
Hokkaido Mathematical Journal Vol. 35 (2006) p. 683–696
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of commutators of fractional integral operators
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Abstract. We prove that b is in BMO(Rn) if and only if the commutator [b, Iα] of the

multiplication operator by b and the fractional integral operator Iα is bounded from the

classical Morrey space Lp,λ(Rn) to Lq,µ(Rn), where 1 < p < ∞, 0 < α < n, 0 < λ <

n − αp, 1/q = 1/p − α/n and λ/p = µ/q. Also we will show that b is in Λ̇β(Rn) if and

only if the commutator [b, Iα] is bounded from the classical Morrey space Lp,λ(Rn) to

Lq,µ(Rn) or from Lp,λ(Rn) to Lq,λ(Rn), where α and β satisfy some conditions.

Key words: commutator, fractional integral operator, the classical Morrey space, higher

order commutator.

1. Introduction

Let Iα, 0 < α < n, be the fractional integral operator of order α,
defined by

Iαf(x) :=
∫

Rn

f(y)
|x− y|n−α

dy.

For a locally integrable function b, the commutator is defined by

[b, Iα]f(x) := b(x)Iαf(x)− Iα(bf)(x).

The commutator [b, Iα] was introduced by Chanillo [2].
Adams [1] showed that the fractional integral operator is bounded from

the classical Morrey space Lp,λ(Rn) to Lq,λ(Rn). Chiarenza and Frasca [3]
gave an another proof of the previous result.

Recently, Di Fazio and Ragusa [6] showed that if b is in BMO(Rn),
then the commutator [b, Iα] is bounded from the classical Morrey space
Lp,λ(Rn) to Lq,λ(Rn), and conversely, under some restricted condition on α,
if the commutator [b, Iα] is bounded from Lp,λ(Rn) to Lq,λ(Rn), then b ∈
BMO(Rn).
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Moreover Paluszyński [14] showed that if p < n/(α + β), then b is in
the (homogeneous) Lipschitz space Λ̇β(Rn) if and only if the commutator
[b, Iα] is bounded from Lp(Rn) to Lr(Rn), 1/p− 1/r = (α + β)/n.

The aim of this paper is to prove that b ∈ BMO(Rn) if and only if
the commutator [b, Iα] is bounded from the classical Morrey space Lp,λ(Rn)
to Lq,µ(Rn) for some appropriate indices p, q, λ, µ and α. Therefore our
result will mean to remove some restriction from the result of Di Fazio and
Ragusa [6].

Also we show that b ∈ Λ̇β(Rn) if and only if the commutator [b, Iα]
is bounded from the classical Morrey space Lp,λ(Rn) to Lq,λ(Rn) or from
Lp,λ(Rn) to Lq,µ(Rn) for some appropriate indices p, q, λ, µ, α and β.

We will give an answer to a problem posed by Yasuo Komori and
Takahiro Mizuhara [10, Problem 1, p.352].

The author would like to express his gratitude to his advisors, Professor
Takahiro Mizuhara and Professor Enji Sato for their assistance. And the
author would like to thank the referee for most helpful suggestions.

2. Definitions and notation

Throughout this paper all notation is standard or will be defined as
needed. All cubes are assumed to have their sides parallel to the coordinate
axes. Q = Q(x0, t) denotes the cube centered at x0 with side length t. Given
a Lebesgue measurable set E, χE will denote the characteristic function of E

and |E| is the Lebesgue measure of E. The letter C will be used for various
constants, and may change from one occurrence to another.

Definition 2.1 (classical Morrey space) Let 1 ≤ p < ∞, 0 ≤ λ. We
define the classical Morrey space by

Lp,λ(Rn) := {f ∈ Lp
loc(R

n) : ‖f‖Lp,λ < ∞},
where

‖f‖Lp,λ := sup
x0∈Rn

t>0

(
1
tλ

∫

Q(x0,t)
|f(x)|p dx

)1/p

.

For the classical Morrey space Lp,λ(Rn), the next results are well-known:
If 1 ≤ p < ∞, then we have Lp,0(Rn) = Lp(Rn) and Lp,n(Rn) = L∞(Rn)

when λ = n, and if n < λ, then we have Lp,λ(Rn) = {0}. Therefore we
consider the case only 0 < λ < n.
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Definition 2.2 (John-Nirenberg space) BMO(Rn) is the John-Nirenberg
space. That is, BMO(Rn) is a Banach space, modulo constants, with the
norm ‖ · ‖∗ defined by

‖b‖∗ := sup
Q

1
|Q|

∫

Q
|b(x)− bQ| dx,

where

bQ :=
1
|Q|

∫

Q
b(y) dy

and the supremum is taken over all cubes Q in Rn.

