Hokkaido Mathematical Journal Vol. 36 (2007) p. 129-142

Sharing three values with small weights

Indrajit Lahiri

(Received September 2, 2005)

Abstract. We prove a uniqueness theorem for meromorphic functions sharing three values with small weights which improves some known results. We also exhibit some applications of the main result.

Key words: weighted sharing, uniqueness, meromorphic functions.

1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C} . For $b \in \mathbb{C} \cup \{\infty\}$ we say that f and g share the value b CM (counting multiplicities) if f and g have the same b-points with the same multiplicities. If we do not take multiplicities into account, we say that f and g share the value b IM (ignoring multiplicities). For standard definitions and notations of the value distribution theory we refer [1].

H. Ueda [9] proved the following result

Theorem A ([9]) Let f and g be two distinct nonconstant entire functions sharing 0, 1 CM and let $a (\neq 0, 1)$ be a finite complex number. If a is lacunary for f then 1-a is lacunary for g and $(f-a)(g+a-1) \equiv a(1-a)$.

Improving *Theorem A* H.X. Yi [11] proved the following theorem.

Theorem B ([11]) Let f and g be two distinct nonconstant entire functions sharing 0, 1 CM and let $a \ (\neq 0, 1)$ be a finite complex number. If $\delta(a; f) > 1/3$ then a and 1 - a are Picard exceptional values of f and grespectively and $(f - a)(g + a - 1) \equiv a(1 - a)$.

Extending *Theorem B* to meromorphic functions S.Z. Ye [10] proved the following results.

Theorem C ([10]) Let f and g be two distinct nonconstant meromorphic functions such that f and g share 0, 1, ∞ CM. Let $a \ (\neq 0, 1)$ be a finite complex number. If $\delta(a; f) + \delta(\infty; f) > 4/3$ then a and 1 - a are Picard

²⁰⁰⁰ Mathematics Subject Classification : 30D35.

exceptional values of f and g respectively and also ∞ is so and $(f-a)(g+a-1) \equiv a(1-a)$.

Theorem D ([10]) Let f and g be two distinct nonconstant meromorphic functions sharing 0, 1, ∞ CM. Let a_1, a_2, \ldots, a_p be $p \ (\geq 1)$ distinct finite complex numbers and $a_j \neq 0, 1$ for $j = 1, 2, 3, \ldots, p$. If $\sum_{j=1}^p \delta(a_j; f) + \delta(\infty; f) > 2(p+1)/(p+2)$ then there exist one and only one a_k in a_1, a_2, \ldots, a_p such that a_k and $1 - a_k$ are Picard exceptional values of f and g respectively and also ∞ is so and $(f - a_k)(g + a_k - 1) \equiv a_k(1 - a_k)$.

Improving above results H.X. Yi [12] proved the following theorem.

Theorem E ([12]) Let f and g be two distinct nonconstant meromorphic functions such that f and g share 0, 1, ∞ CM. Let $a \ (\neq 0, 1)$ be a finite complex number. If $N(r, a; f) \neq T(r, f) + S(r, f)$ and $N(r, f) \neq T(r, f) +$ S(r, f) then a and 1-a are Picard exceptional values of f and g respectively and also ∞ is so and $(f-a)(g+a-1) \equiv a(1-a)$.

Definition 1 Let p be a positive integer and $b \in \mathbb{C} \cup \{\infty\}$. Then by $N(r, b; f | \leq p)$ we denote the counting function of those *b*-points of f (counted with proper multiplicities) whose multiplicities are not greater than p. By $\overline{N}(r, b; f | \leq p)$ we denote the corresponding reduced counting function.

In an analogous manner we define $N(r, b; f \geq p)$ and $\overline{N}(r, b; f \geq p)$. Also we put

$$\delta_{p}(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f \mid \le p)}{T(r, f)}.$$

Hua and Fang [2] proved that if two nonconstant distinct meromorphic functions f and g share 0, 1, ∞ CM then $N(r, a; f \geq 3) = S(r, f)$ for any complex number $a \neq 0, 1, \infty$).

Also Yi [12] proved that if two nonconstant distinct meromorphic functions f and g share 0, 1, ∞ CM then $N(r, \infty; f \geq 2) = S(r, f)$.

Therefore Theorem E of Yi can easily be improved to the following result.

Theorem F ([5]) Let f and g be distinct nonconstant meromorphic functions sharing 0, 1, ∞ CM. If $a \ (\neq 0, 1)$ is a finite complex number such that $N(r, a; f \mid \leq 2) \neq T(r, f) + S(r, f)$ and $N(r, \infty; f \mid \leq 1) \neq T(r, f) + S(r, f)$ then a and 1 - a are Picard exceptional values of f and g respectively and

also ∞ is so and $(f-a)(g+a-1) \equiv a(1-a)$.

