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Affine differential geometry of the unit normal vector fields

of hypersurfaces in the real space forms
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Abstract. In this paper, for a hypersurface in the real space form of constant curvature,

we prove that the unit normal vector field is an affine imbedding into a certain sphere

bundle with canonical metric. Moreover, we study the relations between a hypersurface

and its unit normal vector field as an affine imbedding. In particular, several hypersurfaces

are characterized by affine geometric conditions which are independent of the choice of

the transversal bundle.

Key words: section of sphere bundle, canonical metric, metrically minimal affine

immersion, metrically totally umbilic affine immersion.

1. Introduction

Let M (resp. M̃) be a Riemannian manifold with a metric g (resp. g̃)
and f : (M, g) → (M̃, g̃) an isometric immersion. We set E := f#(TM̃),
where f#(TM̃) is the pull back bundle of the tangent bundle TM̃ by f . The
(unit) sphere bundle of E is denoted by UE. We take the canonical metric G

on E relative to the pull back connection and metric of M̃ , and also denote
induced metric on UE by G. In submanifold geometry, it is important
and interesting to study maps from submanifolds to the suitable spaces,
and the relations between the maps and submanifolds have been studied by
many researchers. See [4], [13] and [14], for example. The main purpose of
this paper is to study the relations between the section of UE and f from
the view point of affine differential geometry. The inclusion map from the
normal bundle T⊥M to E is denoted by ι. Let Qn+1(c) be the real space
form of constant curvature c and dimension n+1. We denote the Levi-Civita
connection on M (resp. UE) by ∇ (resp. ∇̄G). Let Γ(V ) be the space of all
sections of a vector bundle V . One of our main theorems in this paper is

Theorem Let M be an orientable hypersurface in Qn+1(c) immersed by f

and ξ the unit normal vector field. Then ι ◦ ξ : (M,∇) → (UE, ∇̄G) is an
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affine imbedding with the transversal bundle N = (ι ◦ ξ)#(ker(p|UE)∗) ∼=
TM , where p : E → M is the bundle projection. The affine fundamental
form α, the affine shape operator A and the transversal connection ∇N of
ι ◦ ξ are given by

α(X, Y ) = −((∇XS)(Y ))t, AXtY = 0, ∇N
XY t = (∇XY )t

for all X, Y ∈ Γ(TM), where S is the shape operator of f relative to ξ and
Xt stands for the tangential lift of X ∈ Γ(TM).

In this case, affine differential geometry naturally appears in
Riemannian one. Hence, the relations between a hypersurface in the real
space form and its unit normal vector field as an affine imbedding are of
interest. Several hypersurfaces in Qn+1(c) are characterized by affine ge-
ometric conditions for ι ◦ ξ, which are independent of the choice of the
transversal bundle. For example, we prove that f has the parallel second
fundamental form if and only if ι ◦ ξ is totally geodesic.

In Section 2, we recall affine immersions with transversal bundles. The
fundamental lemmas for sections of sphere bundles are obtained in Section 3.
Finally, in Section 4, we study the unit normal vector fields of hypersurfaces
in the real space forms as affine imbeddings.

The author would like to express his sincere gratitude to Professor
Naoto Abe for his constant encouragement. He also would like to thank
to referees for their valuable comments.

2. Affine immersions with transversal bundles

In this section, we recall the definition of the affine immersion with
transversal bundle. Let (M,∇) and (M̂, ∇̂) be smooth manifolds with tor-
sion free affine connections and F : M → M̂ an immersion. The pull back
bundle of TM̂ by F is denoted by F#TM̂ . An immersion F : M → M̂

is called an immersion with a transversal bundle N if F#TM̂ = TM ⊕ N

holds. Let πTM and πN be the projections from F#TM̂ onto TM and N ,
respectively. We say that F : (M,∇) → (M̂, ∇̂) is an affine immersion with
a transversal bundle N if F is an immersion with a transversal bundle N

and πTM ((F#∇̂)XY ) = ∇XY for all X, Y ∈ Γ(TM), where F#∇̂ is the
pull back connection of ∇̂ by F . Set α(X, Y ) := πN ((F#∇̂)XY ), AνX :=
−πTM ((F#∇̂)Xν) and ∇N