Definition 2.3 (Lipschitz space) We define the (homogeneous) Lipschitz
space of order β, 0 < β < 1, by

Λ̇β(Rn) = {f : |f(x)− f(y)| ≤ C|x− y|β}
and the smallest constant C > 0 is the Lipschitz norm ‖ · ‖Λ̇β

.

We recall the definitions of some maximal functions.

Definition 2.4 Given a locally integrable function f and α, 0 ≤ α < n,
define the fractional maximal function by

Mαf(x) = sup
Q3x

1
|Q|1−α/n

∫

Q
|f(y)| dy

when 0 < α < n. If α = 0 then M0f = Mf denotes the usual Hardy-
Littlewood maximal function. Also define the sharp maximal function by

M ]f(x) = sup
Q3x

1
|Q|

∫

Q
|f(y)− fQ| dy.

In both definitions, the supremum is taken over all Q containing x.

Remark As well known, the sharp maximal function was introduced by
Fefferman and Stein [7]. The fractional maximal function was used by
Muckenhoupt and Wheeden [13].

The blocks and the space generated by blocks were introduced by
Long [12]. See also Komori and Mizuhara [10].
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Definition 2.5 Let 1 ≤ q < r ≤ ∞. A function g(x) on Rn is called
a (q, r)-block, if there exists a cube Q(x0, t) such that

supp(g) ⊂ Q(x0, t), ‖g‖Lr ≤ tn(1/r−1/q).

Definition 2.6 Let 1 ≤ q < r ≤ ∞. We define the space generated by
blocks by

hq,r(Rn) :=
{

f =
∞∑

j=1

mjgj : gj are (q, r)-blocks,

‖f‖hq,r = inf
∞∑

j=1

|mj | < ∞
}

,

where the infimum extends over all representations f =
∑∞

j=1 mjgj .

3. Theorems

The Lp,λ theory about the fractional integral operator Iα is as follows:

Theorem A (Adams [1]) Let 0 < α < n, 1 < p < n/α, 0 < λ < n − αp

and 1/q = 1/p−α/(n−λ). Then there exists a constant C > 0 independent
of f such that

‖Iαf‖Lq,λ ≤ C‖f‖Lp,λ

for every f ∈ Lp,λ(Rn).

This proof depends on the basic idea due to Hedberg [8]. We have the
following theorem from Theorem A using Hölder’s inequality, which was
obtained by S. Spanne but published by Peetre [16].

Theorem B Let 0 < α < n, 1 < p < n/α, 0 < λ < n − αp. Set
1/q = 1/p− α/n and µ = nλ/(n− αp) (i.e. λ/p = µ/q). Then there exists
a constant C > 0 independent of f such that

‖Iαf‖Lq,µ ≤ C‖f‖Lp,λ

for every f ∈ Lp,λ(Rn).

Remark We note that the fractional maximal operator Mα is bounded
form Lp,λ to Lq,λ or from Lp,λ to Lq,µ since the pointwise inequality
Mαf(x) ≤ Iα(|f |)(x). More generally, Mα,rf(x) ≤ Iα,r(|f |)(x), where
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Mα,rf(x) = Mαr(|f |r)(x)1/r and Iα,r(|f |)(x) = Iαr(|f |r)(x)1/r.
Note that Theorem B was originally showed for the Morrey-Campanato

spaces on a bounded domain with a more general index λ.

Theorem C (Di Fazio and Ragusa [6]) Let 0 < α < n, 1 < p < n/α,
0 < λ < n− αp, 1/q = 1/p− α/(n− λ).

If b is in BMO(Rn), then the commutator [b, Iα] is bounded from
Lp,λ(Rn) to Lq,λ(Rn).

Conversely if n − α is an even integer and [b, Iα] is bounded from
Lp,λ(Rn) to Lq,λ(Rn) for indices p, q, λ as above, then b ∈ BMO(Rn).

In the case of different indices, we have the following results. In the
following, we assume that f ∈ C∞

c (Rn), the space of infinitely differentiable
functions with compact support.

Theorem 3.1 (Main Theorem) Let 0 < α < n, 1 < p < n/α, 0 < λ <

n− αp, 1/q = 1/p− α/n and µ = nλ/(n− αp) (i.e. λ/p = µ/q).
Then the following conditions are equivalent:

(a) b ∈ BMO(Rn).
(b) [b, Iα] is bounded from Lp,λ(Rn) to Lq,µ(Rn).

