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Affine semiparallel surfaces with constant Pick invariant
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Abstract. In this paper, we classify all affine semiparallel surfaces in R3 with constant

Pick invariant. As its application, we can characterize affine semiparallel surfaces of

constant Pick invariant but of which shape operators are not parallel.
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1. Introduction

Let M be a non-degenerate affine surface of R3 with induced connection
∇ and let R be the curvature tensor and S the affine shape operator of M ,
respectively. Surfaces with parallel shape operator ∇S = 0 were classified
in [5], [6] and [11] (see Theorem 2.2).

In 1946, E. Cartan [2] introduced the spaces with R(X, Y ) · R = 0 for
all vector fields X and Y , where the linear endomorphism R(X, Y ) acts on
R as a derivation. These spaces including locally symmetric Riemannian
spaces were classified by Z.I. Szabó [15]. It would be natural to define for an
affine surface M in R3 to be semiparallel if R(X, Y ) · S = 0. Clearly ∇S =
0 implies R(X, Y ) · S = 0, and the converse is not true (see Example 4.3,
4.4, and 4.5). W. Jelonek [5] shows that any hypersurface is semiparallel if
and only if the shape operator is either a constant multiple of the identity
or S2 = 0 and rank(S) ≤ 1. But he classifies only all affine surfaces with
parallel shape operator.

In this paper, we classify all affine semiparallel surfaces in R3 with
constant Pick invariant. As its application, we can characterize affine semi-
parallel surfaces of constant Pick invariant but not parallel shape operator.

We appreciate Professor T. Konno for his profitable advice to the proof
of Proposition 3.4. The first author thanks Professor H. Urakawa for the
invitation and the hospitality during my visit to Division of Mathematics,
Graduate School of Information Sciences Tohoku University and thanks
Professor F. Dillen for valuable suggestions and help.
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2. Definitions and statement of results

Let Mn be a smooth manifold and f : M → Rn+1, a smooth immersion.
We can choose a smooth vector field ξ along to f which is transversal to
M , i.e. for all x ∈M ,

Tf(x)Rn+1 = f∗(TxM)⊕ Rξx.
Let X(M) be the set of all smooth vector fields on M . The standard con-
nection D on Rn+1, induces the torsion free affine connection ∇ and the
symmetric (0, 2)-tensor field h on M with Gauss’ formula:

DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ,

and the (1, 1)-tensor field S and 1-form τ on M with Weingarten’s formula:

DXξ = −f∗(SX) + τ(X)ξ,

for arbitrary X, Y ∈ X(M).
If h is non-degenerate, f is called a non-degenerate immersion.
If f is non-degenerate, there is a transversal vector field ξ, which is

unique up to sign, and satisfies τ = 0 and θ = ωh, where ωh is the volume
form of h, and θ is the volume form on M defined by:

θ(X1, . . . , Xn) := det[f∗(X1), . . . , f∗(Xn), ξ].

In this case, ξ is called an affine normal vector field, f with ξ is called a
Blaschke immersion, h is called the affine metric, and (∇, h, S) is called
the Blaschke structure of f . S is called the affine shape operator for ξ. If S
in Blaschke structure is a constant multiple of the identity, f : M → Rn+1

is called an affine hypersphere. On a Blaschke immersion, H def= (1/n) trS
is called the affine mean curvature. Clearly, on an affine hypersphere, S =
HI. And if H ≡ 0, f : M → Rn+1 is called an affine minimal hypersurface.

On a Blaschke immersion, the tensor field C onM defined by C(X, Y, Z)
:= (∇Xh)(Y, Z), called the cubic form, which is known to be totally sym-
metric. And it is well known as Pick-Berwald’s theorem (cf. [13, p. 53,
Theorem 4. 5]) that if C ≡ 0, M is a quadratic hypersurface.

