Rationality of certain cuspidal unipotent representations in crystalline cohomology groups

Joujuu Ohmori

(Received October 5, 2004; Revised May 24, 2005)

Abstract. We complete the determination of the local Schur indices of each unipotent representation of the group $G(\mathbb{F}_q)$ of \mathbb{F}_q -rational points of a simple algebraic group G defined over a finite field \mathbb{F}_q .

Key words: unipotent representations, Schur indices, crystalline cohomology groups.

Introduction

Let \mathbb{F}_q be a finite field with q elements of characteristic p. Let G be a connected, reductive linear algebraic group, defined over \mathbb{F}_q , with Frobenius map F, and let G^F be the (finite) group of fixed points of Gby F. Then the problem of determining of the local Schur indices of the (complex) irreducible unipotent representations ρ of G^F can be reduced to the case where G is a simple algebraic group of adjoint type and ρ is cuspidal ([DL, Propositon 7.10], [Ge II, Remark 2.6], [Lu II, p. 28], [Ge I, Propositions 5.5, 5.6]).

Suppose that G is a simple algebraic group of adjoint type and that ρ is cuspidal unipotent representation of G^F . Then, in almost all cases, the local Schur indices of ρ are determined by Lusztig [Lu V] and Geck [Ge I, II], more or less by a general method. However there are two remaining cases for which the above general method cannot be applied. They are the following: (i) the characters $E_7[\pm\xi]$ in the group $G^F = E_7(q)$, where q is an even

power of p such that $p \equiv 4 \pmod{4}$;

(ii) the characters $E_8[\pm\sqrt{-1}]$ for $G^F = E_8(q)$ with p = 5.

(see [Ge II]; as to te notations of characters of G^F , we follow those in [Ca, p. 483, p. 488].)

The first case was dealt with by Geck [Ge III], by investigating certain generalized Gelfand-Graev representations. For this, he has to assume that p is large enough so that the result of Lusztig [Lu IV] on generalized

²⁰⁰⁰ Mathematics Subject Classification : 12E, 14F, 16G, 20C, 20G.

Gelfand-Graev representations can be applied (note that it relies on the general theory of Lie algebra, which requires that p is not too small). Also it involves some explicit computations by using computer.

The idea for treating the second case was explained briefly in [Ge II] and was discussed in Ph. D. thesis of Hezard [He]. It also use the generalized Gelfand-Graev representations of $E_8(q)$. Since p = 5, the general theory of Lie algebra cannot be applied, and very delicate and precise computations are required.

In this paper, we with to propose a method of using crystalline cohomology groups in order to treat the above two cases. By realizing the above cuspidal unipotent representations ρ on crystalline cohomology groups, it is possible to determine the *p*-local Schur index $m_{\mathbb{Q}_p}(\rho)$ of ρ . For any prime $\ell \neq p$, the ℓ -local Schur index $m_{\mathbb{Q}_p}(\rho)$ of ρ can be determined by making use of the realization of ρ on the ℓ -adic cohomology groups due to Lusztig [Lu V]. Thus the Schur index $m_{\mathbb{Q}_p}(\rho)$ of ρ with respect to \mathbb{Q} is determined by the Hasse principle. In particular, the argument works without restriction on *p*.

The method of making use of crystalline cohomology seems to be comparatively general since, by modifying our method, one can prove the following:

Theorem A Let G be a simple algebraic group, defined over \mathbb{F}_q , with \mathbb{F}_q -rank r. Let ρ by any cuspidal unipotent representation of G^F with character χ_ρ and let $A(\rho, \mathbb{Q}_p)$ be the simple direct summand of the group algebra $\mathbb{Q}_p[G^F]$ associated with ρ . Let $\mathbb{Q}_p(\chi_\rho) = \mathbb{Q}_p(\chi_\rho(g_0), g_0 \in G^F)$. Then the Hasse invariant of the simple algebra $A(\rho, \mathbb{Q}_p)$ (central over $\mathbb{Q}_p(\chi_\rho)$) can be given by $-(r/2)[\mathbb{Q}_p(\chi_\rho):\mathbb{Q}_p]$.

Our result, with combining Lusztig's realization in the ℓ -adic cohomology, can be interpreted in terms of motives over finite fields (see Milne [Mi II]).

Let ρ be a cuspidal unipotent representation of G^F (G simple). Let w be a Weyl group element with minimal length $n = \ell(w)$ such that $(R^1(w), \rho)_{G^F} \neq 0$, where $R^1(w)$ is the Deligne-Lusztig virtual representation of G^F associated with w ([DL]). Let $\lambda q^{n\delta/2}$ be the eigenvalue of Frobenius on $H^n(\overline{X}(w), \mathbb{Q}_\ell)$ associated with ρ ([Lu II]; [DM, Théoremè 2.3, p. 48]), Here $\overline{X}(w)$ is the Hansen-Demazure-Deligne-Lusztig compactification of the Deligne-Lusztig variety X(w) associated with w ([DL, (9.10)]),

 $\overline{\mathbb{Q}_{\ell}}$ is an algebraic closure of the ℓ -adic field \mathbb{Q}_{ℓ} ($\ell \neq p$), δ is the minimal natural number such that F^{δ} acts trivially on the Weyl group of G, and λ is a certain root of unity (cf. [DM]). Let X be a simple motive with Weil q^{δ} -number $q^{n\delta/2}$ (uniquely determined up to isomorphisms; see [Mi II, p. 415]). Then

"Theorem B" Assume that Tate conjecture over finite fields holds (see $[Mi \ II]$). Then in the Brauer group of $\mathbb{Q}(\chi_{\rho})$, the class of the simple direct summand $A(\rho, \mathbb{Q})$ of $\mathbb{Q}[G^F]$ associated with ρ and the class of the endomorphism ring End(X) of X are the same.

Theorem A also holds for cuspidal unipotent representations of the Suzuki and Ree groups ${}^{2}B_{2}(q)$, ${}^{2}G_{2}(q)$, ${}^{2}F_{4}(q)$ except for the unique representation ρ of ${}^{2}F_{4}(q)$, such that $(R^{1}(w), \rho)_{G^{F}}$ is even for all w ([Lu III, p. 375]); for this representation, the formula in Theorem A does not hold; ρ has the property that $m_{\mathbb{Q}_{\ell}}(\rho) = 1$ for $\ell \neq p$ and $m_{\mathbb{R}}(\rho) = m_{\mathbb{Q}_{p}}(\rho) = 2$ (see [Ge I]).

Notation

p is a fixed prime number and k is an algebraic closure of the prime field of characteristic p. $q = p^{a'}$ is a power of p and \mathbb{F}_q is the subfield of kwith q elements. By a variety, we mean a separated reduced scheme of finite type over k and we identify it with the set of its k-rational points.

If ρ is an irreducible representation of a finite group H over an algebraically closed field C of characteristic 0, then χ_{ρ} denotes its character and for a field E of characteristic 0, $E(\rho) = E(\chi_{\rho}) = E(\chi_{\rho}(h), h \in H)$ and $m_E(\rho)$ or $m_E(\chi_{\rho})$ denotes the Schur index of ρ with respect to E.

 ℓ is any fixed prime number $\neq p$, and $\overline{\mathbb{Q}_{\ell}}$ is an algebraic closure of \mathbb{Q}_{ℓ} . For a variety X, $H^{i}(X)$ (resp. $H^{i}_{c}(X)$) is the *i*-th étale cohomology group of X (resp. the *i*-th étale cohomology of X with compact supports) with coefficients in $\overline{\mathbb{Q}_{\ell}}$.