Xν := πN ((F#∇̂)Xν) for X, Y ∈ Γ(TM) and ν ∈
Γ(N). Then α, A and ∇N are called the affine fundamental form, the affine
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shape operator and the transversal connection, respectively. We see that

(F#∇̂)XY = ∇XY +α(X, Y ) and (F#∇̂)Xν = −AνX+∇N
Xν

for X, Y ∈ Γ(TM) and ν ∈ Γ(N). We refer to [10] and [11] for affine
immersions. Set

(∇′Xα)(Y, Z) := ∇N
Xα(Y, Z)−α(∇XY, Z)−α(Y,∇XZ)

for X, Y, Z ∈ Γ(TM). An affine immersion F with a transversal bundle N

is called totally geodesic if α = 0 on M and parallel if ∇′α = 0 on M . We
set

T (X, Y, Z) = (∇′Xα)(Y, Z)+(∇′Y α)(Z,X)+(∇′Zα)(X, Y )

for any tangent vectors X, Y , Z on M . An affine immersion F with
a transversal bundle N is said to be cyclic parallel if T = 0. For the
cyclic parallel condition, we have

Lemma 2.1 Let F : (M,∇)→(M̂, ∇̂) be an affine immersion with a trans-
versal bundle N . The following three statements are mutually equivalent:
(1) F is cyclic parallel,
(2) (∇′Xα)(X, X) = 0 for all X ∈ TM ,
(3) For any geodesic γ : [0, t] → M , it holds that PN

γ (α(γ′(0), γ′(0))) =
α(γ′(t), γ′(t)), where PN

γ : Nγ(0) → Nγ(t) is the parallel translation along γ

with respect to ∇N .

Proof. It is easy to prove that (1) ⇐⇒ (2) by the polarization. Next,
assume that (2) holds and take any geodesic γ : [0, t] → M . We obtain

0 = (∇′γ′α)(γ′, γ′) = ∇N
γ′α(γ′, γ′).

Hence we can see that (3) holds. Conversely, for any point x ∈ M and any
tangent vector X at x, take a geodesic γ such that γ(0) = x and γ′(0) = X.
Then we have

(∇′Xα)(X, X) = ∇N
Xα(γ′, γ′) =

d

dt
(PN

γ )−1α(γ′, γ′)
∣∣∣∣
t=0

= 0. ¤

From (3) in Lemma 2.1, if F is a cyclic parallel isometric immersion,
then for each geodesic γ with arc length parameter on M , the first Frenet
curvature of F ◦γ is constant along the curve. Moreover, from the view point
of affine differential geometry, the cyclic parallel condition is independent
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of the choice of the transversal bundle such that the induced connection co-
incides (see bellow). In Section 4, we consider a weaker condition than the
cyclic parallel condition for unit normal vector fields of hypersurfaces in the
Euclidean spaces. We prepare the following notations to prove the indepen-
dence of the choice of the transversal bundle for conditions studying in this
paper. Let N̄ be another transversal bundle. The corresponding objects
associated with N̄ are denoted by the symbol with “−”. Let ιTM : TM →
F#TM̂ (resp. ιN : N → F#TM̂) be the inclusion from TM (resp. N) to
F#TM̂ and πTM : F#TM̂ → TM (resp. πN : F#TM̂ → N) the projection
from F#TM̂ to TM (resp. N) with respect to the decomposition F#TM̂ =
TM ⊕N . Set

P := π̄N̄ ιN : N → N̄ ,

Q := π̄TM ιN : N → TM,

P̂ := πN ῑN̄ : N̄ → N,

Q̂ := πTM ῑN̄ : N̄ → TM.

Since the following lemma is proved in [1] and [9], we give a short proof
here.