Following examples show that *Theorem* F is sharp.

Example 1 ([5]) Let $f = (e^z - 1)/(e^z + 1)$, $g = (1 - e^z)/(1 + e^z)$, $a_1 = -1$ and $a_2 = 2$. Then f, g share 0, 1, ∞ CM. Also $N(r, \infty; f | \le 1) = T(r, f) + S(r, f)$, $N(r, a_1; f | \le 2) \neq T(r, f) + S(r, f)$ and $N(r, a_2; f | \le 2) = T(r, f) + S(r, f)$. Clearly $(f - a_i)(g + a_i - 1) \neq a_i(1 - a_i)$ for i = 1, 2.

Example 2 ([5]) Let $f = e^z$, $g = e^{-z}$ and a = 2. Then f, g share 0, 1, ∞ CM. Also $N(r, \infty; f | \le 1) \ne T(r, f) + S(r, f)$, $N(r, a; f | \le 2) = T(r, f) + S(r, f)$. Clearly $(f - a)(g + a - 1) \ne a(1 - a)$.

It is shown in [5] by the following example that the condition $N(r, a; f | \leq 2) \neq T(r, f) + S(r, f)$ of *Theorem F* cannot be replaced by any one of $N(r, a; f | \leq 1) \neq T(r, f) + S(r, f)$ and $\overline{N}(r, a; f | \leq 2) \neq T(r, f) + S(r, f)$.

Example 3 ([5]) Let $f = e^{z}(1 - e^{z})$, $g = e^{-z}(1 - e^{-z})$ and a = 1/4. Then f, g share 0, 1, ∞ CM. Also $N(r, \infty; f \mid \leq 1) \neq T(r, f) + S(r, f)$. Since $f - a = -(e^{z} - 2a)^{2}$, we see the following

 $(\ {\rm i}\)\quad N(r,\,a;f\mid\leq 1)\equiv 0,$

(ii) $\overline{N}(r, a; f \mid \leq 2) = N(r, 2a; e^z) = (1/2)T(r, f) + S(r, f)$ and (iii) $N(r, a; f \mid \leq 2) = 2N(r, 2a; e^z) = T(r, f) + S(r, f).$

Also clearly $(f - a)(g + a - 1) \not\equiv a(1 - a)$.

Following two examples show that in the above theorems the sharing of 0 and 1 can not be relaxed from CM to IM.

Example 4 ([5]) Let $f = e^z - 1$, $g = (e^z - 1)^2$ and a = -1. Then f, g share 0 IM and 1, ∞ CM. Also $N(r, \infty; f) \equiv 0$ and $N(r, a; f) \equiv 0$ but $(f-a)(g+a-1) \not\equiv a(1-a)$.

Example 5 ([5]) Let $f = 2 - e^z$, $g = e^z(2 - e^z)$ and a = 2. Then f, g share 1 IM and $0, \infty$ CM. Also $N(r, \infty; f) \equiv 0$ and $N(r, a; f) \equiv 0$ but $(f - a)(g + a - 1) \not\equiv a(1 - a)$.

In [5] following question is asked: Is it really impossible to relax in any way the nature of sharing of any one of 0 and 1 in the above theorems?

The notion of weighted sharing of values is used in [5] to deal this problem. We now explain the notion in the following definition which measures how close a shared value is to being shared CM or to being shared IM.

Definition 2 ([3, 4]) Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_o is a zero of f - a with multiplicity $m (\leq k)$ if and only if it is a zero of g - a with multiplicity $m (\leq k)$ and z_o is a zero of f - a with multiplicity m (> k) if and only if it is a zero of g - a with multiplicity n (> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integer p, $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Improving *Theorem* C in [5] following result is proved.

Theorem G ([5]) Let f and g be two distinct meromorphic functions sharing (0, 1), $(1, \infty)$ and (∞, ∞) . If $a \neq 0, 1$ is a finite complex number such that $3\delta_{2}(a; f) + 2\delta_{1}(\infty; f) > 3$ then a and 1-a are Picard exceptional values of f and g and also ∞ is so and $(f - a)(g + a - 1) \equiv a(1 - a)$.

In [5] we were unable to relax the nature of sharing of values in *Theo*rem F. We now take up this problem and prove the following result which improve *Theorem* F and so all previous results.

Theorem 1 Let f and g be two distinct meromorphic functions sharing (0, 1), (1, m) and (∞, k) , where $(m - 1)(mk - 1) > (1 + m)^2$. If $a \neq 0, 1$ is a finite complex number such that $N(r, a; f \mid \leq 2) \neq T(r, f) + S(r, f)$ and $N(r, \infty; f \mid \leq 1) \neq T(r, f) + S(r, f)$ then a and 1 - a are Picard exceptional values of f and g respectively and also ∞ is so and $(f - a)(g + a - 1) \equiv a(1 - a)$.

