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Basis properties and complements
of complex exponential systems

Akihiro NAKAMURA
(Received September 15, 2005; Revised December 12, 2005)

Abstract. In this note, we show that some families of complex exponentials are either
Riesz sequences or not basic sequences in L2 [—m, 7]. Besides, we show that every incom-
plete complex exponential system satisfying some condition can be complemented up to
a complete and minimal system of complex exponentials in L?[—, =].
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1. Introduction

Let A = {\,}, —00 < n < oo, be a sequence of distinct complex num-
bers, then a system e(\) = {e**?} is said to be a basis for L?[—n, «] if any
function f(t) in L?[—7, 7] has a unique expansion

ft) = Z cnet (in the mean)
n
for some sequence {c,}. Also, e()) is said to be a basic sequence if it is
a basis of the closure of the space spanned by the distinct elements e »t.
Next e(A) is said to be a Riesz basis if there exists an isomorphism

T: L?[-7, n] — L?[—m, 7]
and
T(eint) — ei)xnt

for any n. Moreover, e(\) is said to be a Riesz sequence if it is a Riesz basis
of the closure of the space spanned by the distinct elements et e(\)
is said to be complete in L?[—n, 7] if the linear subspace spanned by the
distinct elements et is dense in L?[—m, 7]. And e()) is said to be minimal
in L2[—m, 7] if each element of e(\) lies outside the closed linear span of the
others. Obviously, we see that if e()) is a Riesz basis, then it is a basis and

if it is a basis, then it is complete and minimal. We say the system {e**n*}

2000 Mathematics Subject Classification : 42C15, 42C30, 42C99.



194 A. Nakamura

has excess N if it remains complete and becomes minimal when N terms
et are removed and we define

E(\) = N.
Conversely we define the excess

E(A) =-N
if it becomes complete and minimal when N terms

et ethnt
are adjoined. By convention we define F(\) = oo if arbitrarily many terms
can be removed without losing completeness and E(\) = —oo if arbitrarily
many terms can be adjoined without getting completeness. It is obvious
that {e"*"*} is to be complete and minimal if and only if F(\) = 0.

We refer to N. Levinson [L], R.M. Young [Y4] and R.M. Redheffer [R]

on the theory of nonharmonic Fourier series which we take up in this note.
R.M. Young showed in the proof of [Y2, Theorem 2| that if

1
n—-—, n>0,
An = 1 (1.1)
n 4+ vk n < 0,
then e(\) was not a basis. Besides he showed in [Y3, Theorem 2] that if
1
n —+ Z’ n > O,
1
n — Z’ n < O,

then e(u) was not also a basis. In this note, we first show that if
n—a, n>0,
An =
n+a n<O,
and

n+aoa, n>0,
Hn = 0, n:0,

n—a, n<o0,
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then e(A) and e(u) are either Riesz sequences or not basic sequences in
L?[—m, 7] for 0 < o < 1.
Next let

n—ap, n>0,
Ap =
n+a, n<0

for 0 < oy, < 1, then we consider whether e(\) is a Riesz basis or not, and
moreover it is a basis or not. One of the problems is whether e()) is a basis
or not in the case of which

en — 0 asn — oo and Z|5n]:oo
n
for a, =3/4 4 ¢,
In this note, we need the following “stability results”.

Theorem A (see [Y4, p. 161, Corollary]) If e(\) is a Riesz basis for
L?[—m, 7|, then there is a positive constant L with the property that e(u) is
also a Riesz basis for L*[—, 7] whenever |\, — pin| < L for every n.

Theorem B (see [Y4, p. 165, Prob. 2]) Let e(\) be a basis for L*[—, 7
and suppose that sup,, | Im A\, | < oco. If u = {un} satisfies

Z|>‘n_/~bn| < o0,
n

then, e(u) is also a basis for L?[—m, 7).

The following result follows from Theorem B immediately. We see also
Lemma I1.4.11 of S.A. Avdonin and S.A. Ivanov [A]] about the same result.

Corollary 1.1 We suppose that sup,, |Im \,| < oo and e(\) is a basis.
If we replace finitely many points A\, by the same number of points p, &
{\n}, tn # tm, n # m, then the basis property of e(\) is not violated.
Consequently the same applies to any Riesz basis.

Remark 1.1 Theorem A holds even if “Riesz sequence” that excess is
finite is taken. So far as we know, it is unknown whether Theorem A holds
or not if a Riesz basis is replaced with a basis. However, it is also unknown
whether such a basis which is conditional exists or not.

In §4, we show that every incomplete complex exponential system sat-
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isfying some condition can be complemented up to a complete and minimal
system of complex exponentials. It is unknown, so far as we know, whether
every incomplete complex exponential system can be complemented up to a
complete and minimal system of complex exponentials in L?[—n, 7] or not.
This problem is originated in [Y1, Remark]. On the other hand, K. Seip
has shown in [S, Theorem 2.8] that there exists a Riesz sequence of complex
exponentials which cannot be complemented up to a Riesz basis. He has
given a sequence

e(A) = {eH VI,

as an example of such a Riesz sequence.
And he raised the next question personally:

Question Can every Riesz sequence of complex exponentials be comple-
mented up to a complete and minimal system of complex exponentials?

In this section, we show that it is possible for some families of comlex
exponential systems which include many Riesz sequnces of E(\) = —oco. Let
e(\) be a complex exponential system which has the excess E(\) = —oc.
Our method is to construct a sequence p = {u,} such that A C p and the
system e(p) has a finite excess. If we can construct such a sequence p, then
we see that the system e(\) can be complemented up to a complete and
minimal system of complex exponentials in L?[—, 7]. For this purpose, we
use the next theorem:

Theorem C ([R, Theorem 47]) For —oco < n < oo, let A = {\,} be a
sequence of complex numbers satisfying |\, — n| < h where h is a positive
constant. Then E(\) satisfies

—(4h+%> < E(X) §4h+%.

2. Basis properties of complex exponential systems
We first consider the system e(\),
n—a, n>0
Ap = ’ ’ (2.1)
n+a, n<O0,

for 0 < o < 1. We see from Kadec’s 1/4-theorem(M.I. Kadec, 1964; see [Y4,
p. 36]) that e(\) is a Riesz sequence for 0 < o < 1/4. It has been shown in
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[Y2, Theorem 2] that e()\) is not a basis for L2[—, 7] for a = 1/4. Besides,
it has been also known that e()\) is a Riesz basis for L?[—x, 7] for 1/4 <
a < 3/4 by using the isometric isomorphism

o(t) — "2 (t)
on L?[—m, 7] and Kadec’s 1/4-theorem.

Proposition 2.1 Let A = {\,} be a sequence given by (2.1).

(i) Let a = 3/4. If we remove any element A, in X\, then e(X') for N =
A—{no} is complete and minimal, but it is not a basis for L?[—m, 7l;

(i) e(N) of (i) is a Riesz basis for L*[—m, w] for 3/4 < a < 1.

Proof. We see that e(\') is complete and minimal by [N, Theorem 1.1].

But if we write
1

—n—l—§:—(n—1)—f

3 1
e (n=1)+ =
n (n—1)+ 1

4 4’ 4
for n > 1, then we see that e()\’) is not a basis for L?[—m, 7] because e(iu),

where the p, are given by (1.2), is not a basis. This prove (i).
Now if we write

n—a=Mn-1)+1-a), —n+a=-(n—-1)—(1-a)
for n > 1, then (ii) is trivial by Kadec’s 1/4-theorem. O
Next we consider the system e(u),
n+a, n>0,

n—a, n<Oo,

for0 <a <1

It has already been known by Kadec’s 1/4-theorem that e(u) is a Riesz
basis for 0 < o < 1/4. It has also been shown in [Y3, Theorem 2] that e(u)
is not a basis for L2[—, 7] for a = 1/4.

Proposition 2.2 Let u = {u,} be a sequence given by (2.2).
(i) e(p) is not a basic sequence for a = 3/4;
(ii) e(p) is a Riesz sequence for 1/4 < a < 3/4 or3/4 < a < 1.
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Proof. If we write

3 1 3 1
Q0 _ 1= 2= 1 -
n+4 (n+1) T n-7 (n—l—)—|-4

for n > 1, then (i) is an immediate consequence from the fact that e(\),
where the ), are given by (1.1), is not a basis for L?[—7, 71]. Next we write

n+a=Mn+1)—-1-a), —n—a=-n+1)+1-a) (2.3)

for n > 1. We see that e(u) is a Riesz sequence from (2.3) and the known
result which e()\) given by (2.1) is a Riesz basis for 1/4 < o < 3/4. More-
over, it is a Riesz sequence by (2.3) and Kadec’s 1/4-theorem for 3/4 < o <
1. U

From the above results, we have obtained the following results:

Corollary 2.1  Let e(y) be a system given by (2.1) or (2.2), then e(y) is
either a Riesz sequence or not a basic sequence in L?[—m, 7).

Now we next consider the system e(\),

{n—an, n > 0,

An = (2.4)

n+a, n<O0,
for 0 < o, < 1. The cases of sup,, a, < 1/4 and 1/4 < inf,, o, < sup,, oy, <

3/4, 3/4 < inf, o, are trivial by Kadec’s 1/4-theorem, and so we deal with
the case which the numbers «,, behave the neighborhood of 1/4 or 3/4.

Theorem 2.1 Let a,, = 3/4+ e, or a, = 1/4 + &,,. Then we obtain the
following results for e(\) given by (2.4):

(1) Ife, — 0 asn — doo, then e(\) is not a Riesz basis for L*[—, 7).
(2)  Purthermore, if >, |en| < 00, then e(\) is not a basis for L?|—, 7.

Proof.  First we consider the case of a,, = 3/4 + &, in (2.4). Then

3
n———¢ep, n>0,

N, — 4

no 3
n+1+€n, n < 0.

Now, if we take
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3
n—-—, n>0,
_ 4
Tn 3
n‘f‘z, n <0,

e(7) is not a basis for L?[—n, 7] by (i) of Proposition 2.1.

We suppose ¢, — 0 as n — too. We refer to [RY, p. 107, Corollary]
about the next arguement. If e(\) is a Riesz basis for L?[—x, 7], then there
exists a positive constant L by Theorem A such that if

| A, — 6n| < L for Vn,

e(8) is also a Riesz basis for L?[—, 7]. By the hypothesis, we can choose a
positive integer ng such that

|An — Y| = len] < L for V|n| > ng.

Hence,

L Y tne HE™ H i,

is a Riesz basis for L?[—, 71]. Consequently, by Corollary 1.1, e(7) is also a
Riesz basis for L?[—n, m]. This contradicts, hence e()) is not a Riesz basis
for L?[—7, 7).

Next we suppose >, |e,| < co. If e()) is a basis for L?[—m, 7], then
e(v) is also a basis for L?[—m, 7] by Theorem B. This contradicts, hence
e(A) is not a basis.

Second we consider the case of o, = 1/4 + ¢, in (2.4). Then

1
n—-——=¢&p, n>0,

N\, — 4

n 1
n+1+€n, n < 0.

We suppose that e()) is a Riesz basis for L?[—, 7r]. Considering the isome-
tiric isomorphism
(1) — "2o(1),
it follows that e(A\(1)) is also a Riesz basis for L?>[—x, 7], where
1
n+-—ep, n>0,
)\7(11) — 4

3
n—l—Z%—an, n < 0.
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Moreover, we rewrite

1
A = (n+1)—1+5n, n <0,
and if we substitute 0 for )\(_1%, we see that e(A?)) is also a Riesz basis for
L?[—=, 7], where
1

n—i—z—sn, n > 0,

AP =0, n=0,

1
n_Z—i_E”_l’ n < 0,

by Corollary 1.1. By the way, we know that e(u) is not a basis for the
sequence {u,} given by (1.2). Following the arguement of the proof of the
case ay, = 3/4 4+ ¢, if €, — 0 as n — £o00, we see e(u) is a Riesz basis for
L?[—n, w]. This contradicts, hence e(\) is not a Riesz basis for L*[—x, ).
Next we suppose 3., |e,| < 00. If e()) is a basis, then e(A(?)) is also a basis.
Now, by the same arguement as the one used in the case a,, = 3/4 + ¢, it
follows that e(u) is also a basis. This contradicts too, hence e()) is not a
basis. 0

3. Some problems

From the examination until now, we have some problems. We suppose
that

en —0asn— foo and Z|5n]:oo
n

for ay, = 3/4+ €5, in (2.4). Then, we have some questions, i.e., does e(\)
become a basis for L2[—, 7] or a basic sequence?

We write
1
n—an:(n—l)—kz—sn, n >0,
Ap = 1
n—i-an:(n—l-l)—z—i-sn, n < 0.

And let N = {\,},
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1
n+ Z —€p, n >0,
A, = 0, n =0, (3.1)
-\, n <0,
then, we have E(A — {\1}) = E(\') and the basis property of e(A — {\})
is same as the one of e()\') by Corollary 1.1.
1. The case that e()\) is complete.
As

EA—{\}) =EWN)>0,

we have E(\) > 1, hence e()) is not a basis for L?[—m, 7r]. This can
happen if

3y enl o (3.2)

In|+1

by [R, p. 45].

2. The case that e()\’) is not complete.
Redheffer and Young have given the next example of the sequence {e, }
which does not satisfy (3.2):

Theorem D (see [RY, Theorem 3]) Let

0, n =20,
1, n=1,
= 1 3.3
fin n+ -+ b , n>2 (8:3)
4  logn
—H—n; n < 07

then e(u) is complete in L*[—x, ] if 0 < 3 < 1/4 and not if 3 > 1/4.
More precisely, by [R, Theorem 47| and [FNR], we have E(u) = 0 for
0<pf<1/4and E(p) =—1for § > 1/4.

Problem 3.1 We raise the next problems:
(i) Is the system e(u) in Theorem D basis for 0 < 5 < 1/47
(ii) Is the system e(u) in Theorem D basic sequence for 8 > 1/47

Moreover we have the problem which is equivalent to the above prob-
lem (ii):
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Let
1
= 4’ Y-1=—N
and
3, B
Yo = n_1+logn’ nz2
—Y—n, n < =2,

then is the system e(7y) basis for L?[—m, 7] for 8 > 1/47?
In (3.3), if we replace “n + 1/4” with “n + 1/4 — £”, where ¢ is any
small positive number, then the above problems are trivial by Kadec’s 1/4-
theorem.

4. Complements of complex exponential systems

In this section, we show that every incomplete complex exponential
system satisfying some condition can be complemented up to a complete
and minimal system of complex exponentials in L?[—m, 7]. We have the
following result.

Theorem 4.1 Let {d,,} be a real sequence such that
1< 51’ 571 < 6n+1
and

lim 6, = oco.
n—oo

If \={)\.} is a sequence where
MN=0, \p=n+0,, \opy=—-X\, (n=1,2,...),

then the system e(\) = {e"*'} has the excess E(\) = —oco in L*[—m, 7] and
e(\) can be complemented up to a complete and minimal system of complex
exponentials in L?[—m, 7.

Proof. We may choose u = {p,} such that A C p and e(u) = {e#n'} is
complete and it has a finite excess in L?[—m, 7].
Firstly, we choose a positive integer k1 such that

k1 <01 <ky+1.
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Then we take
po=0,pm =1, ..., pg,41 =k + 1L
Moreover, we define
k12, 01 =k,
Mk +2 = {)\1’ 5y £ k.
Generally we choose a positive integer k; for j > 2 such that
kj <05 <kj+1.
I hj=Fkj 1 +0(1<l<kj—Fkj_1), we take

iy = ki +7
P4 (i—1) = ki + (G — 1)

:uk‘j-i-(j-‘rl—ﬁ) = k] + (.7 + 1- e)u
and

Fkj+(i+1) = {lj\] T ? ; :]’
J j 7R
Next if k;_1 = k;, we take
ki+(G+1), 6=k,
Ajs 8 # kj.
Finally let p—,, = —py,. Thus we choose the sequence u = {u,}.
For ¢ > 1, we denote by n(t) and n;(¢) the number of integers n inside

the interval |z| <t and the number of points u,, inside the interval |z| < t,
respectively. From the definition of the sequence {u,}, we have

Brj+(+1) = Hkj_1+(G+1) = {

ni(t) > n(t),

and hence, we see by [Y4, pp. 99~100, Theorem 3, 4] that e(u) is complete
in L?[—m, 7], i.e. E(p) > 0. Besides, since k; < §; < kj +1, \j = j +6;, we
have

k:j+j§)\j<k‘j+(j+1).
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Therefore we see that
n—1<pu,<n forvVn>1
hold. Since p_, = —py, the inequalities
|tn —n| <1 for Vn

hold. Applying Theorem C, we conclude that

E(p) <4,
consequently

0< E(p) <A4.
Hence we can reduce e(u) to a complete and minimal system. Thus e()\) has
the excess E(\) = —oo in L?[—m, 7] and it can be complemented up to a
complete and minimal system of complex exponentials in L?[—, 7. O

Remark 4.1 The author does not know whether the system e(\) in The-
orem 4.1 is always a Riesz sequence or not. But some examples of Riesz
sequences for L2[—7, 7] seen so far satisfiy the condition in Theorem 4.1 as
shown by the examples in the next section.

5. Examples and remark

The first example is given in [S, Theorem 2.8] as an example of a Riesz
sequence of complex exponentials which it cannot be complemented up to
a Riesz basis of complex exponentials.

Example 5.1 Let A = {£(n 4 \/n)}n>1 and e()) = {eF VI )

If we take d,, = y/n in Theorem 4.1, then we see that the system e(\)
can be complemented up to a complete and minimal system of complex
exponentials in L?[—, 7).

Next we deal with the next example. We may refer to [Y4, p. 136, The-
orem 5 and p. 138, Theorem 6].

Example 5.2 Let A = {\,} be a sequence of real numbers such that

Al — A >y>1(n=0,1,2 ...),
A=A (n=0,1,2,...).
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Then e(\) = {e!} is a Riesz sequence which has the excess E(\) = —oo
in L2[—, 7). Now we can write

Al — A =14¢e,, €,2e6>0(n=0,1,2,...).

So we have
n—1
An :n+25k, n > 1.
k=0

If we take

n—1
Op = Zek, n>1,
k=0

there exists a positive integer ng such that d,, > 1. We see by Theorem 4.1
that e(X) = {e"*"'},|5,, can be complemented up to a complete and mini-
mal system of complex exponentials. Consequently, by [L, p. 7, Theorem 6],
the system e(\) can also be complemented up to a complete and minimal
system of complex exponentials in L?[—7, 7).

Remark 5.1 Let nt(r) denote the largest number of points from \ to be

found in an interval of length of r (see [S, p. 133]) and we define

DT(\) = lim ()

r—oo T

Then K. Seip has proved in [S, Theorem 2.2] that if e(\) is a Riesz sequnce,
we have DT (\) < 1. Moreover, he has proved in [S, Theorem 2.4] that if
A satisfies DT()\) < 1, e(\) can be complemented up to a Riesz basis of
complex exponentials in L?[—n, 7]. Consequently, the problem is whether
every Riesz sequnce e(\) satisfying D (\) = 1 can be complemented up to
a complete and minimal system of complex exponentials in L?[—m, 7]. If,
in Theorem 4.1,

On

lim — =0,
n—oo N

then we obtain DT (\) = 1.
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