Lemma 2.2 The following equations hold:

∇̄XY = ∇XY + Q(α(X, Y )),

ᾱ(X, Y ) = P (α(X, Y )),

ĀνX = −∇XQ̂(ν) + AP̂ (ν)X −Q(α(X, Q̂(ν)))−Q(∇N
X P̂ (ν)),

∇N̄
Xν = P (α(X, Q̂(ν))) + P (∇N

X P̂ (ν))

for X, Y ∈ Γ(TM) and ν ∈ Γ(N̄).

Proof. Since ιTMπTM + ιNπN = idF#TM̂ , we have

∇̄XY = π̄TM ((F#∇̂)XY ) = π̄TM (ιTMπTM + ιNπN )((F#∇̂)XY )

= ∇XY + Q(α(X, Y ))

for X, Y ∈ Γ(TM). Other equations are also obtained by a similar calcula-
tion. ¤

Proposition 2.3 With the notations as above, if ∇ = ∇̄, we have

P ((∇′Xα)(Y, Z)) = (∇̄′X ᾱ)(Y, Z)



Affine differential geometry of the unit normal vector fields 617

for all tangent vectors X, Y , Z on M .

Proof. By Lemma 2.2 and ∇ = ∇̄, we have P (∇N
Xα(Y, Z)) = ∇N̄

X ᾱ(Y, Z)
for X, Y, Z ∈ Γ(TM). Therefore we have the conclusion. ¤

In the case where F is an affine immersion with a transversal bundle N

from a Riemannian manifold (M, g), we set

HF :=
1
n

n∑

i=1

α(ei, ei),

where n = dim M and e1, . . . , en is an orthonormal frame of (M, g). An
affine immersion F : (M,∇) → (M̂, ∇̂) is said to be a metrically mini-
mal (resp. metrically totally umbilic) affine immersion if HF = 0 (resp.
α(X, Y ) = g(X, Y )HF for all X, Y ∈ TM). From Lemma 2.2, all condi-
tions α = 0, HF = 0 and α(X, Y ) = g(X, Y )HF for all X, Y ∈ TM are
independent of the choice of the transversal bundle.

3. Sphere bundles with canonical metrics and sections

In this section, we study the sphere bundles with canonical metrics. Let
E be a Riemannian vector bundle over a Riemannian manifold (M, g) with
a fiber metric gE and a metric connection ∇E . We denote the connection
map with respect to ∇E by KE . The canonical metric G on E is defined by

G(ζ, ζ) = g(p∗(ζ), p∗(ζ))+gE(KE(ζ),KE(ζ)),

where ζ ∈ TE and p : E → M is the bundle projection. Note that p is
a Riemannian submersion (see [2] and [12]). Let V (resp. H) be the pro-
jection from TE onto ker p∗ (resp. kerKE). The curvature form of ∇E is
denoted by RE . We define R̂E

ξ,η for ξ, η ∈ Γ(E) by

g(R̂E
ξ,ηX, Y ) = gE(RE

X,Y ξ, η),

where X, Y ∈ TM . Let ∇G (resp. ∇) be the Levi-Civita connection of G

(resp. g) on E (resp. M). We set

H∇E
(X, Y )ξ := −∇E

X∇E
Y ξ+∇E

∇XY ξ

for X, Y ∈ Γ(TM) and ξ ∈ Γ(E). For ξ ∈ Γ(E), its vertical lift is denoted
by ξv, and Xh stands for the horizontal lift of X ∈ Γ(TM). We note that
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KE(ξv) = ξ for ξ ∈ Γ(E). The following equations hold at u ∈ E (see [3]):

∇G
ξvζv = 0,

∇G
ξvY h =

1
2
(R̂E

u,ξY )h,

∇G
Xhξv =

1
2
(R̂E

u,ξX)h + (∇E
Xξ)v,

∇G
XhY h = (∇XY )h − 1

2
(RE

X,Y u)v.