We note that the condition $(m-1)(mk-1) > (1+m)^2$ is equivalent to (m-1)(k-1) > 4 and so is symmetric in m and k. We also note that *Theorem 1* holds for the following pairs of least values of m and k: (i) m =3, k = 4; (ii) m = 4, k = 3; (iii) m = 2, k = 6; (iv) m = 6, k = 2.

Definition 3 Let f and g share a value a IM. Let z be an a-point of f and g with multiplicities $p_f(z)$ and $p_q(z)$ respectively.

We put

$$\overline{\nu}_f(z) = 1 \quad \text{if } p_f(z) > p_g(z) \\ = 0 \quad \text{if } p_f(z) \le p_g(z)$$

and

$$\overline{\mu}_f(z) = 1 \quad \text{if } p_f(z) < p_g(z)$$
$$= 0 \quad \text{if } p_f(z) \ge p_g(z).$$

Let $\overline{n}(r, a; f > g) = \sum_{|z| \le r} \overline{\nu}_f(z)$ and $\overline{n}(r, a; f < g) = \sum_{|z| \le r} \overline{\mu}_f(z)$. We now denote by $\overline{N}(r, a; f > g)$ and $\overline{N}(r, a; f < g)$ the integrated counting functions obtained from $\overline{n}(r, a; f > g)$ and $\overline{n}(r, a; f < g)$ respectively.

Finally we put $\overline{N}_*(r, a; f, g) = \overline{N}(r, a; f > g) + \overline{N}(r, a; f < g).$

Definition 4 Let f and g share a value a IM. Let z be an a-point of f and g with multiplicities $p_f(z)$ and $p_g(z)$ respectively.

We put

$$\begin{split} \nu_f(z) = p_f(z) & \text{if } p_f(z) > p_g(z) \\ = 0 & \text{if } p_f(z) \le p_g(z) \end{split}$$

and

$$\mu_f(z) = p_f(z) \quad \text{if } p_f(z) < p_g(z)$$
$$= 0 \quad \text{if } p_f(z) \ge p_g(z).$$

Let $n(r, a; f > g) = \sum_{|z| \le r} \nu_f(z)$ and $n(r, a; f < g) = \sum_{|z| \le r} \mu_f(z)$. We now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively.

Throughout the paper we denote by f and g two nonconstant meromorphic functions defined in \mathbb{C} .

2. Lemmas

In this section we present some lemmas which are needed in the sequel.

Lemma 1 ([3]) If f, g share (0, 0), (1, 0), $(\infty, 0)$ then (i) $T(r, f) \leq 3T(r, g) + S(r, f)$, (ii) $T(r, g) \leq 3T(r, f) + S(r, g)$.

This shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2 ([6]) Let f, g share (0, 1), (1, m), (∞, k) and $f \neq g$, where $(m-1)(mk-1) > (1+m)^2$. Then $\overline{N}(r, a; f \geq 2) = S(r)$ and $\overline{N}(r, a; g \geq 2) = S(r)$.

2) = S(r) for $a = 0, 1, \infty$.

Following lemma can be proved in the line of statements (iii) and (iv) of Lemma 2.3 of [7].

Lemma 4 Let f, g share (0, 1), (1, m), (∞, k) and $f \not\equiv g$, where $(m - 1)(mk - 1) > (1 + m)^2$. If α and h are defined as in Lemma 3 then $\overline{N}(r, a; \alpha) = S(r)$ and $\overline{N}(r, a; h) = S(r)$ for $a = 0, \infty$.

Proof. The lemma follows from Lemmas 2 and 3 because $\overline{N}_*(r, a; f, g) \leq \overline{N}(r, a; f \mid \geq 2)$ for $a = 0, 1, \infty$.

Lemma 5 ([8]) Let f and g share (0, 0), (1, 0), $(\infty, 0)$. If f is a bilinear transformation of g then f and g satisfy exactly one of the following: (i) $f \equiv g$, (ii) $f + g \equiv 1$, (iii) $(f - 1)(g - 1) \equiv 1$, (iv) $fg \equiv 1$, (v) $f \equiv Ag + 1 - A$, (vi) $f \equiv Ag$, (vii) $f(g + A - 1) \equiv Ag$, where $A \neq 0, 1$) is a constant.

Following lemma is of independent interest.

