Hokkaido Mathematical Journal Vol. 34 (2005) p. 533-539

An extension of the univalence criteria of Nehari and Ozaki and Nunokawa

Horiana OVESEA-TUDOR and Shigeyoshi OWA

(Received September 22, 2003; Revised May 24, 2004)

Abstract. In this paper, we obtain a sufficient condition for the univalence of analytic functions in the open unit disk \mathbb{U} . This condition involves two arbitrary functions g(z) and h(z) analytic in \mathbb{U} . Replacing g(z) and h(z) by some particular functions, we find the well-known conditions for univalency established by Z. Nehari (*Bull. Amer. Math. Soc.* **55** (1949)) and S. Ozaki and M. Nunokawa (*Proc. Amer. Math. Soc.* **33** (1972)). Likewise we find other new sufficient conditions.

Key words: univalent function, Löwner chain, Nehari criterion, Ozaki criterion.

1. Introduction

We denote by $\mathbb{U}_r = \{z \in \mathbb{C} : |z| < r\}$ the disk of z-plane, where $r \in (0, 1], \mathbb{U}_1 = \mathbb{U}$ and $I = [0, \infty)$. Let \mathcal{A} be the class of functions f(z) which are analytic in \mathbb{U} with the normalizations f(0) = 0 and f'(0) = 1. In the present paper, we consider the following conditions for univalency of functions f(z) belonging to the class \mathcal{A} .

Theorem 1.1 ([1]) Let $f(z) \in A$. If, for all $z \in \mathbb{U}$, f(z) satisfies

$$\left|\{f;z\}\right| \le \frac{2}{(1-|z|^2)^2},\tag{1.1}$$

where

$$\{f; z\} = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2,$$
(1.2)

then the function f(z) is univalent in \mathbb{U} .

Theorem 1.2 ([2]) Let $f(z) \in A$. If, for all $z \in U$, f(z) satisfies

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| < 1,\tag{1.3}$$

then the function f(z) is univalent in \mathbb{U} .

²⁰⁰⁰ Mathematics Subject Classification : Primary 30C45.

Example 1.1 If we take Koebe function $f(z) = z/(1-z)^2$ which is the extremal function for the class of starlike functions in \mathbb{U} , then

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| = |-z^2| < 1 \qquad (z \in \mathbb{U}).$$

2. Preliminaries

Our considerations are based on the theory of Löwner chains. We first recall here the following basic result of this theory by Pommerenke.

Theorem 2.1 ([4]) Let $L(z, t) = a_1(t)z + a_2(t)z^2 + \cdots$, $a_1(t) \neq 0$ be analytic in \mathbb{U}_r for all $t \in I$, locally absolutely continuous in I, and locally uniform with respect to \mathbb{U}_r . For almost all $t \in I$ suppose that

$$z\frac{\partial L(z,\,t)}{\partial z} = p(z,\,t)\frac{\partial L(z,\,t)}{\partial t} \quad (\forall z \in \mathbb{U}_r),$$

where p(z, t) is analytic in \mathbb{U} and satisfies the condition $\operatorname{Re} p(z, t) > 0$ for all $z \in \mathbb{U}$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z, t)/a_1(t)\}$ forms a normal family in \mathbb{U}_r , then, for each $t \in I$, the function L(z, t) has an analytic and univalent extension to the whole disk \mathbb{U} .

3. Main results

Main theorem of our paper is contained in

Theorem 3.1 Let $f(z) \in A$. If, for $g(z) = 1 + b_1 z + \cdots$ and $h(z) = c_0 + c_1 z + \cdots$ which are analytic in \mathbb{U} , the following inequalities

$$\left|\frac{f'(z)}{g(z)} - 1\right| < 1,\tag{3.1}$$

and

$$\left| \left(\frac{f'(z)}{g(z)} - 1 \right) |z|^4 + z(1 - |z|^2) |z|^2 \left(2 \frac{f'(z)h(z)}{g(z)} + \frac{g'(z)}{g(z)} \right) + z^2 (1 - |z|^2)^2 \left(\frac{f'(z)(h(z))^2}{g(z)} + \frac{g'(z)h(z)}{g(z)} - h'(z) \right) \right|$$

$$\leq |z|^2$$
(3.2)

hold true for all $z \in \mathbb{U}$, then the function f(z) is univalent in \mathbb{U} .

534

Proof. Let us consider the function $h_1(z, t)$ given by

$$h_1(z, t) = 1 + (e^t - e^{-t})zh(e^{-t}z).$$

For all $t \in I$ and $z \in \mathbb{U}$ we have $e^{-t}z \in \mathbb{U}$ and from the analyticity of h(z)in \mathbb{U} it follows that $h_1(z, t)$ is also analytic in \mathbb{U} . Since $h_1(0, t) = 1$, there exists a disk \mathbb{U}_r , 0 < r < 1 in which $h_1(z, t) \neq 0$ for all $t \in I$. Then the function L(z, t) defined by

$$L(z, t) = f(e^{-t}z) + \frac{(e^t - e^{-t})zg(e^{-t}z)}{1 + (e^t - e^{-t})zh(e^{-t}z)}$$

is analytic in \mathbb{U}_r for all $t \in I$ and has the following form

$$L(z, t) = a_1(t)z + a_2(t)z^2 + \cdots,$$

where $a_1(t) = e^t$, $a_1(t) \neq 0$ for all $t \in I$ and $\lim_{t\to\infty} |a_1(t)| = \infty$. From the analyticity of L(z, t) in \mathbb{U}_r , it follows that there exists a number $r_1, 0 < r_1 < r$, and a constant $K = K(r_1)$ such that

$$\left|\frac{L(z,\,t)}{a_1(t)}\right| < K \quad (\forall z \in \mathbb{U}_{r_1}, \ t \in I).$$