Furthermore we get the following results when α < n(1/p− 1/q).

Theorem 3.2 Let 1 < p < q < ∞, 0 < α, 0 < β < 1, 0 < α + β =
n(1/p− 1/q) < n, 0 < λ < n− (α + β)p and µ/q = λ/p.

Then the following conditions are equivalent:
(a) b ∈ Λ̇β(Rn).
(b) [b, Iα] is bounded from Lp,λ(Rn) to Lq,µ(Rn).

Theorem 3.3 Let 1 < p < q < ∞, 0 < α, 0 < β < 1 and 0 < α + β =
(1/p− 1/q)(n− λ) < n.

Then the following conditions are equivalent:
(a) b ∈ Λ̇β(Rn).
(b) [b, Iα] is bounded from Lp,λ(Rn) to Lq,λ(Rn).

Theorem D (Komori and Mizuhara [10]) Let 0 < α < n, 1 < p < n/α,
0 < λ < n− αp and 1/q = 1/p− α/(n− λ).

Then the following conditions are equivalent:
(a) b ∈ BMO(Rn).
(b) [b, Iα] is bounded from Lp,λ(Rn) to Lq,λ(Rn).



688 S. Shirai

Remark Our proof is an another proof of Theorem D due to Komori and
Mizuhara [10]. Our method is direct, but there have used the factorization
theorem for H1(Rn).

4. Technical lemmas

We need some lemmas in order to prove our theorems.

Lemma 4.1 The following are true:
(1) For each p, 1 < p < ∞, there exists a constant Cp such that

sup
Q

(
1
|Q|

∫

Q
|b(x)− bQ|p dx

)1/p

≤ Cp‖b‖∗.

(2) Given α, 0 < α < n, there exists a constant C such that for any
cube Q and a nonnegative function f
∫

Q
Iαf(x) dx ≤ C|Q|α/n

∫

Rn

f(x) dx. (4.1)

The first follows from the John-Nirenberg lemma. For a detailed
proof of (1), for example, see [5, Chapter 6]. For a proof of (2), see [4,
Lemma 5.2.(1)].

As well known, the idea of relating commutators with the sharp maxi-
mal operator is due to Strömberg (cf. [9]).

Lemma 4.2 Let 0 < α < n, 1 < r < ∞ and b ∈ BMO(Rn). Then there
exists a constant C > 0 independent of b and f such that

M ]([b, Iα](f))(x) ≤ C‖b‖∗{Iα(|f |)(x) + Iα,r(|f |)(x)} (4.2)

for almost all x and every f ∈ C∞
c (Rn).

This lemma is similar to the result due to Cruz-Uribe and Fiorenza [4].

Proof. We first note that Iα(|f |) is in the Muckenhoupt class A1 (see
Sawyer [17]); there exists a constant C such that M(Iα(|f |))(x) ≤
CIα(|f |)(x) for almost every x. Therefore it satisfies the reverse Hölder
inequality for some index s > 1. Fix x ∈ Rn and fix a cube Q contain-
ing x. Then it will suffice to prove for some complex constant cQ that there
exists C such that

1
|Q|

∫

Q

∣∣[b, Iα]f(y)− cQ

∣∣dy≤C‖b‖∗{Iα(|f |)(x)+ Iα,r(|f |)(x)}. (4.3)
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Decompose f as f1 +f2, where f1 = fχQ∗ and Q∗ is the cube with the same
center as Q whose sides are 3

√
n times as long. Let cQ = Iα((b−bQ∗)f2)(x0).

Since [b, Iα]f = [(b− bQ∗), Iα]f , we have

1
|Q|

∫

Q

∣∣[b, Iα]f(y)− cQ

∣∣ dy

≤ 1
|Q|

∫

Q
|b(y)− bQ∗ | |Iαf(y)| dy +

1
|Q|

∫

Q
|Iα((b− bQ∗)f1)(y)| dy

+
1
|Q|

∫

Q

∣∣Iα((b− bQ∗)f2)(y)− Iα((b− bQ∗)f2)(x0)
∣∣ dy

= I + II + III.

We estimate each integral in turn. For I, using Hölder’s inequality with
exponent s satisfying the reverse Hölder inequality, Lemma 4.1 (1) and
Iα(|f |) ∈ A1 we have

I ≤
(

1
|Q|

∫

Q
|b(y)− bQ∗ |s′ dy

)1/s′( 1
|Q|

∫

Q
|Iαf(y)|s dy

)1/s

≤ C‖b‖∗
(

1
|Q|

∫

Q
Iα(|f |)(y) dy

)

≤ C‖b‖∗M(Iα(|f |))(x)

≤ C‖b‖∗Iα(|f |)(x).

To estimate II, we apply Höder’s inequality with exponemt r and (4.1).
Then we have

II ≤ 1
|Q|

∫

Q
Iα(|(b− bQ∗)f1|)(y) dy

≤ C|Q|α/n 1
|Q|

∫

Rn

|b(y)− bQ∗ | |f1(y)| dy

= C
|Q∗|α/n

|Q∗|
∫

Q∗
|b(y)− bQ∗ | |f(y)| dy

≤ C|Q∗|α/n

(
1
|Q∗|

∫

Q∗
|b(y)− bQ∗ |r′dy

)1/r′( 1
|Q∗|

∫

Q∗
|f(y)|r dy

)1/r

≤ C‖b‖∗Mα,rf(x)

≤ C‖b‖∗Iα,r(|f |)(x).
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The last inequality follows from the remark below Theorem B.
Finally, we estimate the third integral. By the mean value theorem, if

|x| > 2|y| then there exists γ, 0 ≤ γ ≤ 1, such that
∣∣∣∣

1
|x|n−α

− 1
|x + y|n−α

∣∣∣∣ ≤ C
|y|

|x + γy|n−α+1
≤ C

|y|
|x|n−α+1

.

If y ∈ Q and z ∈ Rn \ 2kQ∗, then |x0 − z| > 2k+1|y − x0| by geometric
observation. Hence we can control III pointwise by

∣∣Iα((b− bQ∗)f2)(y)− Iα((b− bQ∗)f2)(x0)
∣∣

≤
∫

Rn\Q∗

∣∣∣∣
1

|y − z|n−α
− 1
|x0 − z|n−α

∣∣∣∣ |b(z)− bQ∗ | |f(z)| dz

≤ C
∞∑

k=0

∫

2k+1Q∗\2kQ∗
|b(z)− bQ∗ | |f(z)| |y − x0|

|x0 − z|n−α+1
dz

≤ C
∞∑

k=0

2−k 1
|2k+1Q∗|1−α/n

∫

2k+1Q∗
|b(z)− bQ∗ | |f(z)| dz

≤ C
∞∑

k=0

2−k|2k+1Q∗|α/n

(
1

|2k+1Q∗|
∫

2k+1Q∗
|b(z)− bQ∗ |r′dz

)1/r′

×
(

1
|2k+1Q∗|

∫

2k+1Q∗
|f(z)|r dz

)1/r

≤ C‖b‖∗Mα,rf(x)

≤ C‖b‖∗Iα,r(|f |)(x),

where we have uesed Hölder’s inequality. The last inequality follows from
the remark below Theorem B. Combining these estimates, we get the de-
sired pointwise inequality. ¤

Lemma 4.3 (Di Fazio and Ragusa [6]) Let 1 < p < ∞, 0 < λ < n. Then
there exists a constant C > 0 independent of f such that

‖Mf‖Lp,λ ≤ C‖M ]f‖Lp,λ

for every f ∈ Lp,λ(Rn).

Lemma 4.4 (Komori and Mizuhara [10]) Let 1 ≤ p < ∞, 0 < λ < n and
1 ≤ q < r ≤ ∞. Then we have



Commutators on Morrey space 691

‖χQ(x0,t)‖Lp,λ ≤ Cnt(n−λ)/p, ‖χQ(x0,t)‖hq,r ≤ Cntn/q

where Cn > 0 depends only on n.

Lemma 4.5 (Komori and Mizuhara [10], Long [12]) Let 1 ≤ q < p′ < ∞,
q = np/(np − n + λ) and 1/p + 1/p′ = 1. Then the Banach space dual of
hq,p′(Rn) is isomorphic to Lp,λ(Rn).

See Komori and Mizuhara [10] for Lemmas 4.4 and 4.5. The following
lemma can be found in [14, Lemma 1.5.].

Lemma 4.6 (cf. Paluszyński [14]) For 0 < β < 1 and 1 < q ≤ ∞, we
have

‖f‖Λ̇β
≈ sup

Q

1
|Q|1+β/n

∫

Q
|f(x)− fQ| dx

≈ sup
Q

1
|Q|β/n

(
1
|Q|

∫

Q
|f(x)− fQ|q dx

)1/q

,

for q = ∞ the formula should be interpreted appropriately, where the supre-
mum is taken over all cubes Q in Rn.

5. Proof of theorems

Proof of Theorem 3.1. (a) ⇒ (b): Let 1 < r < p. From Lemmas 4.2 and
4.3 we get

‖[b, Iα]f‖Lq,µ ≤ ‖M([b, Iα](f))‖Lq,µ

≤ C‖M ]([b, Iα](f))‖Lq,µ

≤ C‖b‖∗{‖Iα(|f |)‖Lq,µ + ‖Iα,r(|f |)‖Lq,µ}
= C‖b‖∗

{
‖Iα(|f |)‖Lq,µ + ‖Iαr(|f |r)‖1/r

Lq/r,µ

}

≤ C‖b‖∗‖f‖Lp,λ .

The last inequality follows from Theorem B. This completes the proof of
(a) ⇒ (b).

(b) ⇒ (a): We use the same argument as Janson [9]. Choose 0 6= z0 ∈
Rn such that 0 /∈ Q(z0, 2). Then for x ∈ Q(z0, 2), |x|n−α ∈ C∞(Q(z0, 2)).
Hence, considering a cut function on the cube Q(z0, 2 + δ) for sufficiently
small δ > 0, |x|n−α can be written as the absolutely convergent Fourier
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series;

|x|n−α =
∑

m∈Zn

amei〈vm,x〉

with
∑

m |am| < ∞, where the exact form of the vectors vm is unrelated.
For any x0 ∈ Rn and t > 0, let Q = Q(x0, t) and Qz0 = Q(x0 + z0t, t).

Let s(x)= sgn(
∫
Qz0 (b(x)−b(y)) dy). If x∈Q and y∈Qz0 , then (y − x)/t ∈

Q(z0, 2). Hence we get

1
|Q|

∫

Q
|b(x)− bQz0 | dx

=
1
|Q|

1
|Qz0 |

∫

Q

∣∣∣∣
∫

Qz0

(b(x)− b(y)) dy

∣∣∣∣ dx

=
1

t2n

∫

Q
s(x)

(∫

Qz0

(b(x)− b(y))|x− y|α−n|x− y|n−α dy

)
dx

=
tn−α

t2n

∫

Q
s(x)

(∫

Qz0

(b(x)− b(y))|x− y|α−n

∣∣∣∣
x− y

t

∣∣∣∣
n−α

dy

)
dx

= t−n−α
∑

m∈Zn

am

∫

Q
s(x)

×
(∫

Qz0

(b(x)− b(y))|x− y|α−nei〈vm,y/t〉 dy

)
e−i〈vm,x/t〉 dx

≤ t−n−α

∣∣∣∣∣
∑

m∈Zn

am

∫

Rn

s(x)[b, Iα](χQz0e
i〈vm, ·/t〉)(x)χQ(x)e−i〈vm,x/t〉dx

∣∣∣∣∣

≤ t−n−α
∑

m∈Zn

|am|
∥∥[b, Iα](χQz0e

i〈vm, ·/t〉)
∥∥

Lq,µ · ‖χQ‖hnq/(nq−n+µ),q′

≤ t−n−α
∑

m∈Zn

|am|‖[b, Iα]‖Lp,λ→Lq,µ ·‖χQz0‖Lp,λ ·‖χQ‖hnq/(nq−n+µ),q′

≤ t−n−α
∑

m∈Zn

|am| ‖[b, Iα]‖Lp,λ→Lq,µ · Cnt(n−λ)/p · C ′
nt(nq−n+µ)/q

= C‖[b, Iα]‖Lp,λ→Lq,µ .

The second inequality follows from Lemma 4.5, the third inequality follows
from Lemma 4.4. Therefore we get

1
|Q|

∫

Q
|b(x)− bQ| dx ≤ 2

|Q|
∫

Q
|b(x)− bQz0| dx
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≤ 2C‖[b, Iα]‖Lp,λ→Lq,µ .