Lemma 6 Let f, g share (0, 1), (1, m), (∞, k) and $f \not\equiv g$, where $(m - 1)(mk - 1) > (1 + m)^2$. If f is not a bilinear transformation of g then each of the following holds:

(i) T(r, f) + T(r, g)

$$= N(r, 0; g \mid \leq 1) + N(r, 1; g \mid \leq 1) + N(r, \infty; g \mid \leq 1) + N_0(r) + S(r),$$

(ii)) $T(r, f) + T(r, g)$

 $= N(r, 0; f \mid \le 1) + N(r, 1; f \mid \le 1) + N(r, \infty; f \mid \le 1) + N_0(r) + S(r),$

- (iii) $T(r, f) = N(r, 0; g' | \le 1) + N_0(r) + S(r),$
- (iv) $T(r, g) = N(r, 0; f' | \le 1) + N_0(r) + S(r),$
- $(v) N_1(r) = S(r),$
- (vi) $N_0(r, 0; g' \geq 2) = S(r),$
- (vii) $N_0(r, 0; f' \geq 2) = S(r),$
- (viii) $\overline{N}(r, 0; g' \geq 2) = S(r),$
- (ix) $\overline{N}(r, 0; f' \geq 2) = S(r),$

where $N_0(r)(N_1(r))$ denotes the counting function of those simple (multiple) zeros of f-g which are not the zeros of g(g-1), 1/g and so are not the zeros of f(f-1), 1/f, also $N_0(r, 0; g' \geq 2)$ ($N_0(r, 0; f' \geq 2)$) is the counting function of those multiple zeros of g'(f') which are not the zeros of g(g-1)and so not of f(f-1).

Proof. We see that $f = (1 - \alpha)/(1 - \alpha h)$ and $g = (1 - \alpha)h/(1 - \alpha h)$, where α and h are defined as in Lemma 3. Since f is not a bilinear transformation of g, α , h and αh are nonconstant. Let $b = \alpha' h/(\alpha h' + \alpha' h)$. Then

$$f - b = \frac{(1 - \alpha) - b(1 - \alpha h)}{(1 - \alpha h)}$$

Let $F = (f - b)(1 - \alpha h) = (1 - \alpha) - b(1 - \alpha h)$. Also $(f - g)(1 - \alpha h) = (1 - \alpha)(1 - h)$ and $(g - 1)(1 - \alpha h) = h - 1$ so that $f - g = (g - 1)(\alpha - 1)$. Again

$$\frac{g'}{g} = \frac{h'(1 - \alpha h) + (h - 1)(\alpha' h + \alpha h')}{h(1 - \alpha)(1 - \alpha h)}.$$

Therefore

$$\frac{g'(g-f)}{g(g-1)} = \frac{h'(1-\alpha h) + (h-1)(\alpha' h + \alpha h')}{h(1-\alpha h)}$$

$$= \frac{(1-\alpha)(\alpha h' + \alpha' h) - \alpha' h(1-\alpha h)}{\alpha h(1-\alpha h)}.$$
(1)

Again

$$(f-b)(1-\alpha h) = (1-\alpha) - b(1-\alpha h)$$
$$= \frac{(1-\alpha)(\alpha h' + \alpha' h) - \alpha' h(1-\alpha h)}{\alpha h' + \alpha' h}$$

and so

$$(f-b)\frac{\alpha h' + \alpha' h}{\alpha h} = \frac{(1-\alpha)(\alpha h' + \alpha' h) - \alpha' h(1-\alpha h)}{\alpha h(1-\alpha h)}.$$
 (2)

From (1) and (2) we get

$$\frac{g'(g-f)}{g(g-1)} = (f-b)\left(\frac{h'}{h} + \frac{\alpha'}{\alpha}\right).$$
(3)

Since $F' = -\alpha' - b'(1 - \alpha h) + b(\alpha' h + \alpha h') = -\alpha' - b'(1 - \alpha h) + \alpha' h$, we get $\frac{F'}{F} - \frac{\alpha'}{\alpha} = \frac{-\alpha' - b'(1 - \alpha h) + \alpha' h - (\alpha'/\alpha)F}{F}$

$$=\frac{(1-\alpha h)(-\alpha'-b'\alpha+b\alpha')}{\alpha(f-b)(1-\alpha h)}$$
$$=\frac{1}{f-b}\left[\frac{\alpha'}{\alpha}(b-1)-b'\right]$$

and so

$$\frac{1}{f-b} = \frac{F'/F - \alpha'/\alpha}{(\alpha'/\alpha)(b-1) - b'}.$$
(4)