Set UE := {u ∈ E | gE(u, u) = 1}. The restriction of G to UE is also
denoted by G. A unit normal vector field η on UE in E is the vertical vector
such that ηu = uv for u ∈ UE. For ξ ∈ E, we define the tangential lift ξt

of ξ to u ∈ UE by ξt = ξv − gE(ξ, u)ηu. The tangential lift of a section
ξ ∈ Γ(E) is the vertical vector field ξt on UE whose value at u ∈ UE is
the tangential lift of ξ(p(u)). Let A be the shape operator of UE in E with
respect to η.

Lemma 3.1 For any vertical vector field U and any horizontal vector
field X tangent to UE, we have A(U) = −U and A(X) = 0.

Proof. We may assume that U is the tangential lift ξt of ξ ∈ Γ(E). Fix
u ∈ UE and take a vertical curve ū : I → UE defined on an open interval I

containing 0 such that u = ū(0) and ū′(0) = (ξt)u. We have

A(ξt)u = −(∇G
ξtη)u = − d

dt
ū(t)v

∣∣∣∣
t=0

= −(ξt)u.

Similarly, we obtain A(X) = 0 taking a horizontal curve. ¤

Let ∇̄G be the Levi-Civita connection of UE relative to G. Using
Lemma 3.1, we have the following lemma.

Lemma 3.2 For ξ, ζ ∈ Γ(E) and X, Y ∈ Γ(TM), at u ∈ UE, we have

∇̄G
ξtζt = −gE(ζ(p(u)), u)ξt,

∇̄G
ξtY h =

1
2
(R̂E

u,ξY )h,

∇̄G
Xhξt = (∇E

Xξ)t +
1
2
(R̂E

u,ξX)h,

∇̄G
XhY h = (∇XY )h − 1

2
(RE

X,Y u)t.
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Proof. We only prove the first equation, since A(X) = 0 for any hori-
zontal vector X. Take a vertical curve ū : I → UE defined on an open
interval I containing 0 such that u = ū(0) and ū′(0) = (ξt)u. Since ζt

u =
ζv
u − gE(ζ(p(u)), u)uv, we have

(∇̄G
ξtζt)u = ∇G

u′(0)ζ
t + Gu(ξt, ζt)ηu

=
d

dt

(
ζv
ū(t)−gE(ζ(p(ū(t))), ū(t))ū(t)v

)∣∣∣∣
t=0

+ Gu(ξt, ζt)ηu

= −gE

(
ζ(p(u)),

d

dt
ū(t)

∣∣∣∣
t=0

)
uv

− gE(ζ(p(u)), u)
d

dt
ū(t)v

∣∣∣∣
t=0

+ Gu(ξt, ζt)ηu

= −gE(ζ(p(u)), u)ξt
u,

where we used Lemma 3.1. ¤

Let R (resp. R̄G) be the curvature tensor of ∇ (resp. ∇̄G). By Lemma
3.2, the curvature tensor R̄G is given as follows.

