration, splitting,
and rebound depicted by two arrows in Fig. 15, namely µ1 is fixed to be
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small and µ2 and ε are varied satisfying the following linear relation for
some constants a and b to be chosen later.

µ2 = aε+ b (15)

In other words ε (height of the jump) is the control parameter and µ2

is slave to it according to (15).
Our goal is to prove Propositions 5.1 and 5.2 and we prove a sequence

of Lemmas for that purpose.

Lemma 5.1 If there exists the time T such that for p < +∞ ρ(T ) = 0,
then ρ(t) < 0 for t > T .

Proof. From the second equation of (12), ρ̇ < 0 at ρ = 0 for p(t) < +∞.
¤

For a given initial condition (p0, ρ0, ω0) with ρ(0) > 0, the parameter ε

belongs to one of the following sets. It should be noted from Lemma 5.1 that
once ρ(t) changes its sign from positive to negative, it remains negative.

E+(a, b; µ̂1) :={ε̂ ∈ R | lim inf
t→∞

ρ(t) > 0 for all t ≥ 0

for ε = ε̂, µ2 = aε̂ + b, µ1 = µ̂1}
E0(a, b; µ̂1) :={ε̂ ∈ R | ρ(t) > 0 for all t > 0 and lim inf

t→∞
ρ(t) = 0

for ε = ε̂, µ2 = aε̂ + b, µ1 = µ̂1}
E−(a, b; µ̂1) :={ε̂ ∈ R | ρ(t) = 0 at a finite positive t = T < ∞

for ε = ε̂, µ2 = aε̂ + b, µ1 = µ̂1}

Lemma 5.2 Take p(0) < 0, ρ(0) > 0 and ω(0) < 0. Suppose E+ and E−

are not empty and |ω(t)| is uniformly bounded for all t > 0, then E0 is not
empty. Moreover if E0 6= ∅, then p(t) → ∞ for ε ∈ E0.

Proof. First we show that E0 6= ∅ by using open-closed argument. Since
E+ and E− are not empty, there exist ε+ ∈ E+ and ε− ∈ E−. We can assume
without loss of generality that ε+ < ε−, since E+ ∩ E− = ∅ and therefore
either ε− < ε+ or ε+ < ε− holds. [ε+, ε−] is obviously a closed set, but Ẽ+ :=
[ε+, ε−]∩ E+ is not closed as will be shown below. Take any ε′ ∈ Ẽ+. Then
lim inft→∞ ρ(t) has a non-zero positive value, it is clear that p(t) → ∞ as
t → ∞. Recalling that there exists a unique hyperbolic equilibrium point
Ẽ+

2 in the positive ρ-region, it follows from the boundedness of ω(t) and
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the exponentially decaying property of heterogeneous terms that the orbit
converges to Ẽ+

2 in (ρ, ω)-plane. Using the continuous dependency of the
orbit on the initial data and parameters, there exists a δ-neighbourhood of
ε = ε′ such that any orbit starting from this neighbourhood also converges
to Ẽ+

2 , which shows lim inft→∞ ρ(t) > 0 and hence Ẽ+ is not a closed set.
On the other hand, take any ε′′ ∈ Ẽ− := [ε+, ε−] ∩ E−, then ρ(T ) = 0 at
some finite t = T , therefore, from the continuous parametric dependency of
solution, there exists a δ-neighbourhood of ε = ε′′ such that the orbit with
ε being in this neighbourhood satisfy ρ(T ′) = 0 for some T ′ close to T , i.e.,
it belongs to Ẽ−. Hence Ẽ− is not a closed set. Therefore we conclude that
E0 is not empty because [ε+, ε−] can not be covered by the union of two
open sets Ẽ+ and Ẽ−.