In consequence, the family $\{L(z, t)/a_1(t)\}$ is normal in \mathbb{U}_{r_1} . From the analyticity of $\partial L(z, t)/\partial t$, for all fixed numbers T > 0 and r_2 , $0 < r_2 < r_1$, there exists a constant $K_1 > 0$ (that depends on T and r_2) such that

$$\left|\frac{\partial L(z,t)}{\partial t}\right| < K_1 \quad (\forall z \in \mathbb{U}_{r_2}, t \in [0,T])$$

It follows that the function L(z, t) is locally absolutely continuous in I, locally uniform with respect to \mathbb{U}_{r_2} . Let us define the functions p(z, t) and w(z, t) by

$$p(z, t) = z \frac{\partial L(z, t)}{\partial z} \left/ \frac{\partial L(z, t)}{\partial t} \right.$$

and

$$w(z, t) = \frac{p(z, t) - 1}{p(z, t) + 1}$$

Then the function p(z, t) is analytic in \mathbb{U}_{r_3} , $0 < r_3 < r_2$, and the function p(z, t) has an analytic extension with positive real part in \mathbb{U} , for all $t \in I$,

if the function w(z, t) can be continued analytically in \mathbb{U} and |w(z, t)| < 1 for all $z \in \mathbb{U}$ and $t \in I$.

After simple computation, we obtain that

$$w(z, t) = \left(\frac{f'(e^{-t}z)}{g(e^{-t}z)} - 1\right)e^{-2t} + (1 - e^{-2t})e^{-t}z\left(\frac{2f'(e^{-t}z)h(e^{-t}z)}{g(e^{-t}z)} + \frac{g'(e^{-t}z)}{g(e^{-t}z)}\right) + (1 - e^{-2t})^2 z^2 \times \left(\frac{f'(e^{-t}z)(h(e^{-t}z))^2}{g(e^{-t}z)} + \frac{g'(e^{-t}z)h(e^{-t}z)}{g(e^{-t}z)} - h'(e^{-t}z)\right).$$
(3.3)

From (3.1) and (3.2), we deduce that $g(z) \neq 0$ for all $z \in \mathbb{U}$ and then the function w(z, t) is analytic in U. In view of (3.1) and (3.3), we have

$$w(0, t) = 0$$
 and $|w(z, 0)| = \left|\frac{f'(z)}{g(z)} - 1\right| < 1.$ (3.4)

If t > 0 is a fixed number and $z \in \mathbb{U}$, $z \neq 0$, then the function w(z, t) is analytic in $\overline{\mathbb{U}}$ because $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{\mathbb{U}}$, and it is known that

$$|w(z,t)| = \max_{|\zeta|=1} |w(\zeta,t)| = |w(e^{i\theta},t)|, \quad \theta = \theta(t) \in \mathcal{R}.$$
(3.5)

Let us denote by $u = e^{-t}e^{i\theta}$. Then $|u| = e^{-t}$ and, from (3.3), we get

$$\begin{split} |w(e^{i\theta},t)| &= \left| \left(\frac{f'(u)}{g(u)} - 1 \right) |u|^2 + (1 - |u|^2) u \left(\frac{2f'(u)h(u)}{g(u)} + \frac{g'(u)}{g(u)} \right) \right. \\ &+ (1 - |u|^2)^2 \frac{u^2}{|u|^2} \left(\frac{f'(u)(h(u))^2}{g(u)} + \frac{g'(u)h(u)}{g(u)} - h'(u) \right) \right|. \end{split}$$

Since $u \in \mathbb{U}$, the relation (3.2) implies $|w(e^{i\theta}, t)| \leq 1$ and, from (3.4) and (3.5), we conclude that |w(z, t)| < 1 for all $z \in \mathbb{U}$ and $t \in I$. This gives us that L(z, t) is the Löwner chain and hence the function L(z, 0) = f(z) is univalent in \mathbb{U} .

We can get some corollaries for special cases of functions g(z) and h(z). So in the particular case g(z) = f'(z) as a direct consequence of Theorem 3.1, we get

536

Theorem 3.2 Let $f(z) \in A$. If, for an analytic function $h(z) = c_0 + c_1 z + \cdots$ in \mathbb{U} , f(z) satisfies

$$\left| (1 - |z|^2) |z|^2 \left(2h(z) + \frac{f''(z)}{f'(z)} \right) + z(1 - |z|^2)^2 \left((h(z))^2 + \frac{f''(z)h(z)}{f'(z)} - h'(z) \right) \right| \leq |z|$$
(3.6)

for all $z \in \mathbb{U}$, then the function f(z) is univalent in \mathbb{U} .