Lemma 3.3 At u ∈ UE, we have

R̄G
ξ1

t, ξ2
tξ3

t = gE(ξ2, ξ3)ξt
1 − gE(ξ1, ξ3)ξt

2,

R̄G
ξ1

t, ξ2
tZh =

(
R̂E

ξ1,ξ2Z +
1
4
R̂E

u,ξ1R̂
E
u,ξ2Z − 1

4
R̂E

u,ξ2R̂
E
u,ξ1Z

)h

,

R̄G
Xh, ξ2

tξ3
t = −

(
1
2
R̂E

ξ2,ξ3X +
1
4
R̂E

u,ξ2R̂
E
u,ξ3X

)h

,

R̄G
Xh, ξ2

tZh =
1
2
((∇XR̂E)u,ξ2Z)h +

(
1
2
RE

X,Zξ2 +
1
4
RE

R̂E
u,ξ2

Z,Xu

)t

,

R̄G
Xh, Y hξ3

t =
1
2
((∇XR̂E)u,ξ3Y )− (∇Y R̂E)u,ξ3X))h

+
(

RE
X,Y ξ3 +

1
4
RE

R̂E
u,ξ3

Y,X
u− 1

4
RE

R̂E
u,ξ3

X,Y
u

)t

,

R̄G
Xh, Y hZh =

(
RX,Y Z +

1
4
R̂E

u,RE
Z,Y u

X +
1
4
R̂E

u,RE
X,Zu

Y

+
1
2
R̂E

u,RE
X,Y u

Z

)h

+
1
2
((∇E

ZRE)X,Y u)t
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for X, Y, Z ∈ TM and ξ1, ξ2, ξ3 ∈ E such that gE(u, ξi) = 0 (i = 1, 2, 3).

We also write ζt for the pull back section of ζt by ξ ∈ Γ(UE), for
simplicity. With respect to the Levi-Civita connections ∇ and ∇̄G, we
obtain

Lemma 3.4 A section ξ ∈ Γ(UE) is an imbedding with the transversal
bundle ξ#(ker(p|UE)∗). At u = ξ(x) (x ∈ M), we have

πTM ((ξ#∇̄G)XY ) = ∇XY +
1
2
R̂E

u,∇E
Y ξ

X +
1
2
R̂E

u,∇E
Xξ

Y,

πN ((ξ#∇̄G)XY ) = −1
2

(
∇E

R̂E

u,∇E
Y

ξ
X

ξ

)t

− 1
2

(
∇E

R̂E

u,∇E
X

ξ
Y

ξ

)t

−
(
H∇E

(X, Y )ξ
)t
− 1

2
(RE

X,Y u)t,

πTM ((ξ#∇̄G)Xζt) =
1
2
R̂E

u,ζX,

πN ((ξ#∇̄G)Xζt) = (∇E
Xζ)t − 1

2

(
∇E

R̂E
u,ζX

ξ
)t
− gE(ζ(x), u)(∇E

Xξ)t

for all X, Y ∈ Γ(TM) and ζ ∈ Γ(E), where N = ξ#(ker(p|UE)∗).

Proof. From Lemma 3.2 and Xh = ξ∗(X)− (∇E
Xξ)t on ξ(M) for X ∈ TM ,

it is easy to obtain the conclusion. For example, we have

(ξ#∇̄G)Xζt = (∇E
Xζ)t +

1
2
(R̂E

u,ζX)h − gE(ζ, u)(∇E
Xξ)t

= (∇E
Xζ)t +

1
2
ξ∗(R̂E

u,ζX)− 1
2

(
∇E

R̂E
u,ζX

ξ
)t

− gE(ζ(x), u)(∇E
Xξ)t. ¤

Using Lemma 3.4, the following proposition can be obtained immedi-
ately.

Proposition 3.5 Let ξ be a section of UE. If R̂E
ξ,∇E

Y ξ
X = 0 for all X, Y ∈

TM , then ξ : (M,∇) → (UE, ∇̄G) is an affine imbedding with the transver-
sal bundle N = ξ#(ker(p|UE)∗). At u = ξ(x) (x ∈ M), the affine fundamen-
tal form α, the affine shape operator A and the transversal connection ∇N

of ξ are given by

α(X, Y ) = −
(
H∇E

(X, Y )ξ
)t
− 1

2
(RE

X,Y u)t,
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AζtX = −1
2
R̂E

u,ζX,

∇N
Xζt = (∇E

Xζ)t − 1
2

(
∇E

R̂E
u,ζX

ξ
)t
− gE(ζ(x), u)(∇E

Xξ)t

for all X, Y ∈ Γ(TM) and ζ ∈ Γ(E).

In the case where E = TM , vector fields with unit length have been
studied from the view point of geometric variational problems. We refer
to [5], [6], [7], [15], [16] and [17] for example. An isometric immersion
F : M → M̂ is an affine immersion with the transversal bundle T⊥M with
respect to Levi-Civita connections of M and M̂ , where T⊥M is the normal
bundle. Proposition 3.5 gives an example of non isometric affine immersions
between Riemannian manifolds relative to Levi-Civita connections.

4. Affine differential geometry of unit normal vector fields

Let f : (M, g) → (Qn+1(c), g̃) be an isometric immersion from an ori-
entable n-dimensional Riemannian manifold M into the real space form
Qn+1(c) of constant curvature c and dimension n + 1. The inclusion map
from the normal bundle T⊥M to f#(TQn+1(c)) is denoted by ι. Let ∇ and
∇̃ be the Levi-Civita connections of M and Qn+1(c), respectively. The pull
back connection of ∇̃ by f is denoted by f#∇̃ and f#R̃ stands for the
curvature form of f#∇̃. Let S be the shape operator relative to the unit
normal vector field ξ. The mean curvature function H is defined by H =
(1/n) tr S. We set E := f#(TQn+1(c)) and give the canonical metric G

on E with respect to f#∇̃. Let ∇̄G be the Levi-Civita connection of UE.
From Proposition 3.5, we have

Theorem 4.1 Let M be an orientable hypersurface in Qn+1(c) immersed
by f and ξ the unit normal vector field. Then ι ◦ ξ : (M,∇) → (UE, ∇̄G) is
an affine imbedding with the transversal bundle N = (ι ◦ ξ)#(ker(p|UE)∗) ∼=
TM . The affine fundamental form α, the affine shape operator A and the
transversal connection ∇N of ι ◦ ξ are given by

α(X, Y ) = −((∇XS)(Y ))t, AXtY = 0, ∇N
XY t = (∇XY )t

for all X, Y ∈ Γ(TM).

Proof. Since M is a hypersurface, each fiber (ι ◦ ξ)#(ker(p|UE)∗)x can
be identified with TxM at x ∈ M by the map TxM 3 X 7→ Xt

(ι◦ξ)(x) ∈
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(ι ◦ ξ)#(ker(p|UE)∗)x. From Proposition 3.5, we obtain

α(X, Y ) = −((∇XS)(Y ))t − 1
2
((f#R̃)X,Y u)t = −((∇XS)(Y ))t,

AXtY = −1
2
(f#R̃)ˆu,XY = 0,

∇N
XY t = (∇XY )t + g̃(Y, u)(−SX)t = (∇XY )t

for all X, Y ∈ Γ(TM), since (f#R̃)ˆu,XY = 0 and (f#R̃)X,Y u = 0 at u =
(ι ◦ ξ)(x) (x ∈ M). ¤

Corollary 4.2 Let M be an orientable hypersurface in Qn+1(c) immersed
by f and ξ the unit normal vector field. Then we have
(1) f has the parallel second fundamental form if and only if ι ◦ ξ is totally
geodesic,
(2) In the case where dimM ≥ 2, f has the parallel second fundamental
form if and only if ι ◦ ξ is metrically totally umbilic,
(3) f has a constant mean curvature if and only if ι ◦ ξ is metrically affine
minimal,
(4) For X, Y, Z ∈ Γ(TM), the equation (RX,Y Z)t = RN

X,Y Zt holds, where
R is the curvature tensor of M and RN is the curvature form of ∇N. In
particular, M is flat if and only if the transversal connection of ι ◦ ξ is flat.

Proof. The statements (1) and (4) can be obtained by Theorem 4.1 imme-
diately. From Theorem 4.1, we have

Hι◦ξ = −(gradH)t. (4.1)