The final part of the Lemma, namely the property of p(t) → ∞ for
the parameters in E0 can be proved by contradiction, namely there exists
p̄ < ∞ such that supt p = p̄ holds, although ρ(t) > 0 for all t > 0. Noting
that p(0) ≤ p(t) ≤ p̄ holds thanks to ρ(t) > 0, we see that the negative
quantity Γ̃1 := maxp(0)≤p≤p̄ Γ1(p) is well-defined. Since ρ(t) > 0 and p(t) <

p̄, it is easy to verify that ρ(t) → 0 as t → ∞ in view of the first equation
of (12). Since |ω| is uniformly bounded, we can find some t = t′ at which
ρ(sµ1 + θ1ω) < −εΓ̃1/2 is satisfied leading to the inequality

ρ̇ <
εΓ̃1

2
< 0, t ≥ t′

from the second equation of (12). This contradicts to the fact that we
choose the parameter from Ẽ0, because the above inequality implies that
ρ(t) reaches 0 in finite time. ¤

Lemma 5.3 Suppose that sµ1 > 0, −µ2
1/θ2

1 < µ2 ≤ 0, p(0) < ∞ and
ω(0) < 0. If ε = 0 and ρ(0) > 0, then (ρ(t), ω(t)) converges to E+

2 (= Ẽ+
2 ).

If ε = |µ1|2−ν and ρ(0) = 0, then (ρ(t), ω(t)) converges to E−
2 .

Proof. In view of the phase space Fig. 13(b), it is clear that the orbit tends
to E+

2 when ε = 0, ρ(0) > 0 and ω < 0.
In order to prove the convergence to E−

2 for the case of ε = |µ1|2−ν

with ρ(0) = 0, we show that ρ(t) and ω(t) is uniformly bounded and ρ(t)
is bounded away from zero, which turns out to be sufficient for the purpose
combined with the hyperbolicity of the equilibrium point E−

2 . Also, from
Lemma 5.1, note that ρ(t) is negative for all t.
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First we show that there exist constants t0 > 0 and ρ < 0 such that
ρ < ρ(t) for t > t0. From (12) and Lemma 5.1

ρ̇ > sµ1ρ + εΓ1(p) > sµ1ρ + εΓ̄1, t ≥ 0. (16)

where Γ̄1 = inf−∞<p<p(0) Γ1(p). Assume that ρ(t) reaches ρ = −|µ1|(1+ν′)/2

(0 < ν ′ < 1 − ν) at t = t1 > 0. From (16) and ρ(t1) = −|µ1|(1+ν′)/2, we
have

ρ(t) > − εΓ̄1

sµ1
+

(
εΓ̄1

sµ1
− |µ1|(1+ν′)/2

)
exp

(
sµ1(t − t1)

)
, t ≥ t1.

(17)

Note that the second term of the right-hand side of (17) is negative.
Expanding the exponential term into Taylor series up to 1st order and
recalling that 2/3 < ν < 1 and 0 < ν ′ < 1 − ν, we obtain the following
inequality from (17)

ρ(t) > −|µ1|(1+ν′)/2 + G(µ1), (18)

where G(µ1) :=
(
εΓ̄1/sµ1−|µ1|(1+ν′)/2

)
exp(sµ1|µ1|−(1+ν′)/2) and is of order

O(|µ1|3/2−ν−ν′/2) for t < t2 := t1 + |µ1|−(1+ν′)/2. Let ρ be defined to be the
quantity of the right-hand side of (18), then, as long as ρ ∈ (ρ, ρ), we have
the following inequality from (12).

µ2 + ω2 − θ2ρ
2 + εΓ2(p) < ω̇ < µ2 + ω2 − θ2ρ

2 + εΓ2(p),

t1 ≤ t ≤ t2 (19)

Since ρ and ρ is of order |µ1|(1+ν′)/2 and by using the assumptions for
µ2 and ε as well as recalling the basic hypothesis ω = O(|µ1|1−ν) when
deriving the principal part of ODEs (12), we can find appropriate positive
constants c and c such that

−c|µ1|(1+ν′)/2 < ω(t2) < −c|µ1|(1+ν′)/2. (20)

Here we used the fact that the solution of ω̇ = ω2 − k can be expressed by
the following.

1
2
√

k

[
log

∣∣∣∣∣ω(T ) −
√

k

ω(T ) +
√

k

∣∣∣∣∣ − log

∣∣∣∣∣ω(0) −
√

k

ω(0) +
√

k

∣∣∣∣∣
]

= T
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Combining (12), (18) with (20), we have

ρ̇(t2) = ρ(t2)(sµ1 + θ1ω(t2)) + εΓ1(p(t2))

= θ1ρ(t2)ω(t2) + O(|µ1|2−ν) > 0,

which shows that even if ρ̇ is negative when ρ reaches ρ, the sign of ρ̇ is
changed to positive before t = t2. Moreover for t ≥ t1, since we have ρ̇ =
θ1ρω + O(|µ1|2−ν) > 0 for ρ ∈ (ρ, ρ), the term ρω(∼ |µ1|1+ν′

) dominates
the right-hand side. Thus we can conclude that ρ(t) > ρ holds for all time.

Next we show that there exist ρ′ < 0 and t′ > 0 such that ρ(t) < ρ′ for
t > t′. First we show that limt→∞ p = −∞ holds by contradiction. Assume
p := inft>0 p(t) > −∞ holds. From Lemma 5.1, ρ(t) < 0 for all t > 0.
Since p > −∞, limt→∞ ρ = 0. This follows that limt→∞ ρ̇ → εΓ(p) < 0
from (12). Therefore p < p holds, which contradicts to limt→∞ ρ = 0, i.e.,
limt→∞ p = −∞ holds.

Now we are ready to prove that ρ(t) has a negative upper bound ρ′. Sup-
pose that ρ(t) does not have such a bound, (ρ, ω) necessarily converge to E−

1

owing to limt→∞ p → −∞. Moreover it is easily seen that limt→∞ |Γj(p)| =
0 (j = 1, 2) and limt→∞ ω = −

√
−µ2 holds from the third equation of (12),

therefore it follows from −µ2
1/θ2

1 < µ2 < 0 that limt→∞(sµ1 +θ1ω) = (sµ1−
θ1
√
−µ2) > 0. This implies from the second equation of (12) that ρ̇ < 0

in finite time, which leads to the contradiction to the above convergence to
E−

1 . Hence it holds that there exist ρ′ and t′ > 0 such that ρ < ρ(t) <

ρ′ < 0 for t > t′. Combining this with the former part of the proof, we can
conclude that ρ ∈ (ρ, ρ′) for all t > t′, which leads to the convergence of
(ρ, ω) to nondegenerate stable equilibrium point E−

2 as t → ∞. ¤

Lemma 5.4 Let T1 and T2 be the times when p1 and p2 reaches at ` >

pj(0) (j = 1, 2) respectively. Suppose that p1(0) = p2(0), 0 ≤ ṗ1(t) ≤
ṗ2(t) (∀t ≥ 0) and T2 < +∞. Then∫ T1

0
Γ1(p1)dt ≤

∫ T2

0
Γ1(p2)dt (21)

holds. If ṗ = c (c > 0) with p(0) = `1 and p(T ) = `2, then∫ T

0
Γ1(p)dt =

1
c

∫ `2

`1

Γ1(l)dl. (22)
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Proof. Since T2 < +∞, the right side of (21) is finite. If T1 = +∞, the left
side of (21) is −∞. Hence (21) holds. If T1 < +∞, (21) is obvious. ¤

Lemma 5.5 Let ν ′ > 1 − ν/2, ε = |µ1|2−ν , p(0) = −`, ρ(0) = O(|µ1|ν
′
)

and ω(0) < 0. Suppose ω(t) ≤ 0 for all t > 0. Then, for sufficiently small
|µ1|, ρ(t) is monotonically decreasing as long as p(t) ∈ [−`, `].

Proof. When ρ(t) ≥ 0 and ω(t) ≤ 0,

dρ

dt
≤ sµ1ρ(t) + εΓ1

≤ sµ1ρ(t) + εΓ̃1,

where Γ̃1 = maxp∈[−`,`] Γ1(p). Since sµ1ρ(0) = O(|µ1|1+ν′
) and ε = |µ1|2−ν ,

ρ(t) is monotonically decreasing as long as p(t) ∈ [−`, `] for sufficiently
small |µ1|. ¤

Lemma 5.6 Let ν ′ > 1 − ν/2, ε = |µ1|2−ν , p(0) = −`, ρ(0) = O(|µ1|ν
′
)

and ω(0) < 0. Suppose ω(t) ≤ 0 for all t > 0. Then ρ(T ) = 0 at T =
O(|µ1|ν+ν′−2) and p(t) ≤ ` for t ≤ T by taking sufficiently small |µ1|.

Proof. Since ω(t) ≤ 0, from the second equation of (12) and Lemma 5.5

dρ(t)
dt

≤ sµ1ρ(0) + εΓ̃1, (23)

as long as p ∈ [−`, `] where Γ̃1 = maxp∈[−`, `] Γ1(p) < 0. By integrating
both sides of (23) from t = 0 to T , we have

ρ(T ) − ρ(0) ≤ sµ1ρ(0)T + εΓ̃1T.

Since ρ(T ) = 0,

T ≤ −ρ(0)
εΓ̃1 + sµ1ρ(0)

= O(|µ1|ν+ν′−2),

and p(T ) < ρ(0)T = O(|µ1|ν+2ν′−2) < ` holds for sufficiently small |µ1|. ¤

Lemma 5.6 implies E− 6= ∅ for ε = |µ1|2−ν , p(0) = −`, ρ(0) = O(|µ1|ν
′
)

and ω(0) < 0 provided that µ2 (or equivalently a and b in (15)) can be
chosen appropriately so that ω(t) ≤ 0 holds for all t. Noting that if µ2 ≤ 0,
then λ(t) ≤ 0 holds, therefore we have ω(t) ≤ 0 for all t > 0 (recall the
remark after the assumption (S6)). The following proposition is a direct
consequence of this fact.



Dynamics of traveling pulses in heterogeneous media of jump type 235

Proposition 5.1 Let ν ′ > 1 − ν/2, a = 0, b ∈ [−µ2
1/θ̃2

1, 0] (θ̃1 > θ1),
p(0) = −`, ρ(0) = O(|µ1|ν

′
) and ω(0) < 0. Then the dynamics changes from

penetration to rebound as ε is increased from 0 to |µ1|2−ν for sufficiently
small |µ1|.

Proof. First we note that E+
2 exists for µ2 = b ∈ [−µ2

1/θ̃2
1, 0]. Since µ2 ≤

0, λ(t) ≤ 0 holds for all t > 0, i.e., ω(t) ≤ 0 holds. From Lemma 5.6, there
exists T < ∞ such that ρ(T ) = 0 for ε = O(|µ1|2−ν). From Lemma 5.3,
(ρ(t), ω(t)) converges to E−

2 , i.e., rebound occurs.
On the other hand, from Lemma 5.3, (ρ(t), ω(t)) converges to Ẽ+

2 for
ε = 0. Therefore the dynamics changes from penetration to rebound as ε is
increased from 0 to |µ1|2−ν for sufficiently small |µ1|. ¤

We formulate the following lemma to prove Proposition 5.2.

Lemma 5.7 Let ν ′ > 1 − ν/2, ν ′′ ≤ 1 − ν/2, 0 < a < Γ̄2, b = 0, ε =
|µ1|2−ν , p(0) = −`, ρ(0) = |µ1|ν

′
and ω(0) = −|µ1|ν

′′
. Then ρ(t) reaches

zero in a finite time for sufficiently small |µ1|.

Proof. Let ε = |µ1|2−ν . From the third equation of (12)

dω(t)
dt

≤ µ2 + ω2(t). (24)

Let T be time when ω(t) attains 0. From (24) and ω(0) = −|µ1|ν
′′
,

T ≥ 1
√

µ2
tan−1

(
|ω(0)|
√

µ2

)
≥ |ω(0)|

√
µ2

= O(|µ1|ν
′′+ν−2) (25)

holds where we use tan−1(x) ≥ x (0 < x ¿ 1). Since ν ′′ ≤ 1 − ν/2, there
exist c′ ∈ R such that T ≥ c′|ν1|−1+ν/2. From the second equation of (12)
and Lemma 5.5,

dρ

dt
≤ sµ1ρ(0) + εΓ̃1. (26)

Since ω(t) ≤ 0 for t ∈ [0, T ], by integrating both hand sides of (26) from
t = 0 to T , we have

ρ(T ) ≤ ρ(0) + sµ1ρ(0)T + εΓ̃1T. (27)

From ε = c|µ1|2−ν and (25), the third term of the right hand side of (27)
becomes leading order for sufficiently small |µ1|, that is ρ(T ) < 0. Therefore
ρ(t) attains 0 in finite time while ω(t) ≤ 0. ¤
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Proposition 5.2 Let ν ′ > 1 − ν/2, ν ′′ ≤ 1 − ν/2, 0 < a < Γ̄2, b = 0, ε =
|µ1|2−ν , p(0) = −`, ρ(0) = |µ1|ν

′
and ω(0) = −|µ1|ν

′′
. Then the dynamics

changes from penetration to splitting as ε is increased from 0 to |µ1|2−ν for
sufficiently small |µ1|.

Proof. It is obvious that the penetration occurs for ε = 0, i.e., E+ 6= ∅.
From Lemma 5.7, ρ changes its sign at ε = |µ1|2−ν , i.e., E− 6= ∅. From
Lemma 5.2, E0 6= ∅. Since p(t) tends to ∞, λ(t) tends to µ2 + εΓ̄2 = ε(a −
Γ̄2) > 0 for ε ∈ E0. Therefore the third equation of (12) gives

dω

dt
≈ ω2+ε(a− Γ̄2) ≥ ε(a− Γ̄2).

Therefore ω attains 1 at t ≤ O(1/ε), i.e. splitting occurs for ε ∈ E0. ¤

As is shown in Fig. 15, the ODE dynamics seems to reflect the essential
part of the original PDE dynamics at least qualitatively. The Proposi-
tion 5.1 and Proposition 5.2 show that it is the case for some appropriate
parameter regime. The transition from penetration to rebound for the ODE
dynamics (12) is depicted in Fig. 16 for µ1 = −0.1, µ2 = 0.006, s = −1,
θ1 = 0.93, θ2 = 0.11, C2 = 0.85.

Remark 5.1 (Dependency on the slope) The slope of the heterogeneity
is controlled by γ of the function χ(x). Recalling the definition of Γ1 (see
(8)), it is easy to verify that Γ1 → 0 as γ → 0, therefore the pulse can
go across the high barrier when its solpe becomes gentle even if the pulse
rebounds for the steeper case as in Fig. 18.

6. Concluding remarks

We considered the pulse dynamics for the heterogeneous media where
there is only one abrupt change in spatial direction. Three different types of
behaviors for traveling pulses, namely penetration, splitting, and rebound,
are observed depending on the height of the jump. Using the pulse-dynamics
approach, PDE dynamics can be reduced to study the ODE dynamics as in
Sections 4 and 5. It was clarified that the codim 2 singularity (drift+saddle-
node) for the standing pulse is a kind of organizing center which actually
controls the output when the pulse meet the heterogeneity. Our analysis can
be easily extended to the bump type if the size of the bump is large enough
compared with that of the pulse, in particular, for the Gray-Scott model (3)
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pulse, DR means drift bifurcation, and SN presents saddle-node bifurca-
tion.
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Fig. 16. Numerical simulations of (12) with µ1 = −0.1, µ2 = 0.006, s = −1, θ1 =
0.93, θ2 = 0.11, C2 = 0.85. These parameter values correspond to the
Gray-Scott model. The left figure shows penetration (ε = 3.3524×10−4),
and the right figure illustrates rebound (ε = 3.3525 × 10−4).
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case, penetration always occur at the jump-down point, i.e., k is decreased
as x is increased (see Fig. 10), therefore the behavior of the pulse is basically
determined by the jump-up point. It should be remarked for the bump case
that there appears another localized standing pulse located at the center
of the bump which plays a role as a separator for penetration, splitting,
and rebound. Existence of such a separator can be shown by noting that
εΓ1 (see (8)) becomes an odd function, and therefore it has a zero point
at the center. Furthermore the ODE formula (12) remains valid for any
heterogeneity including periodic and random media. In fact, for spatially
periodic heterogeneity, there are at least three representative classes.
• Long wave limit: the period of heterogeneity is much longer than the

width of the pulse.
• Short wave limit: the period of heterogeneity is much shorter than the

width of the pulse.
• Resonant case: they are comparable.

The first one is essentially equivalent to the case of very gentle slope men-
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Fig. 18. When the slope of heterogeneity becomes less steep, the pulse can pen-
etrate. The profile of χ(x) is illustrated by (a). For f = 0.026, k =
0.05652, ε = 3.2 × 10−5, the pulse penetrate when γ = 1 (see (b)), how-
ever it turns back when γ = 5 (see (c)).

tioned in Remark 5.1, namely the traveling pulse does not feel the hetero-
geneity and can penetrate it. Recalling the definition of Γ1, if χ oscillates
rapidly, Γ1 converges weakly to zero, therefore pulse can also penetrate for
the short wave limit. The most delicate and interesting case is the third
case. It is known that a variety of dynamics including spatio-temporal chaos
is observed numerically [37] for comparable case, in fact, loosely speaking,
the dynamics is very close to that of pendulum with external time-periodic
kicks. The detailed analysis is currently investigated and will be reported
elsewhere.
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