1.

Let n be a positive integer, and let $\Lambda_n = \mathbb{Z}/\ell^n\mathbb{Z}$. Let X, Y be varieties and let $f: X \to Y$ be a proper morphism. Then there exists a spectral sequence

$$(R_c^i \pi_*)(R^j f_*)F \Longrightarrow R_c^{i+j}(\pi f)_*F$$

where $\pi: Y \to \text{Spec}(k)$ is the structural morphism of Y (see [Mi I, Theorem 3.2(c), p. 228]) (note that $R_c^i f_* = R^j f_*$ since f is proper) and F is any torsion (étale) sheaf of Λ_n -modules on X. Thus one of the edge homomorphisms of this spectral sequence gives Λ_n -homomorphisms ([CE, p. 329, Case B])

$$(*) \qquad H^i_c(Y, f_*F) \longrightarrow H^i_c(X, F) \qquad (i \ge 0).$$

(Note that $(R_c^i \pi_*)(R^0 f_*)F = (R_c^i \pi_*)f_*F = H_c^i(Y, f_*F)$ and $R_c^i(\pi f)_*F = H_c^i(X, F)$.)

Let F' be a torsion sheaf on Y of Λ_n -modules, and let $F = f^*F'$. Then, by composing the homomorphism $H^i_c(Y, F') \to H^i_c(Y, f_*f^*F')$ induced by the natural morphism $F' \to f_*f^*F'$ with the homomorphism (*), we get a Λ_n -homomorphism $H^i_c(Y, F') \to H^i_c(X, f^*F')$. By letting $F' = \Lambda_n$, and by using the canonical isomorphism $f^*\Lambda_n \xrightarrow{\sim} \Lambda_n$, we get a Λ_n -homomorphism

$$(**) \qquad f_n^* \colon H_c^i(Y, \Lambda_n) \longrightarrow H_c^i(X, \Lambda_n) \qquad (i \ge 0)$$

We note that if Z is a variety and $g \colon Y \to Z$ is a proper morphism, then we have

$$(***) \quad (gf)_n^* = f_n^* g_n^*.$$

Assume that X, Y are proper over $\operatorname{Spec}(k)$. Then, by the functoriality ([Sri. p. 41]), we get a natural Λ_n -homomorphism $H^i(Y, F') \to H^i(X, f^*F')$, which, as we can check, coincides with the above homomorphism $H^i(Y, F') \to H^i(Y, f_*f^*F') \to H^i(X, f^*F')$.

Returning to the general case with $f: X \to Y$ proper, let $\psi_n: H^i_c(Y, \Lambda_{n+1}) \to H^i_c(Y, \Lambda_n), \ \phi_n: H^i_c(X, \Lambda_{n+1}) \to H^i_c(X, \Lambda_n)$ be homomorphisms which are induced by the natural morphism $\Lambda_{n+1} \to \Lambda_n$. Then we have $\phi_n f^*_{n+1} = f^*_n \psi_n$. Hence, by taking projective limits, we get a \mathbb{Z}_ℓ -homomorphism

$$\lim_{n} f_n^* \colon H_c^i(Y, \mathbb{Z}_\ell) = \lim_{n} H_c^i(Y, \Lambda_n) \longrightarrow H_c^i(X, \mathbb{Z}_\ell).$$

By tensoring with \mathbb{Q}_{ℓ} , we get \mathbb{Q}_{ℓ} -linear maps

$$H_c^i(Y, \mathbb{Q}_\ell) \longrightarrow H_c^i(X, \mathbb{Q}_\ell) \qquad (i \ge 0),$$

hence we get $\overline{\mathbb{Q}_{\ell}}$ -linear maps

$$f^* \colon H^i_c(Y) \longrightarrow H^i_c(X) \qquad (i \ge 0).$$

We note that, if $g: Y \to Z$ is proper, then

$$(gf)^* = f^*g^*.$$

Now let G be a connected, reductive linear algebraic group over k, defined over \mathbb{F}_q , with Frobenius map F. Let X_G be the projective variety of all Borel subgroups of G. Let $F: X_G \to X_G$ be the map defined by $B \to$ F(B), which is the Frobenius map corresponding to the natural \mathbb{F}_q -rational structure of X_G . G acts on X_G by the conjugations: $B \to gBg^{-1}, g \in G,$ $B \in X_G$.

For the sake of later use, let me allow to explain this action of G on X_G . Let k[G] be the k-algebra of regular functions on G. Then G acts on it by $(h \cdot q)(x) = h(xq^{-1}), q \in G, h \in k[G], x \in G$. Then there is a finitedimensional, G-stable subspace V of k[G] and a line L through $0 (\subset V)$ such that $B^* = \{q \in G \mid q(L) = L\}$, where B^* is a previously fixed F-stable Borel subgroup of G. Let $\mathbb{P}(V)$ be the projective space associated with V and let [L] be the class of L in $\mathbb{P}(V)$. Note that V and L can be chosen so that they are defined over \mathbb{F}_q . The homogeneous space G/B^* is defined to be the orbit $G \cdot [L]$ in $\mathbb{P}(V)$. Since G/B^* is projective, it is complete, hence $G/B^* = G \cdot [L]$ is closed in $\mathbb{P}(V)$. Let $\rho: G \to \mathrm{GL}(V)$ be the representation which is determined by the G-module V. Then, for each $g \in G$, $\rho(g)$ is an automorphism of the affine space V, which hence induces a k-algebra automorphism $\theta(g)$ of k[V]. With respect to a basis of the \mathbb{F}_q -structure V_0 of V, k[V] can be viewed naturally as a polynomial ring $k[T_0, \ldots, T_d]$ over k $(d+1 = \dim_{\mathbb{F}_q}(V_0))$. Then, for $g \in G$, $\theta(g)$ is a homogeneous automorphism of $k[T_0, \ldots, T_d]$ of degree 0, so that it induces a ring automorphism $\overline{\theta}(g)$ of $k[G/B^*] = k[G \cdot [L]]$. Then it is well known that, for $g \in G$, the automorphism $\theta(g)$ induces an automorphism of G/B^* , which coincides with the mapping $hB^* \to ghB^*$, $hB^* \in G/B^*$. Since X_G is isomorphic to G/B^* naturally, the adjoint action of $g \in G$ on X_G is induced by a k-algebra automorphism of a k-algebra A such that $X_G = \operatorname{Proj}(A)$.

Now, we let G act on $X_G \times X_G$ diagonally. Then $W_G = G \setminus (X_G \times X_G)$ has a natural group structure, which is called the Weyl group of G ([DL, 1.2], [Lu I, (1.2)]). For $w \in W_G$, let $X(w) = \{B \in X_G | (B, F(B)) \in w\}$. Then X(w) is a locally closed smooth subvariety of X_G , purely of dimension $\ell(w)$,

where $\ell(\)$ is the length function on W_G ([DL, 1.4]). For $g_0 \in G^F$, X(w) is g_0 -stable, so, for each $i \geq 0$, we have an automorphism g_0^* of $H_c^i(X(w))$. We consider $H_c^i(X(w))$ as G^F -modules by $(g_0^{-1})^*$, $g_0 \in G^F$. For $i \geq 0$, $H_c^i(X(w))$ is a $\overline{\mathbb{Q}}_{\ell}[G^F]$ -module with \mathbb{Q}_{ℓ} -structure $H_c^i(X(w), \mathbb{Q}_{\ell})$.