Hence we see the statement (3). Finally, to prove (2), we assume that ι ◦ ξ

is metrically totally umbilic, that is, α(X, Y ) = g(X, Y )Hι◦ξ holds for all
X, Y ∈ TM . By Theorem 4.1 and (4.1), we have

g((∇XS)(Y ), Z) = g(X, Y )g(gradH, Z) (4.2)

for all X, Y, Z ∈ TM . Since the left hand side of (4.2) is symmetric, it
holds that

g(X, Y )g(gradH, Z) = g(X, Z)g(gradH, Y )

for all X, Y, Z ∈ TM . Therefore, by dim M ≥ 2, we have Hι◦ξ =
−(grad H)t = 0. Hence we see that f has the parallel second fundamental
form. Because the converse is trivial, we obtain the statement (2). ¤
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We note that all conditions α = 0, Hι◦ξ = 0 and α(X, Y ) = g(X, Y )Hι◦ξ

for all X, Y ∈ TM are independent of the choice of the transversal bun-
dle. In [8], we proved that f : M → Qn+1(c) is a constant mean curvature
hypersurface if and only if ι ◦ ξ is a harmonic section.

In general, the covariant derivative ∇′α is not symmetric for ι ◦ ξ. We
set

T (X, Y, Z) = (∇′Xα)(Y, Z) + (∇′Y α)(Z, X) + (∇′Zα)(X, Y ),

T̂ (X) =
n∑

i=1

T (ei, ei, X)

for all X, Y, Z ∈ TM , where e1, . . . , en is an orthonormal frame of M .
Hereafter, we consider hypersurfaces in the Euclidean spaces with T̂ = 0.
Since

V((ι◦ξ)∗(X)) = −(SX)t

for X ∈ TM , the horizontal lift Xh of X ∈ TM can be decomposed into

Xh = (ι ◦ ξ)∗(X) + (SX)t (4.3)

on (ι ◦ ξ)(M).

Lemma 4.3 Let F : (M,∇)→(M̂, ∇̂) be an affine immersion with a trans-
versal bundle N . We have

T (X, Y, Z) = 3(∇′Zα)(X, Y )+πN ((F#R′)X,ZY )+πN ((F#R′)Y,ZX)

for any tangent vectors X, Y , Z on M , where F#R′ is the curvature form
of F#∇̂ and α is the affine fundamental form of F .

Proof. By the Codazzi equation of F ,

πN ((F#R′)X,Y Z) = (∇′Xα)(Y, Z)−(∇′Y α)(X, Z)

for any tangent vectors X, Y , Z on M , we have the conclusion. ¤

We define ∇2S by

(∇2
X,Y S)(Z) = ∇X((∇Y S)(Z))−(∇∇XY S)(Z)−(∇Y S)(∇XZ)

for X, Y, Z ∈ Γ(TM).
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Lemma 4.4 Let M be an orientable hypersurface in Rn+1 immersed by f

and ξ the unit normal vector field. Then we have

T (X, Y, Z) =
{−3(∇2

Z,XS)(Y ) + g(SZ, Y )S2X − g(SX, Y )S2Z

− g(SZ, SY )SX + g(SZ, X)S2Y − g(SY,X)S2Z

− g(SZ, SX)SY + 2g(SY, SX)SZ
}t

, (4.4)

T̂ (X) =
{−3n∇X gradH − 2nHS2X + 2‖S‖2SX

}t
, (4.5)

tr T̂ = 3n4H (4.6)

for any tangent vectors X, Y , Z on M .

Proof. By virtue of Theorem 4.1, it holds that

(∇′Zα)(X, Y ) = −((∇2
Z,XS)(Y ))t

for all X, Y, Z ∈ TM . Set N = (ι ◦ ξ)#(ker(p|UE)∗). By Lemma 3.3
and (4.3), we have

πN ((ξ#R̄G)X,ZY ) = πN

(
R̄G

Xh−(SX)t,Zh−(SZ)t(Y h − (SY )t)
)

=
{
g(SZ, Y )S2X − g(SX, Y )S2Z

− g(SZ, SY )SX + g(SX, SY )SZ
}t

for any tangent vectors X, Y , Z. Then we can obtain (4.4) combined with
Lemma 4.3. For (4.5), take an orthonormal frame e1, . . . , en on M . Since

n∑

i=1

(∇2
X,ei

S)(ei) = n(∇X gradH),

we have the desired conclusion by calculating the trace of (4.4). From (4.5),
it is easy to obtain the last equation. ¤

Note that we consider the trace of T̂ under the identification N ∼= TM .
For a hypersurface in the Euclidean space, we see that 4H = 0 if and only
if tr T̂ = 0 from (4.6). In the case where M is compact, we characterize
a hypersurface with T̂ = 0 using the previous lemma.

Theorem 4.5 Let M be a compact connected orientable hypersurface in
Rn+1 and ξ the unit normal vector field. If T̂ = 0 for ι◦ ξ : M → UE, then
M is congruent to the standard sphere.
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Proof. From (4.6), H is constant on M . Hence, from (4.5), we have

−nHS2X + ‖S‖2SX = 0 (4.7)

for any tangent vector X on M . If H = 0, then we obtain ‖S‖2SX = 0.
Therefore M is totally geodesic. So H 6= 0. Let λ1(p), . . . , λn(p) be principal
curvatures at p ∈ M . From (4.7), we have

0 = λ1(p) = · · ·= λk(p)(p) < λk(p)+1(p) = · · ·= λn(p) =
‖S‖2

p

nH
:= λ(p)

at each point p, where k(p) = dim kerSp. On M , the function λ is smooth,
and hence k = n(λ −H)/λ is also smooth. Therefore k is constant on M .
Moreover, by nH = kλ, λ is constant. Then M is an isoparametric hyper-
surface. Since M is compact, we have the desired conclusion. ¤

We note that the condition T̂ = 0 is independent of the choice of the
transversal bundle such that the induced connection coincides from Propo-
sition 2.3. Similarly we obtain

Theorem 4.6 Let M be an orientable hypersurface in Rn+1 and ξ the unit
normal vector field. If T̂ = 0 for ι◦ξ : M → UE and ι◦ξ is metrically affine
minimal, then M is locally congruent to the standard sphere, the hyperplane
or the product of a k-dimensional sphere and an (n− k)-dimensional affine
space.

Proof. Since ι ◦ ξ is metrically affine minimal, M is a constant mean cur-
vature hypersurface. Using the similar way to the proof of Theorem 4.5, we
see that M is an isoparametric hypersurface. ¤

Finally, we consider the two dimensional case.

Theorem 4.7 Let M be an orientable surface in R3 with the Gaussian
curvature K 6= 0 on M and ξ the unit normal vector field. If T̂ = 0 for
ι ◦ ξ : M → UE and the Hessian HH of the mean curvature function H is
semidefinite on M , then M is a part of the standard sphere.

Proof. We may assume that HH is positive semidefinite. By (4.5), we see
that

3HH(X, X) = −2Hg(SX, SX) + ‖S‖2g(SX, X) ≥ 0 (4.8)

for all X ∈ TM . Let λ and µ be the principal curvatures of M . We have
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K(µ−λ) ≥ 0 and K(λ−µ) ≥ 0, substituting the principal curvature vectors
into (4.8). Therefore it holds that λ = µ from K 6= 0. ¤

In the case where M is a flat surface, we have

Theorem 4.8 Let M be an orientable surface in R3 with the Gaussian
curvature K and ξ the unit normal vector field. If ι ◦ ξ : M → UE is cyclic
parallel and K = 0, then we have ∇2S = 0.

Proof. By K = 0, one of the principal curvatures of M vanishes. Then,
from (4.4), if one of X, Y , Z is the principal curvature vector corresponding
to zero principal curvature, then it holds that (∇2

Z,XS)(Y ) = 0. Moreover,
if X, Y , Z are the principal curvature vectors for non zero one, we also have
(∇2

Z,XS)(Y ) = 0 by (4.4). ¤

Remark Let M be an orientable hypersurface in Qn+1(c) immersed
by f and ξ the unit normal vector field. If ι ◦ ξ is cyclic parallel, then
G(α(γ′, γ′), α(γ′, γ′)) is constant along a geodesic γ on M .
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