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Existence and polynomial growth

of periodic solutions to KdV-type equations
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Abstract. We establish local and global existence of periodic solutions for KdV type

equations, employing Fourier series and a fixed point argument. We also investigate the

polynomial growth of the solutions.
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1. Introduction

In this paper, we study the existence and the polynomial bound of
periodic solutions for the nonlinear dispersive equation of the Korteweg-de
Vries type:

{
ut + ∂α

xu+ uk∂xu = 0, (t, x) ∈ R+ × T;

u(0, x) = φ(x),
(1)

where φ is a real function, α a real number, k a positive integer and ∂α
x the

fractional derivative defined by, via Fourier transform,

∂̂α
x = i|ξ|αsgnξ. (2)

The function u considered here is a real-valued and space-periodic func-
tion. The method used here is the fixed point argument applied to the
corresponding integral equation

u(t) = W (t)φ−
∫ t

0
W (t− τ)w(τ)dτ, (3)

where W (t) = e−t∂α
x and w = uk∂xu, see [B2] and [FG].

The original KdV equation,

∂tu+ ∂3
xu+ u∂xu = 0, (4a)

2000 Mathematics Subject Classification : 35D05.



630 Y.-F. Fang

was derived in 1895 by Korteweg and de Vries as an approximate model of
shallow water waves, see [KdV]. It also has been derived in plasma physics
and in the studies of anharmonic lattices, see [MGKr]. Some generalizations
of KdV equation has been used to describe certain physical problems, e.g.
KdV-type equations in certain crystalline lattices, see [ABFS]. In 1975, P.
Lax [L] constructed a large class of special solutions of the KdV equation
which are periodic in space and almost periodic in time. In 1993, Bourgain
[B2] proved existence of periodic solutions for generalized KdV equations,

∂3
xu+ uk∂xu = 0. (4b)

In 1995, Bourgain [B3] extended the result of local solutions to more general
KdV equation,

∂tu+ ∂2j+1
x u+ F (u, lower order terms) = 0. (4c)

On the other hand, some fifth order (even 7th order) KdV-type equations,

∂tu+ up∂xu+ ∂3
xu+ ∂5

xu = 0, (4d)

also has been considered, see [K]. In 1996, Bourgain [B4] obtained a polyno-
mial bound of higher Sobolev norm of solutions for generalized KdV equa-
tions. In 1997, Staffilani [S] improved the existence result and the polyno-
mial bound of solution for equation (4b). In 2004, Colliander eta [CKSTT]
gave multilinear estimates for for periodic case and their applications.

It is well known that the KdV equation and some KdV-type equations
possess solitary waves and infinitely many conservation laws, see [L] and
[MGKr]. For the equation (1), there are three quantities are conserved,
namely,





∫

T
u(t)dx,

∫

T
u2(t)dx, and

∫

T

1
2
(∂(α−1)/2

x u)2(t)dx−
∫

T

1
(k + 1)(k + 2)

uk+2(t)dx.

(5)

In the nonperiodic case there have been some good results on questions of
existence and regularity, see [KPV1]∼[KPV3] and [BKPSV].

The outline of this paper is that we first show the local existence result
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for the initial value problem (1) with k = 1. The essence of the proof is
an a priori estimate inspired by work of J. Bourgain, see [B2] and [B3]. It
can be understood as a multiplier estimate on the set of R × Z. However
the proof of the estimate presented here is different from those of [B2].
It essentially relies on an idea of Zygmund [Z]. Once the local existence
is proved, we invoke a conservation law to get global existence. Next we
discuss the existence results for the initial value problem (1), (hereafter we
write IVP), with higher order nonlinearity k ≥ 2. In Section 4, we will give
a straightforward proof of the a priori estimate. Finally we will discuss the
polynomial bound for solution of IVP (1). The main results of this paper
are the following theorems.

Theorem A Let α ≥ 3. If the initial data of (1) is in L2 for k = 1 and
in H(α−1)/2 (and small) for k ≥ 2, then the initial value problem of (1) is
globally well-posed.

Theorem B Let α ≥ 3 and 3/2 ≤ (α− 1)/2 < s. If the initial data is in
Hs and small, then the global solution u satisfies

‖u(t)‖Hs ≤ C|t|2s. (6)

2. Existence Results

Throughout this paper we call

A(ξ) = |ξ|αsgnξ and S = |τ −A(ξ)|+ 1; (7)

denote by

g̃(t, ξ) =
1
2π

∫ 2π

0
e−ixξg(t, x)dx

and by

ĝ(τ, ξ) =
∫

R
e−itτ g̃(t, ξ)dt

the Fourier coefficients and the Fourier transforms with respect to the space
variable and to both the space-time variables, respectively. First we state
the local existence result for IVP (1) with k = 1:

Theorem 1 If α ≥ 3 and the initial data φ ∈ L2 (Hs, s ≥ 0), then the
IVP of (1) is locally well-posed.
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To prove the above theorem, we use a fixed point argument and the
following a priori estimate whose proof will be given later.

Theorem 2 If α ≥ 2, then we have the following estimates

‖f‖L4(R×T) ≤ C
∥∥S(1+α)/(4α)f̂‖L2(R×Z) (8a)

and its dual

‖f̂/S(1+α)/(4α)‖L2(R×Z) ≤ C‖f‖L4/3(R×T). (8b)

Before proving Theorem 1, we consider the corresponding linear prob-
lem: 



ut + ∂α

xu+ w = 0, (t, x) ∈ R+ × S1;

u(0, x) = φ(x).
(9)

The periodic solution of (9) can be expressed in integral form as follows.

u(t, x) =
∑

ξ

φ̂(ξ)ei(xξ+tA)

+ 2i
∑

ξ

eixξ

∫
eitτ − eitA

τ −A
ŵ(τ, ξ)dτ. (10)

Call U(t, x) and V (t, x) the linear and nonlinear parts of u respectively,




U(t, x) =
∑

ξ

φ̂(ξ)ei(xξ+tA);

V (t, x) = 2i
∑

ξ

eixξ

∫
eitτ − eitA

τ −A
ŵ(τ, ξ)dτ.

(11)

We want to study the nonlinear part first. Choose cut-off functions â and b̂
such that â+ b̂ = 1, supp â ⊂ [−2R, 2R] and supp b̂ ⊂ {x : |x| ≥ R}. Make
a decomposition of V (t, x) in the following way.

V (t, x) = H(t, x) + Ψ1(t, x) + Ψ2(t, x), (12)

where
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



Ĥ(τ, ξ) =
b̂(τ −A)
τ −A

ŵ(τ, ξ),

Ψ̂1(τ, ξ) = δ(τ −A)
∫
b̂(λ−A)
λ−A

ŵ(λ, ξ)dλ,

Ψ̂2(τ, ξ) =
∑

k

δ(k)(τ −A)Ĝk(ξ),

Ĝk(ξ) =
ik(2R)k−1

k!

∫ (
λ−A

2R

)k−1

â(λ−A)ŵ(λ, ξ)dλ,

(13)

where δ(τ) is the delta function and δ(k) is its k-th derivative.
Since the solution does not decay in time, it is necessary to localize it

in time. We assume that ψ is a cutoff function supported in a neighborhood
of 0 and denote ψδ(t) = ψ(t/δ), where δ is a small number to be determined
later. Let

uδ(t, x) = ψδ(t)(Ψ1 + Ψ2)(t, x) + F (t, x). (14)

The norm used here is defined by

N(u) = ‖S1/2û‖L2(R×Z). (15)

We want to prove the following result first.

Theorem 3 Let uδ be defined as in (14), we have the estimate

N(uδ) ≤ C

∥∥∥∥
ŵ

S1/2

∥∥∥∥
L2(R×Z)

+ C

{∑

ξ

∣∣∣∣
∫ |ŵ|

S
dλ

∣∣∣∣
2}1/2

. (16)

Proof. For the term H, since S2
∣∣̂b(τ −A)

∣∣2/(τ −A)2 ≤ 1, we get

‖S1/2Ĥ‖2
L2 ≤ C

∥∥∥∥
ŵ

S1/2

∥∥∥∥
L2

. (17a)

For the term Ψ1, since
∫
S|ψ̂δ(τ −A)|2dτ ≤ C(ψ), we have

‖S1/2(ψ̂δ ∗ Ψ̂1)‖L2 ≤ C

{∑

ξ

∣∣∣∣
∫ |ŵ|

S
dλ

∣∣∣∣
2}1/2

. (17b)
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For the last term, using the facts that

‖S1/2t̂kψδ‖L2 ≤ C(ψ)(2δ)k and ‖Ĝk‖L(Z) ≤ C
(2R)k

k!

∥∥∥∥
ŵ

S1/2

∥∥∥∥
L2

,

we obtain

‖S1/2(ψ̂δ ∗ Ψ̂2)‖L2 ≤ C(ψ)e4Rδ

∥∥∥∥
ŵ

S1/2

∥∥∥∥
L2

.

¤

We divide the proof for Theorem 1 into several steps. First we state
and prove two lemmas. Notice that now w = u∂xu.

Lemma 4∥∥∥∥
ŵ

S1/2

∥∥∥∥
L2(R×Z)

≤ Cδ(α−1)/8αN(u)2. (18)

Lemma 5
{∑

ξ

∣∣∣∣
∫ |ŵ|

S
dλ

∣∣∣∣
2}1/2

≤ Cδ(α−1)/8αN(u)2. (19)

Proof of Lemma 4. Observe that |ŵ(τ, ξ)| is bounded by

|ξ|
∑

η

∫
|û(λ, η)||û(τ − λ, ξ − η)|. (20)

To cancel out the factor |ξ|, notice that
∣∣(τ −A(ξ))− [(λ−A(η)) + (τ − λ−A(ξ − η))]

∣∣
=

∣∣−A(ξ) +A(η) +A(ξ − η)
∣∣ ≥ C|ξ|α−1, (21)

provided ξ 6= 0, η 6= 0 and ξ 6= η. Also observe that ŵ(τ, 0) = 0. Assume
the average of u is zero, i.e. û(τ, 0) = 0, temporarily so that we have (21).
(This assumption will be removed later.) For the sake of convenience, we
denote 



C(λ, η) = (|λ−A(η)|+ 1)1/2|û(λ, η)| = S1/2|û(λ, η)|,
F̂ (λ, η) = |û(λ, η)| and Ĝ(λ, η) = C(λ, η) = S1/2|û(λ, η)|

(22)
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Thus we can bound ŵ/S1/2 by
∫ ∑

η

|ξ|C(λ, η)C(τ − λ, ξ − η)
(|τ −A(ξ)|+ 1)1/2(|λ−A(η)|+ 1)1/2

× 1
(|τ − λ−A(ξ − η)|+ 1)1/2

dλ (23)

From (21) one of the following cases happens.




|τ −A(ξ)| ≥ C

3
|ξ|α−1,

|λ−A(η)| ≥ C

3
|ξ|α−1, and

|τ − λ−A(ξ − η)| ≥ C

3
|ξ|α−1.

(24)

For the first case of (24), we have
∫ ∑

η

C(λ, η)C(τ − λ, ξ − η)
|ξ|(α−3)/2(|λ−A(η)|+ 1)1/2(|τ − λ−A(ξ − η)|+ 1)1/2

dλ

≤ F̂ 2(τ, ξ). (25)

Taking L2 norm on F̂ 2 and applying Theorem 2, we get

‖F̂ 2‖L2 ≤ N(u)(α+1)/α‖u‖(α−1)/α
L2 . (26)

Assume that u is supported by [−δ, δ] × T , since (α + 1)/(4α) < 1/2, we
have

‖u‖L2 ≤ δ1/4‖u‖L4 (27)

which implies

‖F‖L4 ≤ Cδ(α−1)/(8α)N(u). (28)

For the second case of (24), we have
∫ ∑

η

C(λ, η)C(τ − λ, ξ − η)
(|τ −A(ξ)|+ 1)1/2|ξ|(α−3)/2(|τ − λ−A(ξ − η)|+ 1|1/2

dλ

≤ F̂G(τ, ξ)
S1/2

.
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Taking L2 norm on F̂G/S1/2, we have
∥∥∥∥
F̂G(τ, ξ)
S1/2

∥∥∥∥
L2

≤ Cδ(α−1)/(8α)N(u)2.

The proof of the last case of (24) is similar to the second one. ¤

Remark To remove the condition that the solution is of zero average,
û(τ, 0) = 0, we may modify the problem (1) by replacing φ by φ1 + φ0 and
u by u1+φ0, where φ0 =

∫
φ(x)dx =

∫
u(t, x)dx. All arguments go through

if A(ξ) is replaced by A(ξ)− φ0ξ.

Proof of Lemma 5. Observe that |ŵ|/S is bounded by
∫ ∑

η

|ξ|C(λ, η)C(τ − λ, ξ − η)
(|τ −A(ξ)|+ 1)(|λ−A(η)|+ 1)1/2

× 1
(|τ − λ−A(ξ − η)|+ 1)1/2

dλ (29)

We use the notations denoted in the previous Lemma and distinguish again
the cases in (24).

For the first case of (24), we have
{∑

ξ

(∫ |ŵ(τ, ξ)|
|τ−A|+1

dτ

)2}1/2

∼
{∑

ξ

(∫ |ξ|F̂ 2(τ, ξ)
|τ−A|+ |ξ|α−1

dλ

)2}1/2

.

Let a(ξ) be a nonnegative sequence with unit l2-norm, i.e.
∑

ξ a
2(ξ) = 1.

Using the first one in (24) and
∫

ξ2

(|τ −A|+ |ξ|α−1)2
dτ ≤ C, (30)

we can estimate

∑

ξ

∫
a(ξ)|ξ|F̂ 2(τ, ξ)
|τ −A|+ |ξ|α−1

dτ ≤ Cδ(α−1)/(4α)N(u)2. (31)

Use a duality argument, we get (18).
For the second case of (24), we have

∫ ∑
η

C(λ, η)C(τ − λ, ξ − η)
(|τ −A(ξ)|+ 1)|ξ|(α−3)/2(|τ − λ−A(ξ − η)|+ 1|1/2

dλ
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≤ F̂G(τ, ξ)
S

.

Taking l2 norm on the integral
∫
F̂G/Sdτ , we get

{∑

ξ

(∫
F̂G(τ, ξ)

S
dτ

)2}1/2

≤ Cδ(α−1)/(8α)N(u)2. (32)

The proof of the last case of (24) is again similar to the second one. ¤

Here we come to the stage that we can prove Theorem 1.

Proof of Theorem 1. First we combine the results of Theorem 3 and Lem-
mas 4 and 5 to get, for the nonlinear part V (t, x) of the solution,

‖S1/2ûδ‖L2 ≤ Cδ(α−1)/(8α)N(u)2. (33)

Define the map by

Tu(t, x) = ψδ(t)U(t, x) + ψδ(t)V (t, x). (34)

Thus the N norm of Tu is bounded by

C
(‖φ‖L2 + δ(α−1)/(8α)N(u)2

)
. (35)

By choosing sufficiently large M , we have, for suitable δ and R,

N(u) ≤M =⇒ N(Tu) ≤M, (36)

provided that C(φ) + δ(α−1)/(8α)M2 ≤M .
Next we estimate the difference of Tu and Tv and get

N(Tu− Tv) ≤ Cδ(α−1)/(8α)
(
N(u) +N(v)

)
N(u− v). (37)

Therefore, again for suitable δ and R, we obtain

N(Tu− Tv) ≤ 1
2
N(u− v), (38)

provided that Cδ(α−1)/(8α)
(
N(u) + N(v)

) ≤ 1/2 which can be satisfied
by choosing δ small for given M . By Picard’s theorem, the map T is a
contraction with respect to the norm N(u), hence it has a unique fixed
point. ¤

Remarks The nonlinear term can be replaced by ∂γ
xu2, but

1 ≤ γ ≤ (α− 1)/2.
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To get global existence we need a conservation law, i.e.‖u(t)‖L2 is con-
stant for all time t. Then we are able to extend the result to global existence.

Theorem 6 Let α ≥ 3. If the initial data of (1) is in L2 (Hs, s ≥ 0),
then there is a unique periodic solution for the IVP of (1) which exists for
all time.

Remarks The method used here can be applied to the following extension
of equation (1)

ut + ∂α
xu+ ∂β

xu+ u∂xu = 0, (39)

where 1 < β < α and 3 ≤ α. (See [K] for a particular case called the fifth
order KdV-type equation.)

3. Further Results

In this section, we want to discuss the IVP of (1) for k ≥ 2. First we
consider the case k = 2, then k ≥ 3.




ut + ∂α

xu+ u2∂xu = 0, (t, x) ∈ R+ × T,
u(0, x) = φ(x),

(40)

where α ≥ 3.

Theorem 7 For k = 2, the IVP of (1) is locally well-posed for data in H1

(Hs, s ≥ 1), and for specified
∫
T φ

2dx.

To prove the Theorem7, we need the followings.

Lemma 8 (Bourgain [B2])
(
f2 −

∫

T
f2dx

)
∂xf =

1
3

∑
ξ−ζ 6=0
ξ−η 6=0
η+ζ 6=0

ξf̂(η)f̂(ζ)f̂(ξ − η − ζ)eiξx −
∑

ξ

f̂(ξ)
2
f̂(−ξ)eiξx.

To estimate w we introduce the following norm and notation.

|||u|||2 =
∑

(1 + |ξ|2)
∫
S|û(τ, ξ)|2dτ (41)



KdV-type equations 639

+
∑

(1 + |ξ|2)
(∫

|û(τ, ξ)|dτ
)2

;

S = 1 + |τ −B(ξ)| = 1 + |τ −A(ξ) + cξ|.
Proposition 9 For uδ, we can estimate it as follows.

|||uδ|||2≤
∑

(1 + |ξ|2)
∫ |ŵ(τ, ξ)|2

S
dτ

+
∑

(1 + |ξ|2)
(∫ |ŵ(τ, ξ)|

S
dτ

)2

.

This proposition can be proved in a similar manner as that in [B2].

Proof. Due to the conservation law,
∫
T u

2(t, x)dx =
∫
T φ

2(x)dx, we denote

c =
∫

T
φ2(x)dx (42)

and consider the IVP


ut + ∂α

xu+ c∂xu = 0,

u(0, x) = ψ(x)
(43)

for which the solution can be written as

u(t, x) = Stψ(x) =
∑

ξ

ψ̂(ξ)ei(ξx+(A−cξ)t). (44)

Consider the integral equation

u(t) = Stφ+
∫ t

0
S(t− τ)w(τ)dτ, (45)

where w = [
∫
T u

2dx− u2]∂xu, which is equivalent to the IVP



ut + ∂α

x + c∂xu =
(∫

T
u2dx− u2

)
∂xu,

u(0, x) = S0φ = φ.

(46)

We construct a sequence of functions {uk} by

uk+1 =
∑

ξ

φ̂(ξ)ei(ξx+Bt) +
∑

ξ

eiξx

∫
ŵk(ξ, τ)

eitτ − eiBt

τ −B
dτ (47)
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where wk = [
∫
T u

2
kdx− u2

k]∂xuk, and B = A− c. Observe that
∣∣(τ −B(ξ))− [(λ−B(η)) + (θ −B(ζ))

+ (τ − λ− θ −B(ξ − η − ζ))]
∣∣

∼
∣∣|ξ|α − |η|α − |ζ|α − |ξ − η − ζ|α

∣∣ (48)

To find a lower bound of (48), assume that η + ζ 6= 0, ξ − η 6= 0, and
ξ − ζ 6= 0.

Case I: if one or two of |ξ|, |η|, |ζ| are larger than the others, then

(48) ≥ (|η|+ |ζ|+ |ξ − η − ζ|)α−1
. (49)

Case II: if |η| ∼ |ζ| ∼ |ξ − η − ζ|,
(48) ≥ (|η|+ |ζ|+ |ξ − η − ζ|)α−2

. (50)

Apply Bourgain’s lemma and use the notation Ω(ξ) = {(η, ζ) ∈ Z2 : η+
ζ 6= 0, ξ − η 6= 0, ξ − ζ 6= 0}, we can rewrite

ŵ(τ, ξ) =
1
3

∑

η, ζ∈Ω(ξ)

ξ

∫
û(η, λ)û(ζ, θ)û(ξ − η − ζ, τ − λ− θ)dλdθ

− ξ

∫
û(ξ, λ)û(ξ, θ)û(−ξ, τ − λ− θ)dλdθ. (51)

Call

ŵ1(τ, ξ) =
|ξ|
3

∑

η,ζ∈Ω(ξ)

∫
|û|(η, λ)|û|(ζ, θ)|û|(ξ−η−ζ, τ−λ−θ)dλdθ

ŵ2(τ, ξ) = |ξ|
∫
|û|(ξ, λ)|û|(ξ, θ)|û|(−ξ, τ−λ−θ)dλdθ

So it is sufficient to estimate, for j = 1, 2,

∑
(1 + |ξ|2)

∫ |ŵj(τ, ξ)|2
S

dτ and

∑
(1 + |ξ|2)

(∫ |ŵj(τ, ξ)|
S

dτ

)2

, (52)

For the Case I, we distinguish four cases,
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



|τ −B(ξ)| ≥ |ξ|α−1,

|λ−B(η)| ≥ |ξ|α−1,

|θ −B(ζ)| ≥ |ξ|α−1,

|τ − λ− θ −B(ξ − η − ζ)| ≥ |ξ|α−1.

(53)

For the Case II, we employ the inequality (1 + |ξ|)|ξ| < C|η||ζ|. We can
control the solution u by the norm ||| · ||| and get

|||Tu||| ≤ Cδ(α−1)/(4α)|||u|||3. (54)

Fixed point argument ensures the existence and uniqueness of the solution.
¤

To get global existence we need conservation laws. We first discuss
briefly how to derive those conserved quantities given in (5). For the first
one, it is straightforward to get that

∫
T u(t)dx =

∫
T φdx. The second one

can be proved as follows. Multiplying the equation (1) by u and integrating
by parts, we get

∫
1
2
∂t(u2)dx+

∫
u∂α

xudx = 0.

Using the identity |ũ(t, −ξ)| = |ũ(t, ξ)|, we can prove that the second inte-
gral above is 0 which implies that ‖u(t)‖L2 is conserved. For the last one,
we first take the integral operator ∂−1

x on the equation, multiply by ut and
then integrate by parts.

Next we apply those conservation laws to obtain the boundedness of
H(α−1)/2 norm of solution. We first use interpolation inequalities to bound
H1-norm of u, cf. [L]. Let us assume that u is a smooth periodic function
temporarily and denote by





∫

T
u2dx=F0, max |u(x)|=M,

∫

T

(
∂(α−1)/2

x u
)2− 2uk+2

(k+1)(k+2)
dx=F1, and

∫

T
u2

xdx=S.

(55)

Since u is smooth, there exists a point x0 such that

u2(x0) =
∫

T
u2(x)dx = F0, (56)



642 Y.-F. Fang

we apply the identity u(x) = u(x0) +
∫ x
x0
uxdx to get

u2(x) ≤ 2u2(x0) + 2
∫
u2

xdx ≤ 2F0 + 2S.

This implies that M2 ≤ 2F0 + 2S. On the other hand, we can bound S as
follows.

S =
∫

T
u2

xdx≤C
(∫

T

(
∂(α−1)/2

x u
)2
dx+

∫

T
u2dx

)

≤C
(
F1 + F0 +

2Mk

(k + 1)(k + 2)
F0dx

)
.

Hence we have

M2 ≤ 2F0 + 2C(F1 + F0) +
2CF0

(k + 1)(k + 2)
Mk. (57)

Thus we can deduce that M is bounded by some constant C = C(F0, F1),
provided that F0 and F1 are small. Also we have

∫

T

(
∂(α−1)/2

x u
)2
dx ≤ F1 +

2C(F0, F1)k

(k + 1)(k + 2)
F0. (58)

Another approach to bound the H(α−1)/2-norm of solution u is that we
interpolate between the L2 and H(α−1)/2-norms, see [B1]. Using Hölder and
Sobolev inequalities, we have

∫

T

(
∂(α−1)/2

x u
)2
dx=F1 +

∫

T

2uk+2

(k + 1)(k + 2)
dx

≤F1 + C‖u‖L2‖u‖k+1
L2(k+1) (59)

≤F1 + C‖φ‖L2‖u‖k+1
H(α−1)/2 .

This implies that if ‖φ‖H(α−1)/2 is small, then we have

‖u(t)‖H(α−1)/2 ≤ C for all t. (60)

Thus we have proved

Theorem 10 For k = 2, the IVP of (1) is globally well-posed for small
data in H(α−1)/2 (HS , s ≥ (α− 1)/2), and for specified

∫
T φ

2dx.

For the case k ≥ 3, besides ideas in [B2], we use those in [S] as well.
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Definition i) The space Y s, b, s, b ≥ 0, is the closure of the Schwartz
functions S(T× R), with respect to the norm

‖f‖Y s, b = max
i=1, 2, 3

ν
(s, b)
i (f), (61)

where 



ν
(s, b)
1 (f)2 =

∑

ξ

(1+ |ξ|)2s

(∫

R
|f̂ |(τ, ξ)dτ

)2

ν
(s, b)
2 (f)2 =

∑

ξ

(1+ |ξ|)2s

∫

R
|f̂ |2(τ, ξ)(1+ |τ −A(ξ)|)2bdτ

ν
(s, b)
3 (f)2 =

∑

ξ

(1+ |ξ|)2s−2

∫

R
|f̂ |2(τ, ξ)(1+ |τ −A(ξ)|)2b+1dτ.

(62)

Denote the space Y s, b[−δ, δ] of functions defined on T × [−δ, δ] with the
restriction norm

‖f‖Y s, b[−δ, δ] = inf ‖F‖Y s, b , (63)

where the infimum is taken over all the extensions F of f on T× R.
ii) The space Y s, b, s, b ≥ 0, is the closure of the Schwartz functions

S(T× R), with respect to the norm

‖f‖
Y

s, b = max
i=1, 2, 3, 4

µ
(s, b)
i (f), (64)

where 



µ
(s, b)
1 (f)2 =

∑

ξ

(1+ |ξ|)2s

(∫

|τ−A(ξ)>|ξ|
|f̂ |(τ, ξ)dτ

)2

µ
(s, b)
2 (f)2 =

∑

ξ

(1+ |ξ|)2s

∫

|τ−A(ξ)>|ξ|
|f̂ |2(1+ |τ −A(ξ)|)2bdτ

µ
(s, b)
3 (f)2 =

∑

ξ

(1+ |ξ|)2s−2

∫

R
|f̂ |2(τ, ξ)(1+ |τ −A(ξ)|)4bdτ

µ
(s, b)
4 (f)= ‖∂s

xf‖L∞t L2
x
.

(65)

As in i), we have the space Y s, b[−δ, δ].
iii) Let f and g be functions on T × [−δ, δ] and F and G be the
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extensions on T× R. Denote




βF (t) =
∫

T
F k(t, x)dx

F(F )(τ, ξ) =
∫

R
e−itτeiξ

R t
0 βF (σ)dσF̃ (t, ξ)dt

(66)





ds
1(F, G)2=

∑

ξ

(1+ |ξ|)2s

(∫

R
|F(F )−F(G)|(τ, ξ)dτ

)2

ds
2(F, G)2=

∑

ξ

(1+ |ξ|)2s

∫

R
|F(F )−F(G)|2(1+ |τ−A|)2bdτ

ds
3(F, G)2=

∑

ξ

(1+ |ξ|)2s

∫

R
|F(F )−F(G)|2(1+ |τ−A|)4bdτ.

(67)

Then denote the metric space by Xs, b
k [−δ, δ] with respect to the metric

ds
∗(F, G) = inf

FG

{∑

i

ds
i (F, G)

}
. (68)

The space Xs, b
k [−δ, δ] is a complete metric space, s ≥ 1/2, b ≥ 0, see

[S].

Theorem 11 Consider the IVP (1) for k ≥ 3. If φ ∈ Hs, s ≥ (α− 1)/2,
then there exists δ = δ(‖φ‖H(α−1)/2) and a unique solution u in the space
Xs, b

k [−δ, δ] such that

ds
∗(u, 0) ≤ C‖φ‖Hs . (69)

To prove Theorem 11, we consider the associated problem of IVP (1),



vt + ∂α

x v +
(
vk −

∫

T
vkdx

)
∂xv = 0, (t, x) ∈ R+ × T;

v(0, x) = φ(x),
(70)

Consider

ũ(t, ξ) = eiξ
R t
0 βv(σ)dσṽ(t, ξ). (71)

The importance of the IVP (70) is that if v is a solution for the problem,
then u given by above is a solution for IVP (1).
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Proposition 12 Let φ ∈ Hs and s ≥ (α − 1)/2. Then there exists δ =
δ(‖φ‖H(α−1)/2) such that the problem (70) is well posed in Y s, 1/2[−δ, δ] and
the solution satisfies the bound

‖v‖Y s, 1/2[−δ, δ] ≤ C‖φ‖Hs . (72)

The proof relies on Bourgain’s ideas and following lemma.

Lemma 13 (Bourgain, [B2]) If w ∈ Y s, 1/2, s ≥ 1 and denote

P (τ, ξ) = [ψδ(wk − βw)∂xw]∼(τ, ξ), (73)




(∑

ξ

∫

R
(1 + |ξ|)2s−2|P (τ, ξ)|2dτ

)1/2

≤ Cδε‖w‖Y 1, 1/2‖w‖k
Y s, 1/2

(∑

ξ

∫

τ−A(ξ)≤(|ξ|2)/200
(1 + |ξ|)2s|P |2dτ

)1/2

≤ Cδε‖w‖Y 1, 1/2‖w‖k
Y s, 1/2 ,

(74)

for some ε > 0.

Proof of Proposition 12. Define the map T on Y s, 1/2[−δ, δ] such that

T̃ (v)(t, ξ)=ψ(t)e−itA(ξ)φ̂(ξ)

+ψδ(t)
∫ t

0
e−i(t−s)A(ξ)F(

(vk − βv)∂xv
)
(s, ξ)ds. (75)

We want to show that the map T is a contraction.
As in Theorem 1, we first split T (v) into linear and nonlinear parts and

denoted by U and V respectively.




Ũ(t, ξ) = ψ(t)e−itA(ξ)φ̂(ξ)

Ṽ (t, ξ) = ψδ(t)
∫ t

0
e−i(t−s)A(ξ)F(

(vk − βv)∂xv
)
(s, ξ)ds.

(76)

To estimate U , we follow arguments in [KPV1] and [S] obtain, for j =
1, 2, 3,

νs
j (U) ≤ C‖φ‖Hs . (77)
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To estimate V , we follow Bourgain’s argument, and use Lemma 13 and

‖∂s
Xw‖2

L∞t L2
x
≤

∑

ξ

(∫

R
(1 + |ξ|)s|w̃(τ, ξ)dτ

)2

. (78)

We have, for j = 1, 2, 3,

νs
j (V )2 ≤ Cδ2γ‖v‖2

Y 1, 1/2‖v‖2k
Y s, 1/2 . (79)

Hence we obtain

‖T (v)‖Y s, 1/2[−δ, δ] ≤ C‖φ‖Hs + δγ‖v‖Y 1, 1/2[−δ, δ]‖v‖k
Y s, 1/2[−δ, δ]

. (80)

Thus if δ = δ(‖φ‖H1) is small, then, for R = C(‖φ‖Hs), T is a contraction
from a ball BR into itself.

Next we observe that

F(Tu− Tv)(t, ξ) =ψδ(t)
∫ t

0
e−i(t−s)A(ξ) ·

F([(u− v)Pk−1(u, v)− (βu − βv)]∂xv) ·
F((uk − βu)∂x(u− v))ds (81)

which suggest that we can consider the integral equation

w̃(t, ξ) =ψδ(t)
∫ t

0
e−i(t−s)A(ξ) ·

F([wPk−1(u, v)− θ(s)]∂xv)F(uk − βu)∂xw)ds, (82)

where Pk−1(u, v) is a polynomial of degree k−1 and θ(t) =
∫
TwPk−1(u, v)dx.

Let Φ be the operator defined on Y s, 1/2[−δ1, δ1], δ1 < δ, by the above inte-
gral equation. We can show that there exists δ1 = δ1(‖u‖Y s, 1/2 , ‖v‖Y s, 1/2)
such that Φ is a contraction from a ball Bρ into itself, for arbitrary ρ. By
uniqueness, we have u = v almost everywhere on [−δ1, δ1]. Repeating the
argument finite times, we conclude the proof. ¤

The proof of Theorem 11 is basically the same as that given in [S].

Theorem 14 For k > 2, the IVP of (1) is globally well-posed for data in
H(α−1)/2 (Hs, s ≥ (α− 1)/2), with sufficiently small H(α−1)/2-norm.

4. Proof of A priori Estimate

In this part, we want to prove Theorem 2.
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Theorem 2 If α ≥ 2, then we have the following estimates




‖f‖L4(R×T) ≤ C
∥∥S(1+α)/(4α)f̂

∥∥
L2(R×Z)

,

∥∥ f̂

S(1+α)/(4α)

∥∥
L2(R×Z)

≤ C‖f‖L4/3(R×T).

(83)

Proof. First we split the function f into positive and negative parts with
respect to the dual of space variable and denote

f = f+ + f− =
∑

ξ≥0

eixξ f̃(t, ξ) +
∑

ξ<0

eixξ f̃(t, ξ). (84)

It suffices to prove that f+ and f− both satisfy the estimate. We will only
prove the case of f+ since the proof for f− is similar. Hence we replace f+

by f and decompose the function in the following way. Choose a smooth
function â with support in [2−1, 2]. Let âj(τ) = â(2−jτ) and â0 = 1−∑

âj .
Consider

f(t, x) =
∑

j

fj(t, x), where f̂j(τ, ξ) = âj(τ − |ξ|α)f̂(τ, ξ). (85)

Thus we have

‖f‖2
L4 ≤

∑

j, k

‖fjfk‖L2 . (86)

Observe that (fjfk)(t, x) can be written as
∫∫ ∑

ξ1ξ2

ei(t(τ1+τ2)+x(ξ1+ξ2))f̂j(τ1, ξ1)f̂k(τ2, ξ2)dτ1dτ2. (87)

We choose a change of variables
{
τ = τ1 + τ2, ξ = ξ1 + ξ2,

p = p1 + p2, q = p2,
(88)

where 


p1 = τ1 − |ξ1|α ∈ ∆j = [2j−1, 2j+1],

p2 = τ2 − |ξ2|α ∈ ∆k = [2k−1, 2k+1].
(89)

(Without loss of generality, we assume that p1 and p2 are both positive.
The case of negative p1 and p2 can be treated in the same manner.) Thus,
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fjfk can be rewritten as follows.

(fjfk)(t, x) =
∫ ∑

ξ

ei(tτ+xξ)Ĝjk(τ, ξ)dτ, (90)

where




Ĝjk(τ, ξ) =
∫

∆k

∑

p∈Λj

(f̂j f̂k)(τ, ξ, q, p)dq and

Λj(τ, ξ, q) =
{
p ∈ ∆j + q : ξ1, ξ2 ∈ Z+

}
.

(91)

Applying Plancherel’s Theorem, we have

‖fjfk‖L2 = ‖Ĝjk‖L2 . (92)

Without loss of generality we may assume that j > k. Observe that

‖Ĝjk‖2
L2 =

∫ ∑

ξ

∣∣∣∣
∫

∆k

∑

p∈Λj

(f̂j f̂k)(τ, ξ, q, p)dq
∣∣∣∣
2

dτ. (93)

Claim

sup
τ, ξ, q

|Λj | ≤ C2j/α. (94)

Assuming the claim, we get

‖Ĝjk‖2
L2 ≤ 1

2{(α−1)/(2α)}(j−k)
·

∥∥S(1+α)/(4α)f̂j

∥∥2

L2

∥∥S(1+α)/(4α)f̂k

∥∥2

L2 . (95)

The case of j < k can be treated in a similar fashion. Thus we have

‖f+‖2
L4 ≤

∑

jk

1
2{(α−1)/(2α)}|j−k|

∥∥S(1+α)/(4α)f̂
∥∥2

L2 . (96)

Therefore we obtain

‖f‖2
L4 ≤

∥∥S(1+α)/(4α)f̂
∥∥2

L2

∑

jk

1
2{(α−1)/(2α)}|j−k| (97)

which implies that f satisfies the estimate. ¤
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Proof of the Claim. Since

Λj(τ, ξ, q) =
{
p ∈ ∆j + q : ξ1, ξ2 ∈ Z+

}
, (98)

we can deduce that

τ − q − 2j+1 ≤ ξα
1 + ξα

2 ≤ τ − q − 2j−1. (99)

Denote 


A = τ − q − 2j+1, M = 3 · 2j−1,

d(a, b) = |a− b| : the distance between point a and point b.
(100)

Thus we can rewrite the above inequality as

A ≤ ξα
1 + ξα

2 ≤ A+M, (101)

and distinguish the cases, AÀM , A ∼M and A¿M .
Let C1 and C2 be the graphs of level curves of |ξ1|α + |ξ2|α at A and

A+M respectively.



C1 = {(ξ1, ξ2) : |ξ1|α + |ξ2|α = A};
C2 = {(ξ1, ξ2) : |ξ1|α + |ξ2|α = A+M}.

(102)

Notice that we can only consider the first quadrant. It can be shown eas-
ily that, along each level curve, the farthest point to the origin is on the
line ξ1 = ξ2 and the nearest points to the origin are on the axes. Hence
|Λj(τ, ξ, q)| can be interpreted as the number of lattice points which lie on
the straight line ξ1 + ξ2 = ξ and fall into the region between curves C1 and
C2.

For the case AÀM , let C3 be a circumscribed circle to the curve C2,

C3 =

{
(ξ1, ξ2) : ξ21 + ξ22 = 2 α

√
(A+M)2

4

}
, (103)

then the largest possible line segment in the region is on the line l,

l =

{
(ξ1, ξ2) : ξ1 + ξ2 = 2 α

√
A

2

}
, (104)

which is tangent to the curve C1, see Fig. 1. Let a and b be the intersections
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�
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a

C

2

1

ξ

ξ

Fig. 2

of the line l and the circle C3, then we get

d2 ∼ α

√
A2

4
−

(
2 α

√
A2

4
− α

√
(A+M)2

4

)
≤ C

α
√
M2. (105)

For the case A ∼M , the previous argument goes through.
For the case A¿M , since C1 is small, we can take the line segment l

between two intercepts of C2,

l = {(ξ1, ξ2) : ξ1 + ξ2 = α
√
A+M}, (106)

see Fig. 2, and estimate

d ∼ α
√
A+M ≤ C2j/α. (107)

¤

Remark It is known that the L6-norm estimate is not true. In fact,
Bourgain proved the estimate

∥∥∥∥
∑

|n|<N

ane
i(nx+n3t)

∥∥∥∥
6

¿ N ε

(∑
|an|2

)1/2

(108)

in his paper [B2]. The optimal estimate should be a Lp estimate for 4 ≤
p < 6, see [B1] and [FG].
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5. The Polynomial Bound

In the final part, we discuss a polynomial bound for Hs-norm of the
global solution. First we recall two technical lemmas.

Lemma 15 (Kenig-Ponce-Vega, [KPV3]) Assume that 0 ≤ ρ ≤ 1/2 and
ε > 0 is small. Assume also that ν(−ρ+ε, 1/2)

2 (u) and ν
(−ρ+ε, 1/2)
2 (v) are

bounded and
∫
T u(t, x)dx =

∫
T v(t, x)dx = 0. Then

ν
(−ρ−ε, (−1/2)+ε)
2 (∂x(uv)) ≤ Cν

(−ρ+ε, 1/2)
2 (u)ν(−ρ+ε, 1/2)

2 (v). (109)

Lemma 16 (Staffilani, [S]) Assume that ρ ≥ 0, ε > 0 is small and k ≥ 3.
Then

ν
(ρ+ε, (1/2)−ε)
2 (X[0, 1]u

k) ≤ C‖u‖Y 1+ρ, 1/2‖u‖k−1
Y 1, 1/2 . (110)

Instead of proving Theorem B, we state and prove a more general result.

Theorem 17 Consider IVP (1) and assume that there exists an a-priori
bound for the H(α−1)/2-norm of u. Then if φ ∈ Hs and s ≥ (α − 1)/2, the
global solution satisfies the bounds





‖u(t)‖Hs ≤ C|t|s/ρ provided ρ+ 1 ≤ α− 1
2

< S;

‖u(t)‖Hs ≤ C|t|4s/(2ρ+(α−3)) provided
α− 1

2
< ρ+ 1 < S.

(111)

Proof. It is sufficient to show that, for all t ∈ [0, δ/2],

‖∂s
xu(t)‖L2

x
≤ ‖∂s

xφ‖L2
x

+ C‖∂s
xφ‖1−δ

L2
x
, (112)

where δ−1 is the exponents in Proposition 9. Since

‖∂s
xu(t)‖2

L2
x
= ‖∂s

xφ‖2
L2

x
+

∫ t

0

d

dσ
‖∂s

xu(σ)‖2
L2

x
dσ

= ‖∂s
xφ‖2

L2
x
−

∫

R

∫

T
X[0, t]u

k∂x(∂s
xu)

2dxdσ

+ lower order terms.

Call

J =
∫

R

∫

T
X[0, t]u

k∂x(∂s
xu)

2dxdσ (113)
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and set

w̃(t, ξ) = eiξ
R t
0 βu(σ)dσũ(t, ξ). (114)

Taking Fourier transform with respect to space variable, multiplying by
eiξ

R t
0 βudσ, then taking Fourier transform with respect to time variable, we

have

J =
∑

ξ

∫

R
X̂[0, t]wk(τ, ξ) ̂∂x(∂s

xw)2(τ, ξ)dτ

≤
∑

ξ

∫

R
|X̂[0, t]wk|(τ, ξ)(1 + |ξ|)ρ+ε(1 + |τ −A(ξ))1/2−ε ·

| ̂∂x(∂s
xw)2|(τ, ξ)(1 + |ξ|)−ρ−ε(1 + |τ −A(ξ))−1/2+εdτ

≤ ν(ρ+ε, 1/2−ε)
2 (X[0, 1]u

k)ν(−ρ−ε,−1/2+ε)
2 (∂x(∂s

xu)
2).

Employing Lemmas, Theorem 7, and interpolation between the H(α−1)/2

and the Hs norms, we obtain

J ≤C‖w‖Y 1+ρ, 1/2‖w‖k−1
Y 1, 1/2 [ν

(−ρ+ε, 1/2)
2 (∂s

xw)]2

≤Cd1+ρ
∗ (u, 0)d1

∗(u, 0)k−1ds−ρ+ε
∗ (u, 0)2

≤C‖φ‖H1+ρ‖φ‖k−1
H1 ‖φ‖2

Hs−ρ+ε .

For ρ+ 1 ≤ (α− 1)/2 < S, interpolation gives

J ≤ C(‖φ‖H(α−1)/2)‖φ‖2(1−2(ρ−ε)/{2s−(α−1)})
Hs . (115)

If we choose ε = ρ((α− 1)/(2s)), we have

‖u(t)‖Hs ≤ C|t|s/ρ. (116)

For (α− 1)/2 < ρ+ 1 < S, interpolation gives

J ≤ C(‖φ‖H(α−1)/2)‖φ‖2(1−{ρ+(α−3)/2−2ε}/{2s−(α−1)})
Hs . (117)

Choose ε = {(α− 1)(ρ+ (α− 3)/2)}/{4s}, we have

‖u(t)‖Hs ≤ C|t|{4s}/{2ρ+(α−3)}. (118)

¤
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