Let δ be the minimal positive integer such that F^{δ} acts trivially on W_G . Then, for $w \in W_G$, X(w) is F^{δ} -stable. Let $w \in W_G$. Then the morphism $F^{\delta} \colon X(w) \to X(w)$ is finite, hence proper, so, for $i \ge 0$, F^{δ} induces a $\overline{\mathbb{Q}_{\ell}}$ -linear map $(F^{\delta})^* \colon H^i_c(X(w)) \to H^i_c(X(w))$.

Let M be a simple $\overline{\mathbb{Q}_{\ell}}[G^F]$ -module. Then we say that M has depth tif there is an F-stable subset I of the set S of simple reflections in W_G with $|I_F| = r - t$, where I_F is the set of orbits of F on I and r is the semisimple \mathbb{F}_q -rank of G, such that, for an F-stable parabolic subgroup P_I of G corresponding to I, with unipotent radical U_I , $M^{U_I^F}$ contains a nonzero cuspidal L^F -module, where $L = P_I/U_I$ and $M^{U_I^F}$ is the subspace of Mconsisting of elements of M fixed by U_I^F (see [Lu I, §4]).

Let M be any (finitely generated) $\overline{\mathbb{Q}_{\ell}}[G^F]$ -module For an integer $t \geq 0$, let $M^{(t)}$ be the subspace of M defined as the sum of all simple $\overline{\mathbb{Q}_{\ell}}[G^F]$ -submodules of M of depth t. Then we have $M = \bigoplus_{t \geq 0} M^{(t)}$. $M^{(0)}$ is

the cuspidal part of M.

Now assume that G is a simple algebraic group of type (E_7) . Let s_1, \ldots, s_7 be the simple reflections in W_G . Put $c = s_1 \cdots s_7$ and $f = (s_1, \ldots, s_7)$. Let $X_f = X(c)$. Then X_f is a smooth affine irreducible subvariety of dimension 7 ([Lu I, (2.8), (4.8)]). We have $H_c^i(X_f)^{(0)} = 0$ for $i \neq 7$ and $H_c^7(X_f)^{(0)} = H_c^7(X_f)_{\sqrt{-q^7}} \oplus H_c^7(X_f)_{-\sqrt{-q^7}}$, where $H_c^7(X_f)_{\sqrt{-q^7}}$ (resp. $H_c^7(X_f)_{-\sqrt{-q^7}}$) is the subspace of $H_c^7(X_f)$ on which F^* acts by multiplication by $\sqrt{-q^7}$ (resp. $-\sqrt{-q^7}$) ([Lu I, (6.1), (7.1), (7.3), (7.4)(c)]). They afford two non-isomorphic cuspidal unipotent representations of G^F over $\overline{\mathbb{Q}_\ell}$ (see [Lu III, pp. 364–5], Cater [Ca, pp. 482–3]). And they are all the cuspidal unipotent representations of G^F .

Let ρ be a (complex) cuspidal unipotent representation of G^F . Then $\mathbb{Q}(\chi_{\rho}) = \mathbb{Q}(\sqrt{-q^7})$ (cf. [Ge I, p. 21]). Since χ_{ρ} is not real, we have $m_{\mathbb{Q}_{\infty}}(\rho) = 1$. Let $\tau : \mathbb{C} \cong \overline{\mathbb{Q}_{\ell}}$ be an isomorphism. Then, since $(H_c^7(X_f), \rho^{\tau})_{G^F}$ = 1 and $H_c^7(X_f)$ is defined over \mathbb{Q}_{ℓ} , by a property of the Schur index, we have $m_{\mathbb{Q}_{\ell}}(\rho) = 1$. Since ℓ is any prime number $\neq p$, by Hasse's sum formula, we must have $m_{\mathbb{Q}_p}(\rho) = 1$ (hence $m_{\mathbb{Q}}(\rho) = 1$) if the number of the places of $\mathbb{Q}(\chi_{\rho})$ lying above p is equal to one, and this is the case unless q is an even power of p such that $p \equiv 1 \pmod{4}$.

To treat the remaining case we use crystalline cohomology. To do so we need some analysis of Lusztig's results in [Lu I].

Let $X_f^{\cdot} = \{(B_0, B_1, \ldots, B_7) \in X_G^8 | (B_{i-1}, B_i) \in s_i \cup e \text{ for } 1 \leq i \leq 7, \text{ and } F(B_0) = B_7\}$. Then X_f^{\cdot} is a smooth projective variety and X_f can be identified with the open dense subvariety $\{(B_0, B_1, \ldots, B_7) \in X_f^{\cdot} | B_0 \neq B_1 \neq \cdots \neq B_7\}$ of X_f^{\cdot} (by Bruhat lemma) ([DL, 9.10]). Let $F: X_G^8 \to X_G^8: (B_0, B_1, \ldots, B_7) \to (F(B_0), F(B_1), \ldots, F(B_7))$. Then X_f^{\cdot} is F-stable and G^F acts on it diagonally. The inclusion $X_f \hookrightarrow X_f^{\cdot}$ is F-equivariant. Then this inclusion map induces an isomorphism $H_c^i(X_f)^{(0)} \cong H_c^i(X_f^{\cdot})^{(0)}$ $(i \geq 0)$ ([Lu I, (4.3.1)]).

Lemma 1 ([Lu I, §4]) We have $H^7(X_f) = H^7(X_f)^{(0)}$.

In fact, let me allow to use the notations of [Lu I, §4] freely. The exact sequence (4.2.3) of [Lu I, §4] for a = 7 and i = 7 can be read:

$$\cdots \longrightarrow H_c^7(X_f)^{(t)} \xrightarrow{\alpha^{(t)}} H_c^7(X_f^{\cdot})^{(t)} \xrightarrow{\beta^{(t)}} H_c^8(D_6)^{(t)} \longrightarrow \cdots$$

We see from the table on page 146 of [Lu I] that the absolute value of each eigenvalue of F^* on $H_c^7(X_f)$ other than $\pm \sqrt{-q^7}$ is an integral power of q. On the other hand, we know from Deligne's theorem on the eigenvalues of Frobenius [De] that the absolute value of any eigenvalue of F^* on $H^7(X_f)$ is $q^{7/2}$. Since the actions of F and G^F commute, we see that $\alpha^{(t)} = 0$ for $t \ge 1$.

Next we show that $\beta^{(t)} = 0$ for all $t \ge 0$, which would imply the desired assertion.

Assume that $t \geq 2$. Then, by the statement on page 122, lines 7–8, of [Lu I], we see that $H^7(D_6)^{(t)}$ is isomorphic as G^F -modules to a quotient of $\bigoplus_{|I|\leq 6} H_c^7(X_f^{\cdot}(I))$. Moreover, by a standard argument from linear algebra by

using the exact sequences in lines 5, 6 on page 122 in [Lu I], that the set of eigenvalues of F^* on $H^7(D_6)^{(t)}$ is contained in the set of eigenvalues of F^* on $\bigoplus_{|I| \leq 6} H_c^7(X_f^{\cdot}(I))$. By (4.2.1) of [Lu I, p. 119], by the Künneth formula,

and by the table on page 146 of [Lu I, p. 119], we see that the absolute value of each eigenvalue of F^* on $\bigoplus_{|I| \leq 6} H_c^7(X_f(I))$, hence on $H^7(D_6)^{(t)}$, is

an integral power of q. Thus $\beta^{(t)} = 0$ for $t \ge 2$. by the formula on page 121,

line 13, of [Lu I], we see that $H^7(D_6)^{(1)} = 0$. And, by the formula on page 120, line 15, of [Lu I], we have $H^7(D_6)^{(0)} = 0$. Thus $\beta^{(t)} = 0$ for all $t \ge 0$.

Let $W(\mathbb{F}_q)$ be the ring of Witt vectors of \mathbb{F}_q and let K be its quotient field. Let σ be the Frobenius automorphism of $W(\mathbb{F}_q)$ (induced by the automorphism $x \to x^p$ of \mathbb{F}_q); we also denote by σ its extension to K. For a proper smooth scheme X_0 over \mathbb{F}_q , let $H^i(X_0/W(\mathbb{F}_q))$ be the *i*-th crystalline cohomology group of X_0 over $W(\mathbb{F}_q)$ (see Berthelot [Ber, p. 525]; also see Illusite [III, 1.2, p. 44]), and let $H^i_{crys}(X_0) = H^i(X_0/W(\mathbb{F}_q)) \otimes_{W(\mathbb{F}_q)} K$.

Let *n* be a positive integer, and let $W_n = W(\mathbb{F}_q)/p^n W(\mathbb{F}_q)$ $(W_1 = \mathbb{F}_q)$. Let $g: X_0 \to Y_0$ be a morphism of proper smooth schemes X_0, Y_0 over \mathbb{F}_q , and suppose that the diagram

$$\begin{array}{cccc} X_0 & & g & & & Y_0 \\ \downarrow & & & \downarrow & \\ S_n = \operatorname{Spec}(W_n) & \xrightarrow{h} & S_n \end{array}$$

commutes. Here, $X_0 \to S_n$ is the composition: $X_0 \to \text{Spec}(\mathbb{F}_q) = \text{Spec}(W_1) \to S_n \ (Y_n \to S_n \text{ is defined similarly})$ and h is a PD morphism (see [Ber, p. 30] or [BO, p. 3.1]). Then we have a morphism of topoi:

$$g_{\text{cris}} = (g_{\text{cris}}^*, g_{\text{cris}*}) \colon (X_0/S_n)_{\text{cris}} \longrightarrow (Y_0/S_n)_{\text{cris}}$$

(see [Ber, Théorème 2.2.3, p. 197] or [BO, p. 5.3, p. 5.16]). Here $(X_0/S_n)_{cris}$ is the topos of sheaves on the site $\operatorname{Cris}(X_0/S_n)$ (see [Ber, p. 180] or [BO, p. 5.3]) $((Y_0/S_n)_{cris}$ is defined similarly). Let O_{X_0/S_n} (resp. O_{Y_0/S_n}) be the "structural sheaf" of X_0 over S_n (resp. Y_0 over S_n) ([Ber, p. 183] or [BO, p. 5.4]; also cf. [Ill, p. 44]). Then, by the functoriality (or by the spectral sequence in [BO, p. 5.16]), there is a natural map $H^i(\operatorname{Cris}(Y_0/S_n), O_{Y_0/S_n}) \to$ $H^i(\operatorname{Cris}(X_0/S_n), g_{cris}^* O_{X_0/S_n})$ for each i, where $H^i(\operatorname{Cris}(Y_0/S_n), O_{Y_0/S_n})$ is the *i*-th cohomology group of the site $\operatorname{Cris}(Y_0/S_n), g_{cris}^* O_{X_0/S_n})$ is defined similarly). By composing this map with the natural map $H^i(\operatorname{Cris}(X_0/S_n), g_{cris}^* O_{Y_0/S_n}) \to H^i(\operatorname{Cris}(X_0/S_n), O_{X_0/S_n})$ induced by the natural morphism $g_{cris}^* O_{Y_0/S_n} \to O_{X_0/S_n}$ (see [Ber, (2.2.4), p. 199]), we get a map

554

2.

$$g_n^* \colon H^i(\operatorname{Cris}(Y_0/S_n), O_{Y_0/S_n}) \longrightarrow H^i(\operatorname{Cris}(X_0/S_n), O_{X_0/S_n}).$$

$$\begin{array}{ccc} Y_0 & & \stackrel{g'}{\longrightarrow} & Z_0 \\ \downarrow & & \downarrow \\ S_n & \stackrel{h'}{\longrightarrow} & S_n \end{array}$$

If

is another commutative diagram, where Z_0 is a proper smooth variety over \mathbb{F}_q and h' is a PD morphism, we have

$$(g'g)_n^* = (g_n^*)(g_n'^*)$$

(cf. [Ber, Proposition 2.2.6, p. 200]).

We also have natural maps $p_n : H^i(\operatorname{Cris}(X_0/S_{n+1}), O_{X_0/S_{n+1}}) \to H^i(\operatorname{Cris}(X_0/S_n), O_{X_0/S_n}), \quad q_n : H^i(\operatorname{Cris}(Y_0/S_{n+1}), O_{Y_0/S_{n+1}}) \to H^i(\operatorname{Cris}(Y_0/S_n), O_{Y_0/S_n}), \text{ and we have } p_n g_{n+1}^* = g_n^* q_n.$ Therefore, by taking projective limits, we get a map

$$g^* := \lim_{n \to \infty} g_n^* \colon H^i(Y_0/W(\mathbb{F}_q)) \longrightarrow H^i(X_0/W(\mathbb{F}_q)) \qquad (i \ge 0).$$

We have $(g'g)^* = g^*g'^*$.

Let X_0 be a projective smooth scheme over \mathbb{F}_q . Let $F_{abs}: X_0 \to X_0$ be the absolute Frobenius endomorphism of X_0 : F_{abs} is the identity map on the underlying space of X_0 and, for each section h in the structural sheaf O_{X_0} of X_0 , we have $F_{abs}(h) = h^p$. Then we have a commutative diagram

$$\begin{array}{ccc} X_0 & \xrightarrow{F_{\mathrm{abs}}} & X_0 \\ \downarrow & & \downarrow \\ S_n & \xrightarrow{h_n} & S_n, \end{array}$$

where h_n is the PD morphism induced by $\sigma: W_n \to W_n$. Then we have a σ -linear endomorphism $(F_{abs})^*$ of $H^i(X_0/W(\mathbb{F}_q))$ for each *i*. Hence we get a σ -linear endomorphism $\phi = (F_{abs})^* \otimes \sigma$ of $H^i_{crys}(X_0)$ for each *i*. This makes each $(H^i_{crys}(X_0), \phi)$ an isocrystal over *K*, i.e. a finite-dimensional vector space over *K* with σ -linear bijection.

Let X_0 be as above. Recall that $q = p^{a'}$. Then $F_0 = (F_{abs})^{a'}$ is the Frobenius endomorphism of X_0 ; if $X = X_0 \times_{\mathbb{F}_q} k$, then $F = F_0 \times 1$ is the Frobenius endomorphism of X which corresponds to the \mathbb{F}_q -rational structure X_0 on X.

Let $X = \operatorname{Proj}(A)$, $Y = \operatorname{Proj}(B)$ be two projective varieties defined over \mathbb{F}_q , and let g and h be automorphisms of X and Y respectively, defined over \mathbb{F}_q ; Assume that g (resp. h) is the restriction to X (resp. Y) of an automorphism of an ambient projective space, with the standard \mathbb{F}_q -rational structure, defined over \mathbb{F}_q . Then we see that $g \times h$ is the automorphism of $X \times X$ which is induced by a k-algebra automorphism of $A \otimes_k B$.

Now let the assumptions and the notations be as in §1. Recall that X_f^{\cdot} is an *F*-stable closed subvariety of X_G^8 . Suppose that $X_f^{\cdot} = \operatorname{Proj}(A)$. Then, for each $g_0 \in G^F$, the automorphism $g_0 \colon X_f^{\cdot} \to X_f^{\cdot}$ is induced by a *k*-algebra automorphism $\theta(g_0)$ of *A* which is homogeneous of degree 0. Let

$$A_0 = \{ x \in A \, | \, F(x) = x^q \}.$$

Then $X_{f,0}^{\cdot} = \operatorname{Proj}(A_0)$ is the \mathbb{F}_q -rational structure on X_f^{\cdot} determined by $F \colon X_f^{\cdot} \to X_f^{\cdot}$. Let $g_0 \in G^F$. Then, since $\theta(g_0) \colon A \to A$ is a ring automorphism, for $x \in A_0$, we have

$$F(\theta(g_0)(x)) = \theta(g_0)(F(x)) = \theta(g_0)(x^q) = \theta(g_0)(x)^q,$$

so $\theta(g_0)(x) \in A_0$. So $\theta(g_0)$ induces a ring automorphism of A_0 , hence induces an endomorphism g_0 of $X_{f,0}^{\cdot}$. Thus we get an endomorphism $(g_0)^*$ of $H^i(X_{f,0}^{\cdot}/W(\mathbb{F}_q))$ for $i \geq 0$. It is clear that $(h_0g_0)^* = (g_0)^*(h_0)^*$ $(h_0 \in G^F)$. Thus each $H^i(X_{f,0}^{\cdot}/W(\mathbb{F}_q))$ is a G^F -module by the actions $(g_0^{-1})^*$, $g_0 \in G^F$.

Let $g_0 \in G^F$. Then the graph of $g_0: X_{f,0} \to X_{f,0}$ defines a cycle in $X_{f,0}^{\cdot} \times_{S_n} X_{f,0}^{\cdot}$ of codimension 7 $(n \geq 1)$, hence, by the Künneth formula and the Poincarè duality theorem for crystalline cohomology, its class in $H^{14}((X_{f,0}^{\cdot} \times_{S_n} X_{f,0}^{\cdot})/S_n, O_{(X_{f,0}^{\cdot} \times_{S_n} X_{f,0}^{\cdot})/S_n})$, hence in $H^{14}_{\text{crys}}(X_{f,0}^{\cdot} \times_{\mathbb{F}_q} X_{f,0}^{\cdot})$ determines a linear endomorphism of $H^1_{\text{crys}}(X_{f,0}^{\cdot})$ for each i, which is just $(g_0)^* \otimes 1$ (cf. Kleimann [Kl, 3, pp. 11–2] and Berthelot [Ber, Chap. VII, §3, Lemma 3.1.4, p. 575]). Similar statements also hold for étale cohomology (cf. [Mi I, Chap. VI, §12, Lemma 12.1]). Thus by Theorem 2 of Katz and Messing [KM], we see that, for each i, the characteristic polynomial of $(g_0)^* \otimes 1$ on $H^i_{\text{crys}}(X_{f,0}^{\cdot})$ coincides with the characteristic polynomial of $(g_0)^*$ on $H^i(X_f)$ (they have coefficients in \mathbb{Z}). In particular, we have

$$\operatorname{Tr}((g_0)^* \otimes 1, H^i_{\operatorname{crys}}(X^{\cdot}_{f,0})) = \operatorname{Tr}((g_0)^*, H^i(X^{\cdot}_f)) \qquad (i \ge 0).$$
(1)

(This argument was inspired by Lusztig [Lu I, p. 121, line 24].) We also see that, by Theorem 1 of [KM], the eigenvalues of $(F_0)^* \otimes 1$ on $H^7_{\text{crys}}(X_{f,0}^{\cdot})$ coinside the eigenvalue of F^* on $H^7(X_f^{\cdot})$.

Lemma 2 Let $g_0 \in G^F$. Then $F_{abs}g_0 = g_0F_{abs}$ on the scheme $X_{f,0}^{\cdot}$. Thus $\phi((g_0)^* \otimes 1) = ((g_0)^* \otimes 1)\phi$ on $H^i_{crys}(X_{f,0}^{\cdot})$ $(i \ge 0)$ (recall that $\phi = (F_{abs})^* \otimes \sigma$).

In fact, on the underlying space of $X_{f,0}$, F_{abs} is the identity. For $x \in A_0$, we have $\theta(g_0)(F_{abs}(x)) = \theta(g_0)(x^p) = \theta(g_0)(x)^p = F_{abs}(\theta(g_0)(x))$. The last assertion is clear.

Assume that q is an even power of p such that $p \equiv 1 \pmod{4}$. Then we have $\sqrt{-q^7} \in \mathbb{Q}_p$. The eigenvalues of $(F_0)^* \otimes 1 = \phi^{a'} (q = p^{a'})$ on $H^7_{\operatorname{crys}}(X^{\cdot}_{f,0})$ are $\pm \sqrt{-q^7}$. Let M_+ (resp. M_-) be the generalized $\sqrt{-q^7}$ -eigenspace (resp. $-\sqrt{-q^7}$ -eigenspace) of $H^7_{\operatorname{crys}}(X^{\cdot}_{f,0})$. Then, since the action of G^F and $(F_0)^* \otimes 1$ on $H^7_{\operatorname{crys}}(X^{\cdot}_{f,0})$ commute, we see that M_+ and M_- are G^F submodules of $H^7_{\operatorname{crys}}(X^{\cdot}_{f,0})$. Hence, by (1), we see that they are absolutely irreducible G^F -modules over K and $H^7_{\operatorname{crys}}(X^{\cdot}_{f,0}) = M_+ \oplus M_-$; moreover we see that the actions of $(F_0)^* \otimes 1$ on M_+ and M_- are semisimple.

By Lemma 2, we see that $\phi(M_+)$ is a G^F -module. For $g_0 \in G^F$, we have

$$Tr((g_0)^* \otimes 1, \phi(M_+)) = \sigma(Tr((g_0)^* \otimes 1, M_+)) = Tr((g_0)^* \otimes 1, M_+)$$

since $\mathbb{Q}_p(\chi_{\rho}) = \mathbb{Q}_p(\sqrt{-q^7}) = \mathbb{Q}_p(\rho)$ is the representation afforded by M_+) (Geck [Ge I, §5]). So $\phi(M_+)$ is isomorphic to M_+ as G^F -modules. Since M_+ and M_- are not isomorphic, we must have $\phi(M_+) = M_+$. Similarly, we must have $\phi(M_-) = M_-$. Therefore (M_+, ϕ) and (M_-, ϕ) are semisimple isocrystals over K (cf. Milne [Mi II, Proposition 2.10, p. 417]).

Let M be M_+ or M_- , and let

$$U: K[G^{F'}] \longrightarrow \operatorname{End}_{K}(M)$$

be the corresponding representation of $K[G^F]$. Since U is absolutely irreducible, we have $U(K[G^F]) = \operatorname{End}_K(M) \cong M_d(K)$, where $M_d(K)$ is the K-algebra of all $d \times d$ -matrices over K with $d = \dim_K M$. Let $B = U(\mathbb{Q}_p[G^F])$. Then there is a division algebra D, central over $\mathbb{Q}_p = \mathbb{Q}_p(\sqrt{-q^7})$, such that $B \cong M_n(D)$, where if m denotes the index of D, then d = nm (cf. Curtis and Reiner [CR, p. 468]). We note that m =

 $m_{\mathbb{Q}_p}(U)$. We have $B \otimes_{\mathbb{Q}_p} K \simeq M_d(K) \simeq \operatorname{End}_K(M)$ ([loc. cit.]). Let

$$\operatorname{End}(M,\phi) = \{h \in \operatorname{End}_K(M) \,|\, \phi h = h\phi\}.$$

This is a \mathbb{Q}_p -form of the centralizer $Z_{\operatorname{End}_K(M)}(\pi_M)$ of $\pi_M = \phi^{a'}$ in $\operatorname{End}_K(M)$ (see Kottwitz [Ko, p. 410]; also see Milne [Mi II, p. 417]). By Lemma 2, we see that B is contained in $\operatorname{End}(M, \phi)$. But,, as $B \otimes_{\mathbb{Q}_p} K = \operatorname{End}_K(M)$, we must have $B = \operatorname{End}(M, \phi)$. Therefore, as (M, ϕ) is semisimple, there is a simple subisocrystal (X, ϕ) of (M, ϕ) such that $\operatorname{End}(X, \phi) \cong D$. By Lemma 11.3 of [Ko] (also see [Mi II, Proposition 2.14]), we see that the Hasse invariant of D is 1/2. Therefore $m_{\mathbb{Q}_p}(U) = 2$.

We note that $G^F = E_7(q)$ has just two isomorphism classes of cuspidal unipotent representations.

The following theorem is due to Geck [Ge III] except for (ii) where he had to assume that p is large enough. Our argument can remove this assumption.

Theorem 1 (cf. Geck [Ge III]) Let G be a simple algebraic group of type (E_7) , defined over \mathbb{F}_q , with Frobenius map F. Let ρ be a (complex) cuspidal unipotent representation of G^F with character χ_{ρ} . Then the value field $\mathbb{Q}(\chi_{\rho})$ of χ_{ρ} is $\mathbb{Q}(\sqrt{-q^7})$. (i) If p = 2, or q is an odd power of p, or q is an even power of p such that $p \equiv 3 \pmod{4}$, then $m_{\mathbb{Q}}(\rho) = 1$. (ii) Assume that q is an even power of p such that $p \equiv 1 \pmod{4}$, Then we have $m_{\mathbb{Q}_{\infty}}(\rho) = m_{\mathbb{Q}_{\ell}}(\rho) = 1$ for any prime number $\ell \neq p$ and $m_{\mathbb{Q}_{p}}(\rho) = 2$. Thus $m_{\mathbb{Q}}(\rho) = 2$.

By Propositions 5.5, 5.6 of [Ge I], we see that a unipotent representations of $E_8(q)$ with character $E_7[\xi]$, 1, $E_7[-\xi]$, 1, $E_7[\xi]$, ε or $E_7[-\xi]$, ε has the same rationality.

Remark Let $h(X_{f,0})$ be the motive over \mathbb{F}_q corresponding to $X_{f,0}^{\cdot}$ (see Milne [Mi II]), and let Z be the simple submotive of $h(X_{f,0}^{\cdot})$ such that $[\pi_Z] = [\sqrt{-q^7}]$ (cf. [Mi II, Proposition 2.6]). Then we see from Theorem 2.16 of [Mi II] that the distribution of the Hasse invariants of the division algebra $\operatorname{End}(Z)$ coincides with the results of Theorem 1.

3.

Let G be a simple algebraic group, defined over \mathbb{F}_q , with Frobenius map F. Let δ be the minimal natural number such that F^{δ} acts trivially

on
$$W_G$$

Let $\underline{s} = (s_1, \ldots, s_n)$ be a sequence of simple reflections in W_G , and let

$$X_{\underline{s}} = X(s_1, \dots, s_n) = \{ (B_0, B_1, \dots, B_n) \in X_G^{n+1} \mid (B_{i-1}, B_i) \in s_i$$
for $1 \le i \le n$ and $F(B_0) = B_n \}.$

Then $X_{\underline{s}}$ is a locally closed subvariety of X_G^{n+1} on which G^F acts diagonally. We can prove that, for each i, each irreducible component of the G^F -module $H_c^i(X_{\underline{s}})$ is unipotent (We use [Lu II, p. 25–6] and [DL, Theorem 6.2]).

Let ρ be a unipotent representation of G^F . Then we have $(R^1(w), \rho)_{G^F} \neq 0$ for some $w \in W_G$. We note that $R^1(w) = \sum_i (-1)^i H^i_c(X(w))$. Let $w = s_1 \cdots s_n$ be a reduced expression for w $(n = \ell(w))$. Then X(w) is isomorphic to $X_{\underline{s}}$ with $\underline{s} = (s_1, \ldots, s_n)$. Therefore there is an integer i such that $(H^i_s(X_s), \rho)_{G^F} \neq 0$.

Let $\underline{s} = (s_1, \ldots, s_n)$ be a minimal sequence such that $(H_c^i(X_{\underline{s}}), \rho)_{G^F} \neq 0$ for some *i*. Then we see that $\ell(s_1 \cdots s_n) = n$ and $X_{\underline{s}} \cong X(w)$ with $w = s_1 \cdots s_n$ (cf. [Lu II, pp. 25–6]). In the following, we fix one of such \underline{s} .

We have $(H_c^i(X_{\underline{s}}), \rho)_{G^F} = 0$ for $i \neq n$ (Haastert [Ha, Korollar 4.4 (1)]). Therefore w is an element of W_G with minimal length such that $(R^1(w), \rho)_{G^F} \neq 0$. If ρ is cuspidal, then $(R^1(w), \rho)_{G^F} = (-1)^r$, where r is the \mathbb{F}_q -rank of G (Lusztig [Lu V]).

Let

$$\overline{X}_{\underline{s}} = \overline{X}(s_1, \dots, s_n) = \{ (B_0, B_1, \dots, B_n) \in X_G^{n+1} \mid (B_{i-1}, B_i) \in s_i \cup e$$

for $1 \le i \le n$ and $F(B_0) = B_n \}.$

Then $\overline{X}_{\underline{s}}$ is a smooth closed subvariety of X_G^{n+1} ([DL, 9.10]) and $X_{\underline{s}}$ is an open dense subvariety of $\overline{X}_{\underline{s}}$. By the minimality of \underline{s} , we see that the inclusion $X_{\underline{s}} \hookrightarrow \overline{X}_{\underline{s}}$ induces an isomorphism as G^F -modules from ρ -isotropic part $H_c^n(X_{\underline{s}})_\rho$ of $H_c^n(X_{\underline{s}})$ onto the ρ -isotropic part $H^n(\overline{X}_{\underline{s}})_\rho$ of $H^n(\overline{X}_{\underline{s}})$ ([Lu II, p. 26]).

Let $X^{\cdot} = \overline{X}_{\underline{s}}$. Let m be any multiple of δ , and let $N_{\underline{s}}^{m}(g_{0}) = \left| \begin{array}{c} g_{0}F^{m} \\ X^{\cdot} \end{array} \right|$ $(g_{0} \in G^{F})$. Then we have (Digne and Michel [DM, pp. 60–61]):

$$N_{\underline{s}}^{m}(g_{0}) = \sum_{i=0}^{2n} (-1)^{i} \operatorname{Tr}((g_{0}F^{m})^{*}, H^{i}(X^{\cdot}))$$

$$= \sum_{i=0}^{2n} (-1)^{i} \operatorname{Tr}((F^{\delta})^{*m/\delta}(g_{0})^{*}, H^{i}(X^{\cdot}))$$
$$= \sum_{i=0}^{2n} (-1)^{i} q^{mi/2} \sum_{\rho' \in U} (H^{i}(X^{\cdot}), \rho')_{G^{F}} \omega_{\rho'}^{m/\delta} \chi_{\rho'}(g_{0}).$$
(2)

(Note that one can prove that any irreducible component of $H^i(X^{\cdot})$ is unipotent (cf. [Lu II, p. 26].).) Here U is the set of isomorphism classes of the unipotent representations of G^F and, for $\rho' \in U$, $\omega_{\rho'}$ is a root if unity such that $\omega_{\rho'}q^{i\delta/2}$ is the eigenvalue of $(F^{\delta})^*$ on $H^i(X^{\cdot})$ associated with ρ' ([Lu II]).

Suppose that ρ is cuspidal. Then X^{\cdot} is irreducible (Lusztig [Lu II, pp. 26–27]). Let $W(\mathbb{F}_{q^{\delta}})$ be the ring of Witt vectors over $\mathbb{F}_{q^{\delta}}$, let K be its quotient field and let \overline{K} be an algebraic closure of K. Let X_0^{\cdot} be the $\mathbb{F}_{q^{\delta}}$ -rational structure on X^{\cdot} determined by the Frobenius $F^{\delta} \colon X^{\cdot} \to X^{\cdot}$. Let $F_0 \colon X_0^{\cdot} \to X_0^{\cdot}$ be the Frobenius endomorphism of X_0^{\cdot} ($F_0 = (F_{\text{abs}})^{a'\delta}$, $q = p^{a'}$). Then, by Theorem 2 of [KM], we have

$$\operatorname{Tr}((g_0 F_0^m)^*, H^i_{\operatorname{crys}}(X_0^{\cdot})) = \operatorname{Tr}((g_0 F^m)^*, H^i(X^{\cdot})) \qquad (i \ge 0).$$
(3)

Let α be an eigenvalue of $(F_0)^* \otimes 1$ on $H^i_{crys}(X_0^{\cdot}) \otimes_K \overline{K}$ and let $H^i_{crys}(X_0^{\cdot})_{\alpha}$ be the generalized α -eigensubspace of $H^i_{crys}(X_0^{\cdot}) \otimes_K \overline{K}$. $H^i_{crys}(X_0^{\cdot})_{\alpha}$ is a $\overline{K}[G^F]$ -submodule of $H^i_{crys}(X_0^{\cdot}) \otimes_K \overline{K}$. In views of (2), (3), together with Grothendieck's trace formula for the étale cohomology, we see, by using the linearly independence of the irreducible characters of G^F and the linearly independence of the functions $m/\delta \to \omega_{\rho'}^{m/\delta}$, that if ρ' is contained in $H^i_{crys}(X_0^{\cdot})_{\alpha}$, then α is of the form $\omega_{\rho'}q^{i\delta/2}$.

Assume that G is of type (E_8) and that ρ is a cuspidal unipotent representation of G^F such that $\chi_{\rho} = E_8[i]$ or $E_8[-i]$. Then $\mathbb{Q}(\chi_{\rho}) = \mathbb{Q}(i)$ ([Ge I, §5]) and $n = \ell(w) = 10$ ([Lu V]). Therefore, by Hasse's sum formula, we get $m_{\mathbb{Q}_p}(\rho) = 1$ if p = 2 or $p \equiv 3 \pmod{4}$.

Assume that $p \equiv 1 \pmod{4}$. Then we have $\mathbb{Q}_p(\chi_{\rho}) = \mathbb{Q}_p(i) = \mathbb{Q}_p$, and we see that, by taking $M = H^{10}_{\text{crys}}(X^{\cdot}_{f,0})_{\rho}$, (M, ϕ) is an isocrystal over K. Thus, by considering the representation

 $R: K[G^F] \longrightarrow \operatorname{End}_K(M),$

the argument goes as §2 (note that we see that (M, ϕ) is a semisimple isocrystal). Thus we have $m_{\mathbb{Q}_p}(\rho) = 1$, hence $m_{\mathbb{Q}}(\rho) = 1$.

In the following theorem, the case where p = 5 was discussed in [Ge II] and [He] in an individual way, as explained in Introduction. Out method gives a uniform and conceptual proof in the case $p \equiv 1 \pmod{4}$.

Theorem 2 (cf. Geck [Ge I, II] and Hezard [He]) The cuspidal unipotent characters $E_8[\pm i]$ of $E_8(q)$ have the Schur index 1 over \mathbb{Q} .

The same argument can be applied to any unipotent cuspidal representation ρ with $\mathbb{Q}_p(\chi_{\rho}) = \mathbb{Q}_p$ for any G. Therefore it remains the case where G is of type (E_8) and ρ is such that $\chi_{\rho} = E_8[\zeta^j]$ $(1 \le j \le 4), p \equiv 4 \pmod{5}$. But, in this case, we can argue as follows.

Let $\chi = \chi_{\rho} = E_8[\zeta^j]$, and let χ' be the algebraically conjugate character of χ over \mathbb{Q}_p , i.e. $\chi' = E_8[\zeta^{4j}]$. Since the character of the $K[G^F]$ module $H^n_{\text{crys}}(X_0)$ takes values in \mathbb{Z} . we must have $(H^n_{\text{crys}}(X_0), \rho')_{G^F} =$ $(H^n_{\text{crys}}(X_0), \rho)_{G^F} = 1$, where ρ' is a representation of G^F with character χ' . Therefore, by the property of the Schur index, we have $m_K(\rho) =$ $m_K(\rho') = 1$, so that, by a threorem of Schur, we see that $\rho \oplus \rho'$ is a representation of G^F which is realizable in K. Hence there is a unique submodule Mof $H^n_{\text{crys}}(X_0)$ with character $\chi + \chi'$. We must have $\phi(M) = M$, since $\phi(M)$ is a G^F -submodule of $H^n_{\text{crys}}(X_0)$ with character $\sigma(\chi + \chi') = \chi + \chi'$. Thus (M, ϕ) is an isocrystal over K.

Let us consider the representation

 $R: K[G^F] \longrightarrow \operatorname{End}_K(M).$

Let $A(\chi, \mathbb{Q}_p)$ be the simple component of $\mathbb{Q}_p[G^F]$ ($\subset K[G^F]$) associated with χ . Then we see that $R(\mathbb{Q}_p[G^F]) = R(A(\chi, \mathbb{Q}_p))$ (cf. T. Yamada [Ya, Proposition 1.1, pp. 4–5]). Then since $A(\chi, \mathbb{Q}_p)$ is a central simple algebra over $\mathbb{Q}_p(\chi) = \mathbb{Q}_p(\zeta)$ and R is a ring homomorphism, we see that B = $R(\mathbb{Q}_p[G^F])$ is a simple algebra, isomorphic to $A(\chi, \mathbb{Q}_p)$. By Lemma 2 for X_0 , we must have $B \subset \operatorname{End}(M, \phi)$.

We have $M \otimes_K \overline{K} = M_\rho \oplus M_{\rho'}$, where M_ρ (resp. $M_{\rho'}$) is the ρ -isotropic part (resp. ρ' -isotropic part) of $M \otimes_K \overline{K}$. Let $\pi_M = \phi^{a'} = (F_0)^* \otimes 1$ $(q = p^{a'})$ on M. The eigenvalues of $(F_0)^* \otimes 1$ on $M_\rho \subset (M \otimes_K \overline{K})_{\zeta^{j}q^{n/2}}$ (resp. $M_{\rho'} \subset (M \otimes_K \overline{K})_{\zeta^{4j}q^{n/2}})$ are of the form $\zeta^j q^{n/2}$ (resp. $\zeta^{4j} q^{n/2}$). Since the actions of $(F_0)^* \otimes 1$ and G^F commute, by Schur's lemma, we must have $(F_0)^* \otimes 1 = \zeta^j q^{n/2}$ (resp. $= \zeta^{4j} q^{n/2}$) on M_ρ (resp. $M_{\rho'}$). Therefore the endomorphism π_M of M is semisimple, hence (M, ϕ) is a semisimple isocrystal over K (see Milne [Mi II, Proposition 2.10, p. 417]). Therefore $\operatorname{End}(M, \phi)$ is a \mathbb{Q}_p -form

on the centralizer $C = Z_E(\pi_M)$ of π_M in $E = \operatorname{End}_K(M)$ ([Ko, p. 410]). We have $C \otimes_K \overline{K} \subset Z_{E \otimes_K \overline{K}}(\pi_M) \cong M_d(\overline{K}) \oplus M_d(\overline{K})$, where $d = \chi(1) = \chi'(1)$, and it is well known that $B \otimes_K \overline{K} \simeq A(\chi, \mathbb{Q}_p) \otimes_K \overline{K} = M_d(\overline{K}) \oplus M_d(\overline{K})$. Therefore we must have $B = \operatorname{End}(M, \phi)$. Therefore, as B is simple and (M, ϕ) is semisimple, there is a simple subisocrystal (X, ϕ) of (M, ϕ) such that $B = \operatorname{End}(M, \phi) \simeq M_t(D)$ with $D = \operatorname{End}(X, \phi)$ for some positive integer t. By Lemma 11.3 of [Ko], we see that the Hasse invariant of D can be given by $-(\operatorname{ord}_p(\pi_X)/\operatorname{ord}_p(q))[\mathbb{Q}_p(\pi_X):\mathbb{Q}_p]$, where ord_p is the valuation of \mathbb{Q}_p and its extension to the field $\mathbb{Q}_p[\pi_X]$ and $\pi_X = \phi^{a'}$ on X. But $\mathbb{Q}_p[\pi_X] \cong \mathbb{Q}_p(\chi) \cong \mathbb{Q}_p(\zeta)$ and $\operatorname{ord}_p(\pi_X) = a'n/2$, $\operatorname{ord}_p(q) = a'$, hence

$$\operatorname{inv}(A(\chi, \mathbb{Q}_p)) \equiv -\frac{n}{2} [\mathbb{Q}_p(\chi) : \mathbb{Q}_p] \equiv -\frac{r}{2} [\mathbb{Q}_p(\chi) : \mathbb{Q}_p] \equiv 0 \pmod{1}$$

(note that $(-1)^n = (-1)^r$). Thus $m_{\mathbb{Q}_p}(\rho) = 1$ and $m_{\mathbb{Q}}(\rho) = 1$.

Remark The last argument works in general case (G is simple, ρ is cuspidal, and q, p arbitrary). Therefore we can prove Theorem A in the introduction.

"Theorem B" follows from this proof of Theorem A and Theorem 2.16 of Milne [Mi II].

Acknowledgement I wish to thank the referee for his (her) kind comments of the original versions of the paper. Finally, I wish to dedicate this paper to my daughters Chieko and Fumiko.

References

- [Ber] Berthelot F., Cohomologie cristalline des schémas de charactéristique p > 0. Lecture Notes in Mathematics, vol. 407, Springer-Verlag, 1974.
- [BO] Berthelot P. and Ogus A., Note on crystalline cohomology. Mathematical Notes, Princeton University Press, 1978.
- [Ca] Carter C.W., Finite groups of Lie type Conjugacy classes and complex characters. Interscience Publication, John Wiley and Sons, 1985.
- [CE] Cartan H. and Eilenberg S., Homological algebra. Princeton Mathematical Series No. 19, Princeton University Press, 1956.
- [CR] Curtis C.W. and Reiner I., *Representation theory of finite groups and assocative algebras.* Interscience Publication, John-Wiley and Sons, 1962.
- [De] Deligne P., La conjecture de Weil I. Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 273–307.
- [DL] Deligne P. and Lusztig G., Representation of reductive groups over finite fields. Ann. of Math. 103 (1976), 103–161.

- [DM] Deligne P. and Michel J., Fonctions L des variétés de Deligne-Lusztig et descent de Shintani. Memorie de la Societé Mathématique de France, no. 20, 1985.
- [Ge I] Geck M., Character values, Schur indices and character sheaves. Representation Theory 7 (2003), 19–55.
- [Ge II] Geck M., On the Schur indices of cuspidal unipotent characters. arXiv: In Finite Groups 2003, 87–104, Walten de Gruyter Grusblt & Co. KG, Berlin, 2004.
- [Ge III] Geck M., The Schur indices of the cuspidal unipotent characters of the finite Chevalley groups $E_7(q)$. Osaka J. Math. **42** (2005), 201–215.
- [Ha] Haastert B., Die Quasiaffintät der Deligne-Lusztig Varietäten. J. Algebra 102 (1986), 196–193.
- [He] Hezard D., Ph. D. thesis, Universite Lyon 1.
- [III] Illusie L., Crystalline cohomology. Proceedings of Symposia in Pure Mathematics 55 (1994), Part I, 43–70.
- [KM] Katz N. and Messing W., Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23 (1974), 73–77.
- [Kl] Kleimann S.L., The standard conjectures. Proceedings of Symposia in Pure Mathematics 55 (1994), Part I, 3–20.
- [Ko] Kottwitz R.E., Points on some Shimura varieties over finite fields. J. American Mathematical Society 5 (1992), 373–444.
- [Lu I] Lusztig G., Coxeter orbits and eigenspace of Frobenius. Invernt. Math. 38 (1976), 101–159.
- [Lu II] Lusztig G., Representations of finite Chevalley groups. Conference Board of mathematical science regional conference series in mathematics, number 19, AMS, 1976.
- [Lu III] Lusztig G., Characters of reductive groups over a finite field. Ann. of Math. Studies 107, Princeton University Press, 1984.
- [Lu IV] Lusztig G., A unipotent support for irreducible representations. Advances in Math. 94 (1992), 139—179.
- [Lu V] Lusztig G., Rationality properties of unipotent representations. J. Algebra 258 (2002), 1–22.
- [Mi I] Milne J.S., Étale cohomology. Princeton, 1980.
- [Mi II] Milne J.S., Motives over finite fields. Proceedings of Symposia in Pure Mathematics 55 (1994), Part I, 401–459.
- [Sri] Srinivasan B., Representations of finite Chevalley groups. Lecture Notes in Mathematics, vol. 764, Springer-Verlag, 1979.
- [Ya] Yamada T., The Schur subgroup of the Brauer group. Lecture Notes in Mathematics, vol. 397, Springer-Verlag, 1974.

Mathematical Department Hokkaido University of Education Iwamizawa Campus, Midorigaoka Iwamizawa 068-8642, Hokkaido, Japan