If we take

$$h(z) = -\frac{1}{2} \frac{f''(z)}{f'(z)}$$
(3.7)

in Theorem 3.2, then we have

Corollary 3.1 ([1]) If $f(z) \in A$ satisfies the inequality (1.1) for all $z \in \mathbb{U}$, then the function f(z) is univalent in \mathbb{U} .

Proof. For the function h(z) defined by (3.7), the Schwartzian derivative (1.2) shows that

$$(h(z))^{2} + \frac{f''(z)h(z)}{f'(z)} - h'(z) = \frac{1}{2} \left[\frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)} \right)^{2} \right]$$
$$= \frac{1}{2} \{f; z\}.$$

and then the inequality (3.6) becomes (1.1).

In the particular case $g(z) = (f(z)/z)^2$ in Theorem 3.1, we have

Theorem 3.3 Let $f(z) \in A$. If, for an analytic function $h(z) = c_0 + c_1 z + \cdots$ in \mathbb{U} , f(z) satisfies

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| < 1 \tag{3.8}$$

and

$$\left| \left(\frac{z^2 f'(z)}{(f(z))^2} - 1 \right) |z|^4 + 2z(1 - |z|^2) |z|^2 \left(\frac{z^2 f'(z)h(z)}{(f(z))^2} + \frac{f'(z)}{f(z)} - \frac{1}{z} \right) + z^2(1 - |z|^2)^2 \right|$$

H. Ovesea-Tudor and S. Owa

$$\times \left[\frac{z^2 f'(z)(h(z))^2}{(f(z))^2} + 2h(z) \left(\frac{f'(z)}{f(z)} - \frac{1}{z} \right) - h'(z) \right] \le |z|^2 \qquad (3.9)$$

for all $z \in \mathbb{U}$, then the function f(z) is univalent in \mathbb{U} .

We remark that the inequality (3.8) is just the inequality (1.3) and we will get the univalent criterion by Ozaki and Nunokawa [2] for a particular choise of the function h(z). So, if we take in Theorem 3.3

$$h(z) = \frac{1}{z} - \frac{f(z)}{z^2},\tag{3.10}$$

then we obtain

Corollary 3.2 ([2]) If $f(z) \in A$ satisfies the inequality (1.3) for all $z \in \mathbb{U}$, then the function f(z) is univalent in \mathbb{U} .

Proof. For the function h(z) defined by (3.10), we see that

$$\frac{z^2 f'(z)h(z)}{(f(z))^2} + \frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{zf'(z)}{(f(z))^2} - \frac{1}{z}$$

and

$$\frac{z^2 f'(z)(h(z))^2}{(f(z))^2} + 2h(z)\left(\frac{f'(z)}{f(z)} - \frac{1}{z}\right) - h'(z) = \frac{f'(z)}{(f(z))^2} - \frac{1}{z^2}.$$

The inequality (3.9) becomes

$$\left| \left(\frac{z^2 f'(z)}{(f(z))^2} - 1 \right) \left(|z|^4 + 2|z|^2 (1 - |z|^2) + (1 - |z|^2)^2 \right) \right| \leq |z|^2,$$

and then

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| \le |z|^2.$$
(3.11)

It is easy to prove that if the inequality (1.3) is true, then the inequality (3.11) is also true. Indeed, if we put

$$w(z) = \frac{z^2 f'(z)}{(f(z))^2} - 1,$$

then the function w(z) is analytic in \mathbb{U} and, since $f(z) \in \mathcal{A}$, we observe that

$$w(z) = d_2 z^2 + d_3 z^3 + \cdots,$$

538

which shows that w(0) = w'(0) = 0. By inequality (1.3), we have |w(z)| < 01. Thus the Schwartz's lemma gives us that $|w(z)| < |z|^2$.

Finally, we give a example for Corollary 3.2.

Example 3.1 Let us consider the function f(z) given by

$$f(z) = \frac{z}{1 + \sum_{n=2}^{\infty} \left\{ 2/\left(n(n^2 - 1)\right)\right\} z^n}.$$

Then we have that

$$\frac{z^2 f'(z)}{(f(z))^2} - 1 = -\sum_{n=2}^{\infty} \frac{2}{n(n+1)} z^n,$$

which gives that

$$\left|\frac{z^2 f'(z)}{f(z)^2} - 1\right| < 2\sum_{n=2}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1.$$

Therefore, the function f(z) is univalent in \mathbb{U} .

References

- [1] Nehari, Z., The Schwartzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55 (1949), 545-551.
- Ozaki, S. and Nunokawa, M., The Schwartzian derivative and univalent functions. [2]Proc. Amer. Math. Soc. 33 (2) (1972), 392-394.
- [3] Pommerenke, Ch., Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218 (1965), 159-173.
- [4]Pommerenke, Ch., Univalent Functions. Vandenhoech Ruprecht in Göttingen, 1975.

H. Ovesea-Tudor Department of Mathematics "Transilvania" University of Braşov 2200, Brasov Romania

S. Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan