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Sharp estimates

of the modified Hardy Littlewood maximal operator

on the nonhomogeneous space via covering lemmas
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Abstract. In this paper we consider the modified maximal operator on the separable

metric space. Define

Mkf(x) = sup
r>0

1

µ(B(x, kr))

Z

B(x,r)
|f(y)|dµ(y)

and

Mk,ucf(x) = sup
x∈B(y,r)

1

µ(B(y, kr))

Z

B(y,r)
|f(z)|dµ(z)

respectively. We investigate in what parameter k the weak (1, 1)-inequality holds for Mk

and Mk,uc in general metric space and Euclidean space. The proofs are sharper than the

method of Vitali’s covering lemma. This attempt is partially done by Yutaka Terasawa

[9] before. When we investigate Rd, we prove a new covering lemma of Rd. We also show

that our condition on parameter k is sharp. In connection with this we consider the dual

inequality of Stein type and its applications.

Key words: maximal operator, covering lemma, non-homogeneous.

1. Introduction

The aim of this paper is to investigate maximal inequalities of the mod-
ified maximal operator associated to nondoubling measures. Let (X, d) be
a separable metric space endowed with a Radon measure µ such that all
the balls are non-degenerate. We say that a ball B with positive radius is
non-degenerate if µ(B) > 0. For simplicity we assume that µ(B) < ∞ for
any ball B with finite radius. In [8] the modified maximal operator is intro-
duced as M̃f(x) = supr>0 1/µ(B(x, 3r))

∫
B(x,r) |f(y)|dµ(y), where B(x, r)

is an open ball with radius r > 0 and center x ∈ X. They showed that
µ({x ∈ X | M̃f(x) > λ}) ≤ 1/λ

∫
X |f(x)|dµ(x).

Motivated by this, we define
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Mkf(x) = sup
r>0

1
µ(B(x, kr))

∫

B(x,r)
|f(y)|dµ(y).

Section 2 is devoted to the study of the weak-(1, 1) property of Mk. The
strong-(p, p) property and weak-(1, 1) property of Mk still hold if k ≥ 2.

Yutaka Terasawa [9] showed the following theorem.

Theorem 1.1 Let X be a metric space (which is not necessarily sepa-
rable). Let µ be a nondegenerate Radon measure such that µ(B(x, r)) is
continuous with the variable r > 0 when x ∈ X is fixed. Suppose that k >

2, then we have Mk is weak-(1, 1) bounded and its weak-(1, 1) constant is
less than or equal to 1:

µ({x ∈ X | Mkf(x) > λ}) ≤ 1
λ

∫

X
|f(x)|dµ(x).

He proved the theorem using an outer measure method, which is differ-
ent from the one we are going to use.

We shall prove the above theorem with k = 2 using a new covering
lemma.

Theorem 1.2 Let (X, d) be a separable metric space. Let µ be a Radon
measure such that µ(B(x, r)) <∞. Then we have M2 is weak-(1, 1) bounded.
And the weak-(1, 1) constant is less than or equal to 1:

µ({x ∈ X | M2f(x) > λ}) ≤ 1
λ

∫

X
|f(x)|dµ(x).

Of course the strong-(∞, ∞) property is clear, by interpolation we only
need to prove the weak-(1, 1) property to obtain the strong-(p, p) property.

Yutaka Terasawa proposed the following question: In what parameter
k, does Mk satisfy the weak-(1, 1) estimate?

Motivated by this, we consider the following problem.

Question Does there exist a separable metric space such that Mk is weak-
(1, 1) bounded only if k ≥ 2?

Theorem 1.2 is sharp. We will show this sharpness in Section 2.3 by
making an example whose property is summarized below.

Proposition 1.1 There exist a separable space (X, d) and a measure µ

such that Mk is bounded if and only if k ≥ 2. And the weak-(1, 1) constant
of M2 is 1 on this space.
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Next we develop applications of this weak-type inequality and the cov-
ering lemma used to prove Theorem 1.2. First we derive the dual inequality
by the method used in Theorem 1.2. Next using the duality inequality
carefully, we derive the Fefferman-Stein type vector-valued inequality for
the nonhomogeneous space. The result we will get is the following.

Theorem 1.3 If 1 < p < ∞, 1 < q ≤ ∞, then we have
∥∥∥∥
(∑

j∈Z

(Mlfj)q

)1/q∥∥∥∥
p

≤ Cp,q

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

,

if l is large enough. l ≥ 22 will do.

This vector-valued inequality automatically yields the vector-valued in-
equality of the maximal operator of the singular integral appearing in [3].
We will quote the definition of singular integral from [8].

Definition 1.1 We say that µ satisfies the growth condition if

µ(B(x, r)) ≤ Crn for all r > 0.

Here n is a positive constant that can be different from the (geometric or
Euclidean) dimension of X.

Definition 1.2 Let µ and n be as above, the singular integral operator is
a bounded linear operator T : L2(X) → L2(X) that satisfies the following:

There exists a function K that satisfies three properties listed below.
(1) There exists C > 0 such that |K(x, y)| ≤ C/d(x, y)n.
(2) There exist ε > 0 and C > 0 such that

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ C
d(x, z)ε

d(x, y)ε+n
,

if d(x, y) > 2d(x, z).
(3) If f is a bounded measurable function with a bounded support, then

we have

Tf(x) =
∫

X
K(x, y)f(y)dµ(y) for all x /∈ supp(f).

Definition 1.3 We also define the maximal operator of the truncated
integral by the formula
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T ∗f(x) = sup
r>0

∣∣∣∣
∫

{y∈X|d(x, y)>r}
K(x, y)f(y)dµ(y)

∣∣∣∣.

By using the result of [8] and Theorem 1.3, we get the result of [4] again.

Theorem 1.4 [4] Let K, T and µ be ones appearing in the above defini-
tions. If 1 < p, q < ∞, then we have

∥∥∥∥
(∑

j∈Z

(T ∗fj)q

)1/q∥∥∥∥
p

≤ Cp,q

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

.

When we consider the Euclidean space endowed with a standard dis-
tance, we have M1 is weak-(1, 1) bounded. This is due to the Besicovitch
covering lemma. For the proof see, for example, [7].

For the proof of that lemma, see [2]. We just cite it below for com-
pleteness and comparison with our Theorem 1.5. We state it in the form
different from the one stated in [2].

Definition 1.4 Let {Bλ}λ∈L be a family of balls in the metric space.
We say {Bλ}λ∈L is disjoint if Bλ1 ∩ Bλ2 = ∅ for λ1 6= λ2. Let B be a
family of balls and {Bλ}λ∈L1 , . . . , {Bλ}λ∈LN

be subfamilies of B. We say
{Bλ}λ∈L1 , . . . , {Bλ}λ∈LN

are disjoint subfamilies if {Bλ}λ∈Lj
is disjoint for

all j.

Lemma 1.1 Let {Bλ}λ∈L be a family of balls. Suppose the diameters of
balls {Bλ}λ∈L are bounded. Then there exists an integer N depending only
on the dimension that has the following property:

There are N disjoint subfamilies G1, G2, . . . , GN such that all the cen-
ters of balls {Bλ}λ∈L belong to a ball in some Gj.

Parallel to this we also define the uncentered maximal operator

Mk,ucf(x) = sup
x∈B(y,r)

1
µ(B(y, kr))

∫

B(y,r)
|f(z)|dµ(z).

We devote Section 3 to the study of Mk,uc. Similar example appearing
in Proposition 1.1 shows that there exist (X, d) and µ such that Mk,uc is
bounded if and only if k ≥ 3. In Euclidean setting, endowed with a standard
distance, M1 is weak-(1, 1) is bounded by Besicovitch covering lemma. But
as for the uncentered version, Mk,uc is bounded only if k > 1. We show this
by proving a new covering lemma (Theorem 1.5).
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Theorem 1.5 For all k > 1 there exists an integer N = Nk, depending
only on the dimension and k, that satisfies the following:

Let {B(xλ, rλ)}λ∈L be a family of balls in Euclidean space endowed with
a standard distance. Suppose that supλ∈L rλ < ∞.

Then we can take disjoint subfamilies

{B(xρ, rρ)}ρ∈L1 , {B(xρ, rρ)}ρ∈L2 , . . . , {B(xρ, rρ)}ρ∈LN

such that
⋃

λ∈L B(xλ, rλ) ⊂ ⋃
j=1,...,N

⋃
ρ∈Lj

B(xρ, krρ).

Using this theorem, we can prove Mk,uc is weak-(1, 1) bounded, if k >

1. This result is shown by Tolsa [10], where balls are replaced by cubes and
the result is shown by using Besicovitch’s covering lemma.

Theorem 1.6 Mk,uc is bounded, if k > 1.

As an application of Theorem 1.5, we also obtain

Theorem 1.7 If 1 < p < ∞, 1 < q ≤ ∞ and 1 < k < ∞, then we have
∥∥∥∥
(∑

j∈Z

(Mk,ucfj)q

)1/q∥∥∥∥
p

≤ Cp,q,k

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

.

For the uncentered version with k = 1, see [6]: There exists a measure
such that M1,uc is not weak-(1, 1) bounded.

2. The centered maximal operator

2.1. A covering lemma
The first covering lemma is the refinement of the Vitali’s covering

lemma, which leads us to obtain the weak-(1, 1) boundedness of M2. And
it is used in application again.

Lemma 2.1 Let δ > 0. Suppose we have a family of n balls
{B(xj , rj)}j∈{1,...,n}. Then we can take a subfamily {B(xj , rj)}j∈A such
that
(1) {B(xj , rj)}j∈A is disjoint.
(2)

⋃

j∈{1,...,n}
B(xj , δrj) ⊂

⋃

j∈A

B(xj , (2 + δ)rj).

Remark 2.1 This is an extension of the Vitali’s covering lemma: The
lemma is precisely Vitali’s covering lemma if δ = 1.
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Proof. We select j1 so that rj1 = max{r1, . . . , rn}. If
⋃

j∈{1,...,n}
B(xj , δrj) ⊂ B(xj1 , (2 + δ)rj1),

we have nothing else to do. Let us assume otherwise in the sequel. We
define

Λ1 =
{

j ∈ {1, . . . , n}
∣∣∣∣

B(xj , δrj) isn’t contained in
B(xj1 , (2 + δ)rj1)

}
.

We inductively define the subsets of {1, . . . , n} and j1, . . . , jp ∈ {1, . . . , n}
as follows:
Suppose that j1, . . . , jq−1 and the subsets Λ1, . . . , Λq−1 ⊂ {1, . . . , n} are
defined. Then we take jq so that

rjq = max
j∈Λ1∩···∩Λq−1

rj with jq ∈ Λ1 ∩ · · · ∩ Λq−1

and we define

Λq =





j ∈ {1, . . . , n}
∣∣∣∣

B(xj , δrj) isn’t contained in⋃

j=j1,...,jq−1

B(xj , (2 + δ)rj)





.

This procedure will be stopped because we are dealing with the finite num-
ber of the balls. Suppose we have stopped after we selected jp and Λp. We
will verify that A = {j1, . . . , jp} satisfies all the requirement of the lemma.

To verify this we fix j ∈ {1, . . . , n}. We have three possibilities.
(a) j ∈ {j1, . . . , jp}.
(b) rj = rjp and j /∈ {j1, . . . , jp}.
(c) rjk

≥ rj > rjk+1
for some k ∈ {1, . . . , p− 1} and j /∈ {j1, . . . , jp}.

We want to show that B(xj , δrj) ⊂ ∪j∈AB(xj , (2 + δ)rj). If (a) hap-
pens, this inclusion is clear. We assume (c) in the sequel. The rest of
the possibility can be dealt similarly. Assuming (c) we have B(xj , δrj) ⊂⋃

j∈{j1, j2, ..., jk}B(xj , (2 + δ)rj) by the definition of Λ1, . . . , Λk and rjk+1
.

Thus our claim is justified.
Moreover the balls {B(xj , rj)}j∈A are disjoint. Indeed suppose k < k′,

so that we have rjk
≥ rjk′ . By the definition of Λj , we have B(xjk′ , δrjk′ ) is

not contained in B(xjk
, (2+δ)rjk

), since jk < jk′ . Thus the center xjk′ is not
an element of B(xjk

, 2rjk
). This implies d(xjk

, xjk′ ) ≥ 2rjk
. Furthermore
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as noted, we have rjk
≥ rj′k

. Combining them, we obtain {B(xj , rj)}j∈A is
disjoint. ¤

2.2. Proof of Theorem 1.2
First of all let us remark the following fact, which is often used in the

sequel.

Remark 2.2 B(x, r) is an open ball with radius r > 0 and center x ∈ X.
We use B(x, r) to denote a closed ball with radius r > 0 and center x ∈ X.
By Radon property, we can replace B(x, r) by B(x, r) in the definition of
Mk and Mk,uc. Thus for all measurable f : X → C we have Mkf(x) →
Mk0f(x) as k → k0.

Noting this remark, we shall prove Theorem 1.2. Fix λ > 0. By Remark
2.2, it follows that

⋃

k>2

{x ∈ X | Mkf(x) > λ} = {x ∈ X | M2f(x) > λ}.

Let δ > 0 and k = 2 + δ. We define Ek = {x ∈ X | Mkf(x) > λ}. For all
x ∈ Ek, by its definition there exists rx > 0 such that

1
µ(B(x, krx))

∫

B(x,rx)
|f(y)|dµ(y) > λ.

Since µ is a Radon measure, Ek is an open set. Since X is separable, so with
the aid of the Linderöf covering theorem we can take xj ∈ Ek, j = 1, 2, . . .

such that Ek ⊂
⋃

j∈N B(xj , δrxj ).
By Lemma 2.1 there exists A ⊂ {1, . . . , n} such that

⋃

j=1, ..., n

B(xj , δrxj ) ⊂
⋃

l∈A

B(xl, (2 + δ)rxl
) and

{B(xl, rxl
)}l∈A is disjoint.

By the definition of Ek, we also have

µ(B(xl, (2 + δ)rxl
)) ≤ 1

λ

∫

B(xl,rxl
)
|f(x)|dµ(x).

Putting them together, we obtain

µ

( ⋃

j=1,2,...,n

B(xj , δrxj )
)
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≤µ

(⋃

l∈A

B(xl, (2 + δ)rxl
)
)
≤

∑

l∈A

µ(B(xl, (2 + δ)rxl
))

≤
∑

l∈A

1
λ

∫

B(xl,rxl
)
|f(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|dµ(x).

Letting n tend to infinity in the above inequality,

µ(Ek) ≤ 1
λ

∫

X
|f(x)|dµ(x)

is derived. As is noted in Remark 2.2, we have
⋃

k>2

{x ∈ X | Mkf(x) > λ} = {x ∈ X | M2f(x) > λ}.

Tending k ↓ 2, we get

µ({x ∈ X | M2f(x) > λ}) ≤ 1
λ

∫

X
|f(x)|dµ(x).

Remark 2.3 This theorem may be regarded as some extension of the re-
sult [1]. In [1], H. Carlsson proved his result on the Euclidean space with
Lebesgue measure with Euclidian distance. He used the method appeared
in [5]. But we cannot apply it to the metric space with non-doubling mea-
sure, because we cannot use the Lebesgue differentiation theorem in general
separable metric spaces. Another proof using an outer measure and related
results can be found in [9].

Corollary 2.1 We have for p > 1 ‖M2f‖p ≤ Cp‖f‖p.

Proof. Since ‖M2f‖∞ ≤ ‖f‖∞ is trivial, by interpolation we obtain the
desired inequality. ¤

2.3. An example showing sharpness of Theorem 1.2
Next we want to construct a space where Mk is not bounded if k < 2.

First we define a set on which the distance and the measure will be defined.
The distance is quite different from the one of the usual Euclidean space.
We will define D, X and so on. They are valid only in this subsection.

Definition 2.1 Let D be a closed unit disk on the complex plane. Define
X as a direct product of a countable copies of D.

In what follows [ · ] is used to denote the Gauss sign.
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Definition 2.2 We define a function d as follows: Take x = {xn}n∈N and
y = {yn}n∈N. Then there exists r ≤ 2 such that |xn − yn| ≤ r for all
n ≤ 2 + [log10(1/r)] We define d(x,y) as an infimum of such r > 0.

Remark 2.4 r that appears in the definition does exist: r = 2 will be
enough.

Lemma 2.2 This function defines a distance.

Proof. We will omit the proof, since it is easy to show the lemma, noting
next remark. ¤

Remark 2.5 If r > 0, the open ball B(x, r) is precisely the set
{
y = {yn}n∈N ∈ X

∣∣∣∣ |xn − yn| < r for all n ≤ 2 +
[
log10

1
r

]}
.

Lemma 2.3 The space X, endowed with a distance function d, is a sep-
arable subspace.

Proof. Using standard argument, this lemma is easy to show. So we will
omit the proof. ¤

This is the distance space we work on. Next let us define the measure.

Definition 2.3 Let B be a σ-algebra generated by B(x, r) with x ∈ X

and r > 0.

The following proposition ensures the measurability of a maximal func-
tion.

Proposition 2.1 The σ-algebra B is nothing but the one generated by the
cylinder sets of the form A1× · · ·×Al×D×D× · · · , where A1, . . . , Al are
Bore-measurable sets of D.

Proof. Put ∆(a, r) = {z ∈ D | |z−a| < r}, where a ∈ D and r > 0. Let us
show that ∆(a1, r1)×∆(a2, r2)×· · ·×∆(al, rl)×D×D×· · · is B-measurable,
if a1, a2, . . . , al ∈ D and r1, r2, . . . , rl > 0. In fact B(a, 10−l+2) is con-
tained in B for all a ∈ X. Since ∆(a1, r1)×∆(a2, r2)×· · ·×∆(al, rl)×D×
D × · · · is expressible as a countable union and intersection of balls of the
form B(a, 10−l+2), where a ∈ X, ∆(a1, r1)×∆(a2, r2)×· · ·×∆(al, rl)×D×
D×· · · is B-measurable. Thus σ-algebra B contains σ-algebra generated by
cylinder sets. The reverse inclusion is clear so our claim is justified. ¤
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Remark 2.6 The topology induced by this distance is the same as prod-
uct topology induced by Euclidean topology of D. This can be shown using
the same idea as that of Proposition 2.1.

Definition 2.4 We define f : D → R as follows:
Firstly we define an =

∏n+2
j=1 j!. We define annulus An and Bn with n =

0, 1, . . . as

An =
{

z ∈ D | 3−n

(
1− 1

an
3

)
< |z| < 3−n

}

Bn =
{

z ∈ D | 3−n−1 < |z| < 3−n

(
1− 1

an
3

)}
.

And we define the density function f as

f(z) =





l/an on An

l/an+3
5 on Bn

0 otherwise.

We define ν = f(z)dz, where dz is the Lebesgue measure on D. Con-
stant l is taken so that ν(D) = 1. Let µn be a measure on D×D× · · · ×D

(n-tuple) defined as µn = ν × ν × · · · × ν. Since ν(D) = 1, we can use
Kolmogorov’s extension theorem to define µ as a countable product of ν:
µ = limn→∞ µn.

Firstly, let us examine the property of the (complicated) function f . It
is summarized as a lemma below.

Lemma 2.4 (a) The ball is non-degenerate if its radius is positive. And
there are infinitely many integers n such that B(x, 1/3n) and B(x, 1/(2 ·
3n)) are made up of the product of the same number of nontrivial balls and
the closed unit disks, where a ball is nontrivial means that it is a proper
subset of D.
(b) Define Ω1 = Ω1,n as

Ω1 = {x +
√−1y ∈ D | (x− 3−n)2 + y2 ≤ 4 · 9−n}.

Then we have

lim
n→∞

ν(Ω1)
2πl/9nan

4
= 1.
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(c) Let 3/2 < k < 2. Define Ω2 = Ω2,n as

Ω2 = {x +
√−1y ∈ D | (x− 3−n)2 + y2 ≤ k2 · 9−n}.

Then we have

lim
n→∞

ν(Ω2)
2πl/9nan

4
= Ck,

where Ck is a geometric constant strictly less than 1 that depends on k.
(d) Define Ω3 = Ω3,n as

Ω3 = {x +
√−1y ∈ D | x2 + y2 ≤ 9−n}.

Then we have

lim
n→∞

ν(Ω3)
2πl/9nan

4
= 1.

Proof. In view of Remark 2.5, (a) is clear because log10 3 = 0.4771 · · · and
f(x) is dx-almost everywhere positive, where dx is a Lebesgue measure on
D. Let us prove (b). Note that {x +

√
(−1)y ∈ D | x2 + y2 ≤ 9−n} ⊂ Ω1 ⊂

{x +
√

(−1)y ∈ D | x2 + y2 ≤ 91−n}.
Hence we have Ω1 ∩ Ak = Ak, Ω1 ∩ Bk = Bk, if n ≤ k and that Ω1 ∩

Ak = ∅, Ω1 ∩ Bk = ∅, if n > k + 1. Taking this into account, we will
estimate Ω1 ∩ Ak with n < k, Ω1 ∩ Bk with n < k, Ω1 ∩ An, Ω1 ∩ Bn,
Ω1 ∩ An−1, and Ω1 ∩ Bn−1 respectively. Firstly a little long computation
leads us to a rough estimate that ν(Ω1 ∩ An−1) is bounded by C/9nan−1

6,
which is less than C/9nan

4 if n is large. As for ν(Ω1 ∩Bn−1), it is bounded
by C/9nan+2

5, which is also less than C/9nan
4 if n is large. Furthermore

we have limn→∞
(
ν(Ω1∩An)

)
/(2πl/9nan

4) = 1. This is due to the fact that
the Lebesgue measure of An is equal to

π(3−n)2 − π

(
3−n

(
1− 1

an
3

))2

≈ 2π

9nan
3

and the fact that we have f(x) = l/an.
We also have

ν

(
Ω1 ∩

⋃

k : n<k

Ak

)
≤ C

9nan+1
3an

and



446 Y. Sawano

ν

(
Ω1 ∩

⋃

k : n≤k

Bk

)
≤ C

9nan+3
5an

.

With these estimates we obtain (b).
(c) and (d) follow similarly. But the proof of (c) is the crucial point of

the proof of unboundedness of Mk with k < 2. So we will point out what
counts.

The essential difference lies in the estimate of ν(Ω2∩An). With k fixed
geometric observation shows that there exists Ck strictly less than 1 such
that ν(Ω2 ∩An)/ν(An) → Ck as n →∞. More precisely, Ck is given by the
following formula:

Ck=
|{(x, y) | x2 + y2 = 1, (x− 1)2 + y2 ≤ k2}|

|{(x, y) | x2 + y2 = 1}|

=
1
π

cos−1
(2− k2

2

)
,

where |E| means arc length of an arc E. This is the critical point of (c) and
the rest is quite similar to that of (b), so the detail is omitted. ¤

Remark 2.7 Our calculation shows

ν(Ω1) =
2πl

9nan
4

(
1 + O

( 1
n2

))
.

This will be used in Remark 2.9.

Under this measure, we will show that Mk is bounded only if k ≥ 2.
Before proving this, we introduce one more notation.

Notation 2.1 For a positive measure α on X we denote

sup
r>0

α(B(x, r))
µ(B(x, kr))

by Mkα(x).

Let δ0 the Dirac measure at 0 = (0, 0, . . .).

Proposition 2.2 Mk is not bounded, if k < 2.

Proof. We may assume 3/2 < k < 2, since Mk is decreasing as k in-
creases. Suppose we have Mk is bounded. We want to derive a contra-
diction. We begin with constructing an approximation of Dirac delta. Let
gr = 1B(0,r)/µ(B(0, r)). Mkgr tends pointwise to Mkδ0 as r → 0, where δ0
is a point mass at 0. Let a be a point defined as follows:
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Put Kn = 2 + [log10 3n]. Define a = an = (aj)j∈N ∈ D as

aj =
{

3−n (j ≤ Kn)
0 (otherwise).

Take λ = 1/µ(B(a, k3−n)). We have {x ∈ X | Mkδ0(x) > λ} ⊃
B(0, 3−n). Thus we have µ(B(0, 3−n)) ≤ C/λ, that is,
µ(B(0, 3−n))/µ(B(a, k3−n)) ≤ C. By the definition of ν and Lemma
2.4(b), there are infinitely many integers n such that

{
ν({x+

√−1y ∈D |x2 + y2≤ 9−n})
ν({x+

√−1y ∈D | (x− 3−n)2 + y2≤ k2 · 9−n})

}(2+[log10 3n])

≤C.

Take limit of this quantity as n, running through such a integer, to infinity.
With the aid of (c) and (d) of Lemma 2.4 contradiction is obtained, since
Ck is strictly less than 1. ¤

By construction we can check the following:

Proposition 2.3 In the above space the measure of B(x, r) grows in the
polynomial order of any degree, that is, µ(B(x, r))/rn is bounded for all
positive integer n.

Remark 2.8 This proposition can be interpreted that the dimension of
the space is ”infinity” according to the terminology of [8]. But this propo-
sition cannot be improved in the sense that µ(B(x, r))/rn is bounded uni-
formly on n.

Remark 2.9 Using Lemma 2.4(b), (d) and Remark 2.7, the proof of the
Theorem 1.2 and the reproduction of the proof with the parameter of k

changed into 2 shows that the Theorem 1.2 is sharp in the following sense:
We cannot take the weak-(1, 1) constant strictly less than 1 in general.

2.4. Proof of Theorem 1.3 and Theorem 1.4
As an application of Lemma 2.1 and Theorem 1.2 we will prove Theorem

1.3 and Theorem 1.4. First of all we get a weighted inequality of the Stein
type, using again Lemma 2.1.

Proposition 2.4 We have
∫

{M7f>λ}
|g(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|M2g(x)dµ(x).
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Proof. Take k > 7. Let E = {x ∈ X | Mkf > λ}. By the definition of E,
for all x ∈ E there exists rx such that

1
µ(B(x, krx))

∫

B(x,rx)
|f(x)|dµ(x) > λ.

Since E is an open set, again by the Linderöf theorem, there exist
xj , j = 1, 2, . . . such that E ⊂ ∪j∈NB(xj , arxj ). We will take a = (k −
7)/20.

We claim that∫
S

j=1,...,n B(xj ,arxj )
|g(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|M2g(x)dµ(x).

By Lemma 2.1 there exists a subfamily of balls {B(xj , arxj )}j∈Λ with
(Λ ⊂ {1, 2, . . . , n}) that satisfies the following properties.
(a) {B(xj , rxj )}j∈Λ is disjoint.
(b)

⋃
j=1,...,n B(xj , arxj ) ⊂

⋃
j∈Λ B(xj , (2 + a)rxj ).

Note that we have, for all x ∈ B(xj , rxj ),

1
µ(B(xj , krxj ))

∫

B(xj ,(2+a)rxj )
|g(y)|dµ(y)

≤ 1
µ(B(x, (6 + 2a)rxj ))

∫

B(x,(3+a)rxj )
|g(y)|dµ(y) ≤ M2g(x).

Using this, we obtain
∫

S
j=1,...,n B(xj , arxj )

|g(x)|dµ(x)

≤
∫

S
j∈Λ B(xj , (2+a)rxj )

|g(x)|dµ(x) ≤
∑

j∈Λ

∫

B(xj ,(2+a)rxj )
|g(x)|dµ(x)

≤
∑

j∈Λ

1
λ

∫

B(xj ,rxj )
|f(x)|dµ(x)

× 1
µ(B(xj , krxj ))

∫

B(xj ,(2+a)rxj )
|g(x)|dµ(x)

≤
∑

j∈Λ

1
λ

∫

B(xj ,rxj )
|f(x)|M2g(x)dµ(x) ≤ 1

λ

∫

X
|f(x)|M2g(x)dµ(x).
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By the definition of E we have
∫

{Mkf>λ}
|g(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|M2g(x)dµ(x).

Letting k ↓ 7, we finally obtain
∫

{M7f>λ}
|g(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|M2g(x)dµ(x).

Thus we have finished. ¤

Corollary 2.2 If p > 1, then we have
∫

X
(M7f(x))p|g(x)|dµ(x) ≤ Cp

∫

X
|f(x)|pM2g(x)dµ(x).

Proof. For a positive function w we denote ‖ · ‖∞,w is a L∞-norm of the
function with respect to the weighted measure wdµ. Since

‖M7f‖∞,|g| ≤ ‖f‖∞,M2g

is clear, this is again just a matter of the interpolation of this inequality
and the last results. ¤

Remark 2.10 We use the following analogous which is used below to
obtain Theorem 1.3. The proof is only the change of the parameters k of
Proposition 2.4 and Corollary 2.2 respectively.

Proposition 2.5 Let X, µ be as above.
(a) The estimate

∫

{M22f>λ}
|g(x)|dµ(x) ≤ 1

λ

∫

X
|f(x)|M7g(x)dµ(x)

holds for all λ > 0.
(b) If p > 1, then we have

∫

X
(M22f(x))p|g(x)|dµ(x) ≤ Cp

∫

X
|f(x)|pM7g(x)dµ(x).

At last we are in the position of proving Theorem 1.3. If p ≥ q > 1, a
little more can be said. We have the following.
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Theorem 2.1 If p ≥ q > 1, then
∥∥∥∥
(∑

j∈Z

(M7fj)q

)1/q∥∥∥∥
p

≤ Cp,q

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

.

Proof. The case when p = q is trivial. Assume that q < p. Put r = p/q

and let r′ be a conjugate exponent of r.
By using Theorem 1.2 and Corollary 2.2 we get to

∥∥∥∥
(∑

j∈Z

(M7fj)q

)1/q∥∥∥∥
q

p

= sup
‖g‖r′=1,g≥0

∫ (∑

j∈Z

(M7fj)q

)
gdµ

= sup
‖g‖r′=1,g≥0

∑

j∈Z

∫
(M7fj)qgdµ ≤ Cp,q sup

‖g‖r′=1,g≥0

∑

j∈Z

∫
|fj |qM2gdµ

≤Cp,q sup
‖g‖′r=1,g≥0

{∫ (∑

j∈Z

|fj |q
)r

dµ

}1/r{∫
(M2g)r′dµ

}1/r′

≤Cp,q

{∫ (∑

j∈Z

|fj |q
)r

dµ

}1/r

sup
‖g‖′r=1,g≥0

(∫
gr′dµ

)1/r′

=Cp,q

{∫ (∑

j∈Z

|fj |q
)r

dµ

}1/r

.

Taking 1/q-th power of both sides, we obtain
∥∥∥∥
(∑

j∈Z

(M7fj)q

)1/q∥∥∥∥
p

≤ Cp,q

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

.

For the case that q > p, we use Proposition 2.5 and Theorem 2.1 ¤

Proof (of Theorem 1.3). If q = ∞, then we can use supj∈Z M22fj(x) ≤
M22(supj∈Z |fj |)(x). Hence the theorem is clear, if q = ∞. By Theorem
2.1, it remains to show when p < q < ∞. Let q > p in what follows and take
another r < q so close to q that pr/q > 1. According to (Lpr/q-L(pr/q)′)-
duality we have

∥∥∥∥
(∑

j∈Z

(M22fj)q

)1/q∥∥∥∥
q/r

p

= sup
{‖g‖(pr/q)′=1,g≥0}

∫ (∑

j∈Z

(M22fj)q

)1/r

gdµ

Keeping this in mind, let us fix positive g with ‖g‖(pr/q)′ = 1.
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Note that q > p implies (pr/q)′ > r′, so that we are in the position of
using Theorem 2.1 with parameter (pr/q)′ > r′. We also use Proposition
2.5 to obtain

∫ (∑

j∈Z

(M22fj)q

)1/r

gdµ

= supP
k hk

r′=1 hk≥0

∫ (∑

j∈Z

((M22fj)q/rhj)g
)

dµ

(Below we will write sup instead of supP
k hk

r′=1 hk≥0
.)

≤Cp,q sup
∫ (∑

j∈Z

|fj |q/rM7(hjg)
)

dµ

≤Cp,q sup
∫ (∑

j∈Z

|fj |q
)1/r(∑

j∈Z

(M7hjg)r′
)1/r′

dµ

≤Cp,q sup
{∫ (∑

j∈Z

|fj |q
)p/q

dµ

}q/pr

×
{∫ (∑

j∈Z

(M7hjg)r′
)(pr/q)′/r′

dµ

}1/(pr/q)′

≤Cp,q

{∫ (∑

j∈Z

|fj |q
)p/q

dµ

}q/pr

× sup
{∫ (∑

j∈Z

(|hjg|r′)
)(pr/q)′/r′

dµ

}1/(pr/q)′

=Cp,q

{∫ (∑

j∈Z

|fj |q
)p/q

dµ

}q/pr

.

Putting together this and first observation we finish the proof. ¤

This vector-valued inequality is different from the one that appeared in
the [8] only in that we enlarged k by 22 or 7 times not by three times.

We will assume the assumption posed on Definition 1.1 and Definition
1.2 until the end of this section. With minor modification of the results of
[8] we obtain

Theorem 2.2 [8] We have for β > 1 and large l
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T ∗f(x) ≤ Cβ,l(Ml(Tf)(x)) + Cβ,l{(Ml|f |β)(x)1/β}.
The next result is due to Garćıa-Cuerva [3].

Theorem 2.3 [3] If 1 < p, q < ∞, we have
∥∥∥∥
(∑

j∈Z

|Tfj |q
)1/q∥∥∥∥

p

≤ Cp,q

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

p

.

Combining these results and Theorem 1.3, we obtain Theorem 1.4.

3. The uncentered maximal operator on the Euclidean space

In this section we examine the uncentered maximal operator. The result
by [8] which appeared in Introduction is sharp: We can construct a similar
example of the space on which Mk,uc is not bounded if k < 3, using an idea
of Section 2.3. Hence in this section we limit ourselves to the space Rd with
Euclidean distance. If the space is Euclidean and the ball is defined by a
standard distance, we shall show that Mk,uc is bounded if k > 1. This is
best possible as [6] shows: As in [6] for µ = exp(x2 + y2)dxdy in R2, M1,uc

is not weak-(1, 1) bounded.

3.1. Another covering lemma (Proof of Theorem 1.5)
We want a substitute of Besicovitch’s covering lemma. If k > 3, we

put Nk = 1 and we can use the Vitali covering lemma to prove Theorem
1.5. Hence for the proof of Theorem 1.5, we may assume that k ≤ 3. This
Theorem 1.5 is a covering lemma for our purpose. This may be viewed also
as a substitute of Vitali’s covering lemma. To prove Theorem 1.5, firstly we
prove it by posing another assumption.

Lemma 3.1 Let {B(xλ, rλ)}λ∈L be a family of balls and assume that

sup
λ∈L

rλ <
√

k inf
λ∈L

rλ < ∞.

Then we can take disjoint subfamilies as in Theorem 1.5.

Proof. First of all by scaling, we may normalize to have supλ∈L rλ = 1.
(We are working on the Euclidean space. So we are able to multiply the
scalar.)

In this part we divide the family of balls. More precisely we proceed
as follows: Let Q0 be a family of dyadic cubes of side length 1. Here we
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are now considering cubes of the form Q = Πd
j=1[mj , mj +1), where mj are

integers (j = 1, . . . , d). We abbreviate the dyadic cubes in Q0 to ”cubes”
for short. Let Q0 be [0, 1)d. We divide the cubes into subfamily:

If −→m = (m1, m2, . . . , md) is an element of {0, 1, 2, 3}d, we put

Q−→m = {Q ∈ Q0 | Q− (−→p +−→m) = Q0 for some −→p ∈ (4Z)d}.
Next we define L−→m as

L−→m = {λ ∈ L | xλ is contained in some cube in Q−→m}.
Note that the cubes in Q−→m satisfy the following property: Suppose that

Q and Q′ are both in Q−→m and that Q and Q′ are different, then the distance
between the two cubes is larger than 3. Hence if the center of B is in Q and
the center of B′ is in Q′, then B and B′ are disjoint.

Taking into account of the preceding paragraphs we may assume that
all the centers of the balls are in Q0. In fact once this is proved, by the last
paragraph we can take the balls satisfying the property of this lemma from
Q−→m for any −→m ∈ {0, 1, 2, 3}d. For any −→m ∈ {0, 1, 2, 3}d, we obtain families
B(1)−→m , . . . , B(Nk)−→m . Translation shows the number Nk is not dependent on −→m.
So our desired family is

⋃
−→m∈{0, 1, 2, 3}d, j≤Nk

B(j)−→m .

So in what follows let us assume that all the centers of the balls are in
Q0 and that supλ∈L rλ = 1 by normalization.

First take a ball B(xλ1 , rλ1) arbitrarily from the family {B(xλ, rλ)}λ∈L.
The assumption 1/

√
k < infλ∈L rλ ensures that the radius of the ball

is between 1/
√

k and 1. Thus the ball B(xλ1 , krλ1) contains all the ball
B(xλ, rλ) such that d(xλ, xλ1) is less than

√
k − 1.

Next take a ball B(xλ2 , rλ2) such that d(xλ2 , xλ1) ≥
√

k − 1. We
may choose it arbitrarily as long as this condition is satisfied. As in the
proceeding paragraph, the ball B(xλ2 , krλ2) contains all the ball B(xλ, rλ)
such that d(xλ, xλ2) is less than

√
k − 1.

In this way we repeatedly take a ball B(xλp , rλp) such that d(xλp , xλj
)

≥
√

k− 1 for all j = 1, 2, . . . , p− 1. This procedure will be stopped at qth
step when we obtain

⋃
λ∈L B(xλ, rλ) ⊂ ⋃q

p=1 B(xλp , krλp).
In fact this procedure stops in finite times: Precisely speaking, q ap-

pearing in the last part is bounded by the constant that depends only on
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k > 1 and d. Let us show this. Since all the radius of the ball is at most
1, all the ball is contained in [−1, 2]d. By the construction of {xλa}, we
have d(xλa , xλb

) ≥
√

k − 1 for all a < b ≤ q. Thus we have q disjoint balls
whose radii are more than (

√
k − 1)/2. Precisely speaking, {B(xj , (

√
k −

1)/2)}j=1,...,q is disjoint. And we have B(xj , (
√

k − 1)/2) is contained in
[−1, 2]d for all j = 1, . . . , q. Hence we have q

(
(
√

k − 1)/2
)d

V ≤ 3d, where
V is volume of a unit ball. Thus q is bounded by the quantity which de-
pends only on k > 1 and d. We put this bound N . If q is less than N , we
formally define Lj = ∅ for j > q. Peacing together these observations we
are done. ¤

Next we prove Theorem 1.5, that is, we want to eliminate the assump-
tion

sup
λ∈L

rλ <
√

k inf
λ∈L

rλ < ∞.

Proof (of Theorem 1.5). Again we may assume that supλ∈L rλ = 1. First
we take the subfamilies Bj,p inductively as follows (j runs through all the
positive integers and p through [1, N ], where N is a number obtained in
the Lemma 3.1):
First we define X1 as

X1 =
{

B(xλ, rλ)
∣∣∣∣ rλ >

1√
k

}
.

Let B1,p be families obtained from X1, using the Lemma 3.1. Suppose we
have obtained the families of the balls Bl,p with l = 1, . . . , j, p = 1, . . . , N

and that Xl with l = 1, . . . , j are defined as the subsets of {B(xλ, rλ)}λ∈L.
Then we define

Xj+1 =





B = B(xλ, rλ)

∣∣∣∣∣∣∣∣∣∣

(
1√
k

)j+1

< rλ ≤
(

1√
k

)j

,

B 6⊂
⋃

1≤p≤N,1≤l≤j,B′∈Bl,p

kB′.





,

where kB is an abbreviation of B(x, kr) when B = B(x, r). And we apply
the Lemma 3.1 to this subset to obtain Bj+1,p with p = 1, . . . , N , which
enjoy the following properties:
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{Bj+1,p}1≤p≤N are disjoint subfamilies and⋃

B∈Xj+1

B ⊂
⋃

p=1,...,N

⋃

B∈Bj+1,p

kB.

By the definition of Xj we have,
(1) B(xλ, rλ) ∈ Xj implies rλ ≤ k−(j−1)/2

(2) B(xλ, rλ) is not contained in
⋃j−1

l=1

⋃N
p=1

⋃
B∈Bl,p

kB.
Next we claim that there is an integer N ′, which depends only on k,

that satisfies the following:

If |j − l| > N ′, B′ ∈ ∪pBj,p, and B ∈ ∪pBl,p,

then we have B ∩B′ = ∅.
In fact suppose that B ∩ B′ 3 x and l > j. Then by property noted

above, there exists y ∈ B \ kB′. Let c be the center of B′. If E is a subset
of Rd, diam(E) denotes the diameter of E. Under this notation and setting
we have

d(x, y) ≤ diam(B), d(c, y) ≥ k

2
diam(B′), and

d(c, x) ≤ 1
2

diam(B′).

Thus
(
(k − 1)/2

)
diam(B′) < diam(B). By the construction of Xj ,

diam(B) ≤ 2/(
√

k
l−1

) and diam(B′) ≥ 2/(
√

k
j
), hence we have 2/(

√
k

l−1
)

≥ (k− 1)/(
√

k
j
). Since k > 1, this is possible only if the difference of j and

l is small, that is,

log
(
2
√

k/(k − 1)
)

log
√

k
> l − j.

Put Gj,p =
⋃

i : i≡jmodN ′ Bi,p. Then {Gj,p}j≤N ′,p≤N does satisfy all the
demands of the theorem. ¤

Using this covering lemma we can prove Theorem 1.6.

Proof (of Theorem 1.6). We ”cut off” the maximal function. Fix R > 0
and define MR

k,uc as

MR
k,ucf(x) = sup

x∈B(z,r),R>r>0

1
µ(B(z, kr))

∫

B(z,r)
|f(y)|dµ(y).

(This notation is rather complicated but we want to emphasize that we are



456 Y. Sawano

considering maximal operator with radii less than R.) Put

E = {x ∈ Rd | MR
k,ucf(x) > λ}.

By the definition of E, for all x ∈ E, there exist yx ∈ X and 0 < rx < R

such that

µ(B(yx, krx)) ≤ 1
λ

∫

B(yx,rx)
|f(x)|dµ(x), x ∈ B(yx, rx).

We are restricting r < R in the definition of MR
k,uc so we can use Theorem

1.5.
By the theorem, there exists Nk and x1, x2, . . . ∈ {yx | x ∈ X} such

that

1E(x) ≤
∑

j

1B(xj ,krxj )(x) and
∑

j

1B(xj ,rxj )(x) ≤ Nk

for all x ∈ Rd.
Using this we obtain

µ(E) ≤ µ

(⋃

j

B(xj , krxj )
)

≤
∑

j

µ(B(xj , krxj )) ≤
∑

j

1
λ

∫

B(xj ,rxj )
|f(x)|dµ(x)

=
∑

j

1
λ

∫

Rd

1B(xj ,rxj )|f(x)|dµ(x) ≤ Nk

λ

∫

Rd

|f(x)|dµ(x).

Thus we have finished. ¤

We consider another application of this covering lemma. This covering
lemma allows us to obtain various estimates.

Theorem 3.1 We have the dual inequality
∫

{Mb,ucf>λ}
|g(x)|dµ(x) ≤ Ca,b

λ

∫

Rd

Ma, ucg(x)|f(x)|dµ(x).

if b > a > 1, where Ca,b is a positive constant depending on a, b and d.

Proof. Fix R > 0. We ”cut off” the maximal function again. Put again

MR
b,ucf(x) = sup

x∈B(z,r),R>r>0

1
µ(B(z, br))

∫

B(z,r)
|f(y)|dµ(y).
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Fix λ > 0. We set

Eb = {x ∈ Rd | MR
b,ucf(x) > λ}.

For all x ∈ Eb by its definition there exists rx < R and yx such that

1
µ(B(yx, brx))

∫

B(yx,rx)
|f(z)|dµ(z) > λ and x ∈ B(yx, rx).

Note that supx∈Eb
rx is at most R. So we can apply Theorem 1.5. Applying

the theorem with b/a > 1, we obtain a countable subset A ⊂ Eb such that
{B(yx, rx)}x∈A satisfies

⋃

x∈Eb

B(yx, rx) ⊂
⋃

j

B

(
xj ,

b

a
rj

)
and

∑

j

1B(xj ,rj) ≤ Ca,b.

Using these properties, we have
∫

Eb

g(x)dµ(x) ≤
∫

S
j B(xj ,(b/a)rj)

g(x)dµ(x)

≤
∑

j

1
µ(B(xj , brj))

∫

B(xj ,(b/a)rj)
g(x)dµ(x)× µ(B(xj , brj))

≤
∑

j

(
inf

x∈B(xj ,rj)
MR

a, ucg(x)
)

1
λ

∫

B(xj ,rj)
|f(y)|dµ(y)

≤Ca,b

λ

∫

Rd

|f(y)|MR
a,ucg(y)dµ(y).

Tending R to ∞, we are done. ¤

As a corollary we have Theorem 1.7 whose proof is obtained by changing
the parameters in Theorem 1.3 suitably.
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