Since $T(r,\alpha) \leq T(r,f) + T(r,g) + O(1)$ and $T(r,h) \leq T(r,f) + T(r,g) + O(1),$ in view of Lemmas 1 and 4 we obtain

$$T\left(r, \frac{\alpha'}{\alpha}\right) = m\left(r, \frac{\alpha'}{\alpha}\right) + N\left(r, \frac{\alpha'}{\alpha}\right)$$
$$\leq \overline{N}(r, 0; \alpha) + \overline{N}(r, \infty; \alpha) + S(r, \alpha) = S(r)$$

and

$$T\left(r, \frac{h'}{h}\right) = m\left(r, \frac{h'}{h}\right) + N\left(r, \frac{h'}{h}\right)$$
$$\leq \overline{N}(r, 0; h) + \overline{N}(r, \infty; h) + S(r, h) = S(r).$$

Since $1/b = 1 + \alpha h'/\alpha' h$, we get

$$T(r, b) = T\left(r, \frac{1}{b}\right) + O(1) \le T\left(r, \frac{\alpha}{\alpha'}\right) + T\left(r, \frac{h'}{h}\right) + O(1)$$
$$= T\left(r, \frac{\alpha'}{\alpha}\right) + S(r) = S(r).$$

From (4) we now obtain

$$m\left(r, \frac{1}{f-b}\right) \le m\left(r, \frac{F'}{F}\right) + S(r) = S(r, f) + S(r) = S(r).$$
(5)

Since F'/F and α'/α have no multiple pole and $T(r, b') \leq 2T(r, b) + S(r, b)$, it follows from the above and (4) that

$$N(r, 0; f - b \geq 2) \leq 2N\left(r, 0; \frac{\alpha'}{\alpha}(b - 1) - b'\right) + S(r)$$

$$\leq 2T\left(r, \frac{\alpha'}{\alpha}(b - 1) - b'\right) + S(r)$$

$$\leq 2T\left(r, \frac{\alpha'}{\alpha}\right) + 2T(r, b - 1) + 2T(r, b') + S(r)$$

$$\leq 2T\left(r, \frac{\alpha'}{\alpha}\right) + 6T(r, b) + S(r) = S(r).$$
(6)

Since f, g share (0, 1), (1, m), (∞, k) and b = f - (f - b), we see that if z_0 is a zero, pole or 1-point of g which is also a simple zero of f - b, then z_0 is a zero, pole or 1-point of b and so the counting function of such simple zeros of f - b is S(r). So we get from (3) and (6)

$$N(r, 0; f - b) = N(r, 0; f - b | \le 1) + N(r, 0; f - b | \ge 2)$$

= N(r, 0; f - b | \le 1) + S(r)
= N(r, 0; g' | \le 1) + N_0(r) + S(r). (7)

From (5) and (7) we obtain

$$T(r, f) = T(r, f - b) + S(r)$$

= $m\left(r, \frac{1}{f - b}\right) + N\left(r, \frac{1}{f - b}\right) + S(r)$
= $N(r, 0; g' \mid \le 1) + N_0(r) + S(r),$ (8)

which is (iii).

Similarly we get

$$T(r, g) = N(r, 0; f' | \le 1) + N_0(r) + S(r),$$
(9)

which is (iv).

Again from (3) and (6) we obtain $N_1(r) \leq N(r, 0; f-b \geq 2) + S(r) = S(r)$ and $N_0(r, 0; g' \geq 2) \leq N(r, 0; f-b \geq 2) + S(r) = S(r)$, which are respectively (v) and (vi). Similarly we can prove (vii).

Since $\overline{N}(r, 0; g' \geq 2) \leq N_0(r, 0; g' \geq 2) + \overline{N}(r, 0; g \geq 2) + \overline{N}(r, 1; g \geq 2)$ and $\overline{N}(r, 0; f' \geq 2) \leq N_0(r, 0; f' \geq 2) + \overline{N}(r, 0; f \geq 2) + \overline{N}(r, 1; f \geq 2)$, (viii) and (ix) follow from (vi), (vii) and Lemma 2.

By the second fundamental theorem, Lemma 2 and (8) we get

$$T(r, f) + T(r, g)$$

$$\leq T(r, f) + N(r, 0; g \mid \leq 1) + N(r, 1; g \mid \leq 1)$$

$$+N(r, \infty; g \mid \leq 1) - \overline{N}_0(r, 0; g') + S(r)$$

$$= N(r, 0; g \mid \leq 1) + N(r, 1; g \mid \leq 1) + N(r, \infty; g \mid \leq 1)$$

$$+N(r, 0; g' \mid \leq 1) + N_0(r) - \overline{N}_0(r, 0; g') + S(r), \quad (10)$$

where $\overline{N}_0(r, 0; g')$ denotes the reduced counting function of those zeros of g' which are not the zeros of g(g-1).

By Lemma 2 we see that

$$N(r, 0; g' | \le 1) = N_0(r, 0; g' | \le 1) + S(r),$$
(11)

where $N_0(r, 0; g' \leq 1)$ is the counting function of those simple zeros of g' which are not the zeros of g(g-1).

Similarly

$$N(r, 0; f' | \le 1) = N_0(r, 0; f' | \le 1) + S(r).$$
(12)

From (10) and (11) we get

$$\begin{split} T(r, \, f) + T(r, \, g) \\ &\leq N(r, \, 0; g \mid \leq 1) + N(r, \, 1; g \mid \leq 1) + N(r, \, \infty; g \mid \leq 1) \\ &+ N_0(r, \, 0; g' \mid \leq 1) + N_0(r) - \overline{N}_0(r, \, 0; g') + S(r) \\ &\leq N(r, \, 0; g \mid \leq 1) + N(r, \, 1; g \mid \leq 1) + N(r, \, \infty; g \mid \leq 1) \\ &+ N_0(r) + S(r) \\ &\leq N(r, \, 0; f - g) + N(r, \, \infty; g \mid \leq 1) + S(r) \\ &\leq T(r, \, f - g) + N(r, \, \infty; g \mid \leq 1) + S(r) \\ &\leq m(r, \, f) + m(r, \, g) \\ &+ N(r, \, f - g) + N(r, \, \infty; g \mid \leq 1) + S(r) \\ &\leq m(r, \, f) + m(f, \, g) + N(r, \, \pi); g \mid \leq 1) + S(r) \\ &\leq m(r, \, f) + m(f, \, g) + N(r, \, f) \\ &+ N(r, \, \infty; g > f) + N(r, \, \infty; g \mid \leq 1) + S(r) \\ &\leq m(r, \, f) + N(r, \, f) + m(r, \, g) + N(r, \, g) + S(r) \\ &\leq T(r, \, f) + T(r, \, g) + S(r), \end{split}$$

from which (i) follows.

Now (ii) follows from (i) because $N(r, a; f | \le 1) = N(r, a; g | \le 1)$ for $a = 0, 1, \infty$. This proves the lemma.

Lemma 7 ([6]) Let f, g share (0, 1), (1, m), (∞, k) and $f \neq g$, where $(m-1)(mk-1) > (1+m)^2$. Then for any complex number $a \ (\neq 0, 1, \infty)$, $\overline{N}(r, a; f \mid \geq 3) = S(r)$ and $\overline{N}(r, a; g \mid \geq 3) = S(r)$.

3. Proof of the main result

Proof of Theorem 1. If possible, let f be not a bilinear transformation of g. Then by Lemma 6(vii), Lemma 2, Lemma 7 and the second fundamental theorem we get

$$2T(r, f) \le N(r, 0; f \mid \le 1) + N(r, 1; f \mid \le 1) + N(r, \infty; f \mid \le 1) + \overline{N}(r, a; f \mid \le 2) - N_1(r, 0; f' \mid \le 1) + S(r),$$
(13)

where $N_1(r, 0; f' \leq 1)$ is the counting function of those simple zeros of f' which are not the zeros of f(f-1)(f-a).

Since a double *a*-point of f is a simple zero of f', it follows that

$$\overline{N}(r, a; f \mid \leq 2) - N_1(r, 0; f' \mid \leq 1)$$

= $N(r, a; f \mid \leq 2) - N_0(r, 0; f' \mid \leq 1).$

So from (13) we get by (12) and Lemma 6 (ii) and (iv)

$$2T(r, f) \leq T(r, f) + T(r, g) - N_0(r) + N(r, a; f \mid \leq 2) - N_0(r, 0; f' \mid \leq 1) + S(r) = T(r, f) + N(r, a; f \mid \leq 2) + S(r, f) \leq 2T(r, f) + S(r, f),$$

which is a contradiction.

Hence f is a bilinear transformation of g. So any one of the possibilities of (ii)-(vii) of Lemma 5 will occur. We now examine each of these possibilities one by one.

Let $f + g \equiv 1$ Since f, g share (0, 1), (1, m), it follows that 0 and 1 are Picard exceptional values (evP) of f and so by the second fundamental theorem and Lemma 7 we get

$$T(r, f) \le N(r, a; f \mid \le 2) + S(r, f)$$

$$\le N(r, a; f \mid \le 2) + S(r, f)$$

$$\le T(r, f) + S(r, f),$$

a contradiction.

Let $(f-1)(g-1) \equiv 1$. Since f, g share $(1, m), (\infty, k)$, it follows that 1 and ∞ are evP of f and so as above we get $N(r, a; f \mid \leq 2) = T(r, f) + S(r, f)$, a contradiction.

If $fg \equiv 1$. Since f, g share (0, 1), (∞, k) , it follows that 0 and ∞ are evP of f and so $N(r, a; f \leq 2) = T(r, f) + S(r, f)$, a contradiction.

Let $f \equiv Ag + 1 - A$, where $A \ (\neq 0, 1)$ is a constant. Since f, g share (0, 1), it follows that 0, 1 - A are evP of f and so by the second fundamental theorem and Lemma 2 we get $T(r, f) \leq N(r, \infty; f \mid \leq 1) + S(r, f) \leq T(r, f) + S(r, f)$, a contradiction.

Let $f \equiv Ag$, where $A \neq (0, 1)$ is a constant. Since f, g share (1, m), it follows that 1, A are evP of f and so $N(r, \infty; f \mid \leq 1) = T(r, f) + S(r, f)$,

a contradiction.

Let $f(g+A-1) \equiv Ag$, where $A \neq 0, 1$ is a constant. Since f, g share (∞, k) , it follows that ∞ is an evP of f and so of g.

If $A \neq a$, by the second fundamental theorem and Lemma 7 we get

$$T(r, f) \le N(r, a; f \mid \le 2) + N(r, a; f) + S(r, f)$$

$$\le N(r, a; f \mid \le 2) + \overline{N}(r, \infty; g) + S(r, f)$$

$$= N(r, a; f \mid \le 2) + S(r, f)$$

$$\le T(r, f) + S(r, f),$$

a contradiction.

Therefore A = a and so $(f - a)(g + a - 1) \equiv a(1 - a)$. This proves the theorem.

Remark 1 If in Theorem 1 we remove the condition $N(r, \infty; f | \le 1) \ne T(r, f) + S(r, f)$, in a like manner we can prove that one of the following possibilities occurs, which improves Theorem 4 [12]:

- (i) $(f-a)(g+a-1) \equiv a(1-a)$. This occurs only when ∞ is an evP of f. In this case a, 1-a are evP of f and g respectively and ∞ is an evP of g.
- (ii) $f + (a-1)g \equiv a$. This occurs only when 0 is an evP of f. In this case a is an evP of f and 0, a/(a-1) are evP of g.
- (iii) $f \equiv ag$. This occurs only when 1 is an evP of f. In this case a is an evP of f and 1, 1/a are evP of g.

4. Applications

In this section we discuss two applications of Theorem 1.

Definition 5 ([3]) For $S \subset \mathbb{C} \cup \{\infty\}$ we define $E_f(S, k)$ as $E_f(S, k) = \bigcup_{a \in S} E_k(a; f)$, where k is a nonnegative integer or infinity.

H.X. Yi [12] proved the following result.

Theorem H ([12]) Let $S_1 = \{a_1, a_2\}$ and $S_2 = \{b_1, b_2\}$ be two pairs of distinct elements with $a_1 + a_2 = b_1 + b_2$ but $a_1a_2 \neq b_1b_2$ and let $S_3 = \{\infty\}$. If $E_f(S_i, \infty) = E_g(S_i, \infty)$ for i = 1, 2, 3 and $\delta(c/2; f) > 0$ for $c = a_1 + a_2$ then one of the following holds: (i) $f \equiv g$, (ii) $f + g \equiv a_1 + a_2$, (iii) $(f - c/2)(g - c/2) \equiv \pm (a_1 - a_2)^2/4$, which occurs only for $(a_1 - a_2)^2 + (b_1 - b_2)^2 = 0$.

H.X. Yi [12] considered the following example to establish the necessity of the condition $\delta(c/2; f) > 0$ for *Theorem H*.

Example 6 ([12]) Let $f = 1 - 4e^z$, $g = 1 - e^{-z}$, $a_1 = -1$, $a_2 = 1$, $b_1 = -i\sqrt{3}$, $b_2 = i\sqrt{3}$, $S_1 = \{a_1, a_2\}$, $S_2 = \{b_1, b_2\}$ and $S_3 = \{\infty\}$. Then clearly $(f - a_1)(f - a_2) = -8e^{2z}(g - a_1)(g - a_2)$ and $(f - b_1)(f - b_2) = 4e^z(g - b_1)(g - b_2)$ so that $E_f(S_i, \infty) = E_g(S_i, \infty)$ for i = 1, 2, 3. Also we see that $c = a_1 + a_2 = 0$, $\delta(c/2; f) = 0$ and $f \neq g$, $f + g \neq a_1 + a_2$, $(f - c/2)(g - c/2) \neq \pm (a_1 - a_2)^2/4$.

In the following theorem we improve *Theorem* H and show that the condition $\delta(c/2; f) > 0$ can further be relaxed.

Theorem 2 Let $S_1 = \{a_1, a_2\}$ and $S_2 = \{b_1, b_2\}$ be two pairs of distinct elements with $a_1 + a_2 = b_1 + b_2$ but $a_1a_2 \neq b_1b_2$ and let $S_3 = \{\infty\}$. Suppose that $E_f(S_1, 1) = E_g(S_1, 1)$, $E_f(S_2, m) = E_g(S_2, m)$, $E_f(S_3, k) = E_g(S_3, k)$ and $\delta_{11}(c/2; f) > 0$, where $(m-1)(mk-1) > (1+m)^2$ and $c = a_1 + a_2$. Then the conclusion of Theorem H holds.

Proof. Let $A = (b_1 - b_2)^2 / 4 - (a_1 - a_2)^2 / 4$ and

$$F = \frac{1}{A} \left[\left(f - \frac{c}{2} \right)^2 - \frac{(a_1 - a_2)^2}{4} \right], \ G = \frac{1}{A} \left[\left(g - \frac{c}{2} \right)^2 - \frac{(a_1 - a_2)^2}{4} \right].$$

If $F \equiv G$ then clearly either $f \equiv g$ or $f + g \equiv a_1 + a_2$. So we suppose that $F \not\equiv G$. Also let $(a_1 - a_2)^2 + (b_1 - b_2)^2 = 0$ and a = 1/2. Then we see that $A(F - a) = (f - c/2)^2$ and so $N(r, \infty; F \mid \leq 1) \equiv 0$ and $N(r, a; F \mid \leq 2) = 2N(r, c/2; f \mid \leq 1) \neq 2T(r, f) + S(r, f) = T(r, F) + S(r, F)$. Since F, G share $(0, 1), (1, m), (\infty, k)$, by Theorem 1 we get $(F - a)(G + a - 1) \equiv a(1 - a)$ and so $(f - c/2)(g - c/2) \equiv \pm (a_1 - a_2)^2/4$. This proves the theorem. \Box

Remark 2 Example 6 shows that the condition $\delta_{1}(c/2; f) > 0$ is essential.

In [5] following result is proved.

Theorem I ([5]) Let a and $b \ (\neq 0, 1)$ be two finite complex numbers and $S_1 = \{a + \alpha : \alpha^n + b = 0\}, S_2 = \{a + \beta : \beta^n + b = 1\}, S_3 = \{\infty\}$ where $n \ (\geq 3)$ be a positive integer. If $E_f(S_1, 1) = E_g(S_1, 1), E_f(S_2, \infty) = E_g(S_2, \infty), E_f(S_3, \infty) = E_g(S_3, \infty)$ then one of the following holds: (i) $f - a \equiv t(g - a)$, where $t^n = 1$ and (ii) $(f - a)(g - a) \equiv s$, where $4s^n = 1$.

In the next theorem we improve *Theorem I*.

Theorem 3 Theorem I holds if $E_f(S_1, 1) = E_g(S_1, 1)$, $E_f(S_2, m) = E_g(S_2, m)$ and $E_f(S_3, k) = E_g(S_3, k)$, where $(m-1)(mk-1) > (1+m)^2$.

We omit the proof as it can be done in the line of Theorem I using Theorem 1.

References

- [1] Hayman W.K., Meromorphic Functions. The Clarendon Press, Oxford, 1964.
- Hua X. and Fang M., Meromorphic functions sharing four small functions. Indian J. Pure Appl. Math. vol. 28, 1997, pp. 797–811.
- [3] Lahiri I., Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), pp. 193–206.
- [4] Lahiri I., Weighted value sharing and uniqueness of meromorphic functions. Complex Variables Theory Appl. (3) 46 (2001), 241–253.
- [5] Lahiri I., Weighted sharing of three values and uniqueness of meromorphic functions. Kodai Math. J. 24 (2001), 421–435.
- [6] Lahiri I., On a result of Ozawa concerning uniqueness of meromorphic functions II.
 J. Math. Anal. Appl. (1) 283 (2003), 66–76.
- [7] Lahiri I., Uniqueness of meromorphic functions and sharing of three values with some weight. New Zealand J. Math. (2) 32 (2003), 161–171.
- [8] Lahiri I. and Sarkar A., On a uniqueness theorem of Tohge. Arch. Math. (Basel),
 (5) 84 (2005), 461–469.
- [9] Ueda H., Unicity theorems for meromorphic or entire functions. Kodai Math. J. 3 (1980), 457–471.
- Ye S.Z., Uniqueness of meromorphic functions that share three values. Kodai Math. J. 15 (1992), 236–243.
- Yi H.X., Meromorphic functions that share three values. Chinese Ann. Math. Ser. A 9 (1988), 434–439.
- [12] Yi H.X., Unicity theorems for meromorphic functions that share three values. Kodai Math. J. 18 (1995), 300–314.

Department of Mathematics University of Kalyani West Bengal 741235, India E-mail: indr9431@dataone.in