This implies that b ∈ BMO(Rn) and ‖b‖∗ ≤ C‖[b, Iα]‖Lp,λ→Lq,µ , and the
proof of the theorem is completed. ¤

Proof of Theorem 3.2. (a) ⇒ (b): Let b ∈ Λ̇β(Rn). Then we get

|[b, Iα]f(x)| =
∣∣∣∣
∫

Rn

(b(x)− b(y))f(y)
|x− y|n−α

dy

∣∣∣∣

≤
∫

Rn

|b(x)− b(y)| · |f(y)|
|x− y|n−α

dy

≤ C‖b‖Λ̇β

∫

Rn

|f(y)|
|x− y|n−(α+β)

dy = C‖b‖Λ̇β
Iα+β(|f |)(x)

for almost all x ∈ Rn. Therefore we have, from Theorem B

‖[b, Iα]f‖Lq,µ ≤ C ′‖b‖Λ̇β
‖Iα+β(|f |)‖Lq,µ ≤ C‖b‖Λ̇β

‖f‖Lp,λ .

(b) ⇒ (a): We can prove using an argument similar to the proof of Theo-
rem 3.1. For completeness we give a proof.

Let Q and Qz0 be same cubes as the proof of (b) ⇒ (a) in Theorem 3.1.
Then we have

1
|Q|

∫

Q
|b(x)− bQz0 | dx

=
1

t2n

∫

Q
s(x)

(∫

Qz0

(b(x)− b(y))|x− y|α−n|x− y|n−α dy

)
dx

=
tn−α

t2n

∫

Q
s(x)

(∫

Qz0

(b(x)− b(y))|x− y|α−n
∣∣∣x− y

t

∣∣∣
n−α

dy

)
dx

≤ t−n−α
∑

m∈Zn

|am| ‖[b, Iα]‖Lp,λ→Lq,µ · Cnt(n−λ)/p · C ′
nt(nq−n+µ)/q

= C‖[b, Iα]‖Lp,λ→Lq,µtβ .

Therefore
1

|Q|1+β/n

∫

Q
|b(x)− bQ| dx ≤ 2

|Q|1+β/n

∫

Q
|b(x)− bQz0 | dx

≤ 2C‖[b, Iα]‖Lp,λ→Lq,µ .

From Lemma 4.6, we have b ∈ Λ̇β(Rn) and ‖b‖Λ̇β
≤ C‖[b, Iα]‖Lp,λ→Lq,µ .

This complete the proof. ¤
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Theorem 3.3 is shown in the same argument as the proof of Theorem 3.2.
We omit this proof.

6. Boundedness of higher order commutator on classical Morrey
spaces

We will consider a higher order commutator operator defined by

[b, Iα]kf(x) :=
∫

Rn

∆k
hb(x)f(h)
|h|n−α

dh,

where

∆1
hb(x) = ∆hb(x) = b(x + h)− b(x),

∆k+1
h b(x) = ∆k

hb(x)−∆k
hb(y), k ≥ 1.

Let 0 < β < k ≤ n, k an integer and n be the dimension of the whole space.
We now try to define the Lipschitz space Λ̇β(Rn) again. For β > 0, we say
b ∈ Λ̇β(Rn) if

‖b‖Λ̇β
= sup

x,h∈Rn

x 6=h

|∆k
hb(x)|
|h|β < ∞, k ≥ 1.

Theorem 6.1 Suppose the same condition as Theorem 3.2. The following
conditions are equivalent:
(a) b = b1 + P , where b1 ∈ Λ̇β(Rn) and P is a polynomial of degree less
than k.
(b) [b, Iα]k is bounded from Lp,λ(Rn) to Lq,µ(Rn).

If k = [β] + 1, then (a) of theorem says that b ∈ Λ̇β(Rn).
The proof of (a) ⇒ (b) will be omitted since we can prove the same

argument as Theorem 3.2. The part of (b) ⇒ (a) is based on the following
results for the Besov spaces.

Lemma 6.2 (Paluszyński and Taibleson [15]) Let 0 < β < k, with k an
integer. Suppose f ∈ S ′∩L1

loc(Rn). The following conditions are equivalent:
(a) f = f1 + P , where f1 ∈ Ḃβ,∞∞ (Rn) (= Λ̇β(Rn)) and P is a polynomial of
degree less than k.
(b) There exists z0 ∈ Rn such that
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sup
t>0

t−β sup
x0∈Rn

1
|Q|

1
|Qz0 |

(∫

Q

∣∣∣∣
∫

Qz0

(∆k
(y−x)/kf(x)) dy

∣∣∣∣ dx

)
≤ C < ∞,

where Q = Q(x0, t), and Qz0 = Q(x0 + z0t, t).
If these conditions hold then ‖f‖

Ḃβ,∞
∞

is comparable with the best possi-
ble C in (b).
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