The function J on M defined by J := (1/(4n(n− 1)))h(C, C) is called
the Pick invariant. It is known that ρ̂ = H + J , where ρ̂ is the scalar
curvature of the affine metric h (cf. [13, p. 78, Proposition 9. 3]). And in
the case n = 2, it is known that the immersion f : M → R3 is a ruled
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surface if and only if h is indefinite metric and J ≡ 0 (cf. [13, pp. 89, 90,
Definition 11. 1, and Theorems 11. 3, 11. 4]). Hence the surface with J ≡ 0
is quadratic or ruled, because that definiteness of h and J ≡ 0 mean that
C ≡ 0.

Definition 2.1 Let f : M → Rn+1 be a Blaschke immersion with affine
normal vector field ξ and Blaschke structure (∇, h, S). We define the cur-
vature tensor of S with respect to ∇ as

(
R(X, Y ) · S)

Z :=
(∇X∇Y S −∇Y∇XS −∇[X, Y ]S

)
(Z)

=R(X, Y )(SZ)− S
(
R(X, Y )Z

)

where X, Y, Z ∈ X(M). If R(X, Y ) · S vanishes everywhere on M for all
X, Y ∈ X(M), then we call f an affine semiparallel hypersurface.

Classification of affine surfaces with parallel shape operator see also R.
Niebergall and P. Ryan [11].

W. Jelonek [5] shows that any hypersurface is semiparallel if and only
if the shape operator is either a constant multiple of the identity or S2 = 0
and rank(S) ≤ 1.

The classification of affine surfaces with parallel shape operator and
constant Pick invariant, recovers the classification of the affine spheres with
constant curvature metrics shown by M.A. Magid and P.J. Ryan [10] and
U. Simon [14]:

Theorem 2.2 [6] Assume that a Blaschke surface in R3 satisfies ∇S = 0
and J is constant. Then it is affinely congruent to one of the following
surfaces

xyz = 1 (1)

(x2 + y2)z = 1 (2)

z = x2 + y2 (3)

z = xy + Φ(x) (4)

for some smooth function Φ(x) in x,

x2 + y2 + z2 = 1 (5)

x2 − y2 − z2 = 1 (6)

f(u, v) = uα(v) + α′(v) (7)
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where α(v) is an R3-valued function in v satisfying that det[α, α′, α′′] is a
non-zero constant,

z = yex + Φ(x) (8)

z = y tanx+ Φ(x) (9)

for some smooth function Φ(x) in x.

Now we state our main theorem.

Theorem 2.3 (i) Any affine semiparallel surface with constant Pick in-
variant in R3 is either an affine sphere with constant curvature metric or
an affine minimal ruled surface.
(ii) Any affine minimal ruled surface can be written as:

z = yA(x) +B(x),

where A(x) is a non-constant smooth function in x and B(x) is a smooth
function in x. Conversely, any surface which can be written as above is an
affine minimal ruled surface.

Remark 2.4 All surface with ∇S = 0 is affine semiparallel, so all the
surfaces in Theorem 2.2 are in Theorem 2.3(i). In fact, from (1) to (7) in
the list of Theorem 2.2 are affine spheres with constant curvature metrics,
and (8) and (9) in Theorem 2.2 have the expression as in Theorem 2.3.

3. Preliminary

We need the following lemmas to prove Theorem 2.3.

Lemma 3.1 Let (∇, h, S) be the Blaschke structure on M , C the cubic
form and J the Pick invariant. If J = constant 6= 0, we can choose two
smooth vector fields X1, X2 defined locally on a neighborhood U in M sat-
isfying that

h(Xi, Xj) = εiδij , (10)
{
C(X1, X1, X1) = −ε1

√
2ε1J, C(X1, X2, X2) = ε2

√
2ε1J,

C(X1, X1, X2) = C(X2, X2, X2) = 0,
(11)

where εi = ±1, respectively. And there exist three smooth functions a, b, H
such that
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∇X1X1 =
√
ε1J/2X1 + ε1aX2,

∇X1X2 = −ε2aX1 −
√
ε1J/2X2,

∇X2X1 = −(b+
√
ε1J/2)X2,

∇X2X2 = ε1ε2(b−
√
ε1J/2)X1,

(12)

{
SX1 = (H + 3ε1b

√
ε1J/2)X1 − 3a

√
ε1J/2X2,

SX2 = −3ε1ε2a
√
ε1J/2X1 + (H − 3ε1b

√
ε1J/2)X2,

(13)

and

H = ε1X1b+X2a− ε2a
2 − ε1b

2 − J, (14)

X2H = 3ε1ε2
√
ε1J/2(−ε2X2b−X1a+ 4ab− 2a

√
ε1J/2), (15)

X1H = 3
√
ε1J/2

× (ε1X1b−X2a+ 2ε2a2 − 2ε1b2 − 2ε1b
√
ε1J/2).

(16)

Clearly, in the case of Lemma 3.1, H is the affine mean curvature, and
the surface is an affine sphere if and only if a = b = 0.

Remark 3.2 ε1J is always positive for (∇, h, S) satisfying the assump-
tions in Lemma 3.1.

Proof of Lemma 3.1. It is known that the difference tensor K defined by
KXY := ∇XY − ∇̂XY where ∇̂ is the Levi-Civita connection of the affine
metric h satisfies that C(X, Y, Z) = −2h(KXY, Z) and trKX = 0 for arbi-
trary X, Y, Z ∈ X(M) (cf. [13, pp. 50, 51, Proposition 4.1, Theorem 4.3]).

Since J 6= 0 (cf. [13, pp. 87, 88, Propositions 11.1, 11.2]), there exists a
null direction X ∈ TxM of the cubic form C, i.e. C(X, X, X) = 0, X 6= 0
for each x ∈ U . Because of the fact that h(X, X) 6= 0, we can take X1 and
X2 ∈ X(U) such that {(X1)x, (X2)x} is an orthonormal basis of TxM with
respect to h and that (X2)x = |h(X, X)|−1/2X for each x ∈ U , i.e.

h(Xi, Xj) = εiδij , εi = ±1, C(X2, X2, X2) = 0.

Then, we obtain

ε1C(X1, X1, X1) + ε2C(X1, X2, X2)

=− 2ε1h(KX1X1, X1)− 2ε2h(KX1X2, X2)

=− 2 trKX1 = 0
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and

C(X1, X1, X2)=− 2h(KX2X1, X1)

=− 2ε1{trKX2 − ε2h(KX2X2, X2)}
=− ε1ε2C(X2, X2, X2) = 0.

So we have

J =
1
8
h(C, C)=

1
8
ε1

(
C(X1, X1, X1)2 + 3C(X1, X2, X2)2

)

=
1
2
ε1C(X1, X1, X1)2.

Thus we have X1 and X2 satisfying (10) and (11), by replacing X1 and X2

into −X1 and −X2 if ε1C(X1, X1, X1) > 0.
By our choice of {X1, X2}, we have

ε1h(∇X1X1, X1)=−1
2
ε1{X1h(X1, X1)− 2h(∇X1X1, X1)}

=−1
2
ε1C(X1, X1, X1) =

√
ε1J/2,

ε2h(∇X1X2, X2)=−1
2
ε2{X1h(X2, X2)− 2h(∇X1X2, X2)}

=−1
2
ε2C(X1, X2, X2) = −

√
ε1J/2,

ε1h(∇X2X1, X1)=−1
2
ε1{X2h(X1, X1)− 2h(∇X2X1, X1)}

=−1
2
ε1C(X1 , X1, X2) = 0,

ε2h(∇X2X2, X2)=−1
2
ε2{X2h(X2, X2)− 2h(∇X2X2, X2)}

=−1
2
ε2C(X2, X2, X2) = 0,

h(∇X1X1, X2) + h(∇X1X2, X1)=X1h(X1, X2)− C(X1, X1, X2)
=0,

and

h(∇X2X1, X2) + h(∇X2X2, X1)=X2h(X1, X2)− C(X1, X2, X2)

=−ε2
√

2ε1J.
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Then, we can define two smooth functions a and b on U by

a := ε1ε2h(∇X1X1, X2) = −ε1ε2h(∇X1X2, X1),

b := −ε2h(∇X2X1, X2)−
√
ε1J/2 = ε2h(∇X2X2, X1) +

√
ε1J/2.

So, we obtain that

∇X1X1 =
√
ε1J/2X1 + ε1aX2, ∇X1X2 = −ε2aX1 −

√
ε1J/2X2,

∇X2X1 = −(b+
√
ε1J/2)X2, ∇X2X2 = ε1ε2(b−

√
ε1J/2)X1.

Therefore, we have

R(X1, X2)X1 = 3ε2a
√
ε1J/2X1 + (3b

√
ε1J/2− ε1H)X2,

R(X1, X2)X2 = (ε2H + 3ε1ε2b
√
ε1J/2)X1 − 3ε2a

√
ε1J/2X2

where H is a smooth function on U defined by (14).
By Gauss’ equation, we obtain

SX1=ε2
(
R(X1, X2)X2 + h(X1, X2)SX2

)

=(H + 3ε1b
√
ε1J/2)X1 − 3a

√
ε1J/2X2,

SX2=ε1
(−R(X1, X2)X1 + h(X2, X1)SX1

)

=−3ε1ε2a
√
ε1J/2X1 + (H − 3ε1b

√
ε1J/2)X2.

Since Codazzi’s equation,

(∇X1S)X2=3ε1ε2
√
ε1J/2

{−X1a+ 2a(b−
√
ε1J/2)

}
X1

+
{
X1H − 3

√
ε1J/2(2ε2a2 + ε1X1b)

}
X2

equals to

(∇X2S)X1=
{
X2H + 3ε1

√
ε1J/2(X2b− 2ε2ab)

}
X1

+ 3
√
ε1J/2

{−X2a− 2ε1b(b+
√
ε1J/2)

}
X2,

so we have (15) and (16). ¤

Lemma 3.3 Let (∇, h, S) be the Blaschke structure on M , C the cubic
form and J the Pick invariant. If J ≡ 0 and C 6= 0, we can choose two
smooth vector fields X1, X2 defined locally on a neighborhood U in M sat-
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isfying that

h(Xi, Xj) = 1− δij , (17)
{
C(X1, X1, X1) = −2,

C(X1, X1, X2) = C(X1, X2, X2) = C(X2, X2, X2) = 0.
(18)

And there exist three smooth functions a, b, H such that
{
∇X1X1 = aX1 +X2, ∇X1X2 = −aX2,

∇X2X1 = −bX1, ∇X2X2 = bX2,
(19)

SX1 = HX1 − 3bX2, SX2 = HX2, (20)

and

H = −X1b−X2a− 2ab, (21)

X2H = 0, (22)

X1H = −3(X2b+ 2b2). (23)

Clearly, in the case of Lemma 3.3, H is the affine mean curvature, and
the surface is an affine sphere if and only if b = 0.

Proof. Since J = 0 (cf. [13, p. 88, Propositions 11.2]), there exist two
tangent vectors X, Y ∈ TxM such that

C(X, V, W ) = 0 for all V, W ∈ TxM,

h(X, X) = h(Y, Y ) = 0,

h(X, Y ) = C(Y, Y, Y ) = 1

for each x ∈ U . Then, we take X1, X2 such that (X1)x = −21/3Y , (X2)x =
2−1/3X for each x ∈ U , respectivery, and obviously they satisfy (17) and
(18).

By our choice of {X1, X2}, we have

h(∇X1X1, X1)=− 1
2
{
X1h(X1, X1)− 2h(∇X1X1, X1)

}

=− 1
2
C(X1, X1, X1) = 1,

h(∇X1X2, X2)=− 1
2
{
X1h(X2, X2)− 2h(∇X1X2, X2)

}
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=− 1
2
C(X1, X2, X2) = 0,

h(∇X2X1, X1)=− 1
2
{
X2h(X1, X1)− 2h(∇X2X1, X1)

}

=− 1
2
C(X1, X1, X2) = 0,

h(∇X2X2, X2)=− 1
2
{
X2h(X2, X2)− 2h(∇X2X2, X2)

}

=− 1
2
C(X2, X2, X2) = 0,

h(∇X1X1, X2) + h(∇X1X2, X1)=X1h(X1, X2)− C(X1, X1, X2)
=0,

and

h(∇X2X1, X2) + h(∇X2X2, X1)=X2h(X1, X2)− C(X1, X2, X2)

=0.

Then, we can define two smooth functions a and b on M by

a := h(∇X1X1, X2) = −h(∇X1X2, X1),

b := −h(∇X2X1, X2) = h(∇X2X2, X1).

So, we obtain that

∇X1X1 = aX1 +X2, ∇X1X2 = −aX2,

∇X2X1 = −bX1, ∇X2X2 = bX2.

Therefore, we have

R(X1, X2)X1 = HX1 − 3bX2,

R(X1, X2)X2 = −HX2

where H is a smooth function on U defined by (21).
By Gauss’ equation, we obtain

SX1 = R(X1, X2)X1 + h(X1, X1)SX2 = HX1 − 3bX2,

SX2 = −R(X1, X2)X2 + h(X2, X2)SX1 = HX2.

And since Codazzi’s equation,

(∇X1S)X2 = (X1H)X2
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equals to

(∇X2S)X1 = (X2H)X1 − 3(X2b+ 2b2)X2,

so we have (22) and (23). ¤

Proposition 3.4 (Due to T. Konno) For an arbitrary smooth vector field
X on U ⊂M2, there exists a non-zero function ψ which satisfies Xψ = ψ.

Proof. Let {ϕu} be a 1-parameter group of local transformations for X.
And let c : R 3 v 7→ c(v) ∈ U be a smooth curve transversal to X, i.e.
ċ(v0) and Xc(v0) are linear independent for all v0 ∈ R where ċ(v) means
differentiation by the parameter v. Then Φ(u, v) := ϕu

(
c(v)

)
gives a local

coodinate system on U , because Φ∗(∂/∂u) = (ϕu)∗(Xc(v)) and Φ∗(∂/∂v) =
(ϕu)∗

(
ċ(v)

)
are linearly independent. By taking ψ := (Φ−1)∗(eu), we have

for all (u0, v0) ∈ Φ−1(U) ⊂ R2,

XΦ(u0, v0)ψ=
∂

∂u

∣∣∣∣
u=0

ψ ◦ ϕu

(
Φ(u0, v0)

)

=
∂

∂u

∣∣∣∣
u=0

ψ ◦ Φ(u0 + u, v0)

=
∂

∂u

∣∣∣∣
u=0

eu0+u = eu0

=ψ
(
Φ(u0, v0)

)
.

Hence we have Xψ = ψ. ¤

4. Proof of theorem

Now, we are in position to show the main theorem. The proof of (i) in
Theorem 2.3 is divided into two parts whether the Pick invariant vanishes
or not. And the proof of (ii) is also divided into two parts and we will also
show the last statement of Theorem 2.3, and finally give examples.

4.1. The case the Pick invariant is non-zero constant.
If the Pick invariant J of M is non-zero constant, we can choose X1,

X2 ∈ X(M) and three smooth functions a, b and H on M satisfying from
(10) to (16) by Lemma 3.1. Since the equations (12) and (13), we obtain

(
R(X1, X2) · S

)
X1 = −6ε2aH

√
ε1J/2X1

+ 3
(
3J(b2 + ε1ε2a

2)− 2bH
√
ε1J/2

)
X2,



Affine semiparallel surfaces with constant Pick invariant 365

and
(
R(X1, X2) · S

)
X2 = −3ε1ε2

(
3J(b2 + ε1ε2a

2) + 2bH
√
ε1J/2

)
X1

+6ε2aH
√
ε1J/2X2.

Assume that M is semiparallel. Then from the above, we get

aH = 0, (24)

bH = 0, (25)

b2 + ε1ε2a
2 = 0. (26)

If the surface is an affine sphere, since ρ̂ = H+J is constant, it has been
completely classified by M.A. Magid and P.J. Ryan [10] and U. Simon [14].
So we consider the case that it is not an affine sphere, i.e. we assume that
a2 + b2 6= 0. Then from (24) and (25) we have H = 0, and from (26) we
have ε1ε2 = −1 and a = ±b. So, from (15) we have

ε1X2b∓X1b± 4b2 ∓ 2b
√
ε1J/2 = 0 (27)

and from (16) we have

ε1X1b∓X2b− 4ε1b2 − 2ε1b
√
ε1J/2 = 0. (28)

But (27) and (28) imply that b = 0, so these contradict the assumption
ab 6= 0. Hence the surface is an affine sphere. ¤

4.2. The case the Pick invariant vanishes.
We consider the case that the Pick invariant J of M vanishes. If the

cubic form C vanishes, then the surface is a quadratic surface. So we assume
that C 6= 0. Here, the surface is a ruled as in Section 2.

And by J ≡ 0 and C 6= 0, we can choose X1, X2 ∈ X(M) and three
smooth functions a, b and H on M satisfying from (17) to (23) since Lemma
3.3. By (19) and (20), we obtain

(
R(X1, X2) · S

)
X1 = 6bHX2,

and
(
R(X1, X2) · S

)
X2 = 0.

Assume that M is semiparallel. Then from the above, we get

bH = 0. (29)
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If the surface is an affine sphere, since ρ̂ = H is constant, it has been
completely classified by M.A. Magid and P.J. Ryan [10] and U. Simon [14].
So we consider the case that it is not an affine sphere, i.e. we assume that
b 6= 0. By (29), we have H = 0. Hence the surface is an affine minimal
ruled surface. Therefore, we have (i) in Theorem 2.3. ¤

4.3. Affine minimal ruled surface which is not affine sphere.
It is known that any ruled affine sphere which is affine minimal can be

written as (4) in Theorem 2.2. So we only have to show that any affine
minimal ruled surface which is not an affine sphere can be written as

z = yA(x) +B(x),

which completes the proof of (ii) in Theorem 2.3.
Now, we retain the notation in the above subsection 4.2. By (23), we

have

X2b+ 2b2 = 0. (30)

If there exist two non-zero functions ψ1, ψ2 on U such that

[ψ1X1, ψ2X2] = 0, (31)

then we can take local coordinate system {t, s} satisfying that ∂/∂t =
ψ1X1 and ∂/∂s = ψ2X2. Since [X1, X2] = bX1 − aX2, the condition (31)
is equivalent to (32) and (33):

X2ψ1 = bψ1, (32)

X1ψ2 = aψ2. (33)

The existence of ψ1 and ψ2 is guaranteed by Proposition 3.4. Then, we can
take the above {t, s}. By (30), we can write ψ2 as ψ2 = −(1/2)b−2(∂b/∂s).

Now, we choose a function ψ1 satisfying (32). Here we put ψ1 = (±b)k

for some k ∈ R. Then the left hand side of (32) coincides with

X2

(
(±b)k

)
=±k(±b)k−1X2b

=∓2k(±b)k+1,

and the right hand side is also b(±b)k = ±(±b)k+1. We have k = −1/2.
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Then, we can take ψ1 = (±b)−1/2. By (33), we have

a = ψ1
−1ψ2

−1 ∂

∂t
ψ2 = (±b)1/2 ∂

2b

∂s∂t

(∂b
∂s

)−1
∓ 2(±b)−1/2∂b

∂t
.

Therefore, by (21) and H = 0,

0 =−H=2ab+X1b+X2a

=2b

(
(±b)1/2 ∂

2b

∂s∂t

(
∂b

∂s

)−1

∓ 2(±b)−1/2∂b

∂t

)
+ (±b)1/2∂b

∂t

− 2b2
(
∂b

∂s

)−1 ∂

∂s

(
(±b)1/2 ∂

2b

∂s∂t

(
∂b

∂s

)−1

∓ 2(±b)−1/2∂b

∂t

)

=− 2(±b)5/2

(
∂b

∂s

)−1 ∂2

∂s∂t

(
log

(
∂

∂s

(
(±b)−3/2

)))
.

Hence there exist two functions φ1 6= 0 and φ2 in t, and a non-constant
function η in s satisfying that

b = ±(
φ1(t)η(s) + φ2(t)

)−2/3
.

Therefore, we can derive into the following five differential equations on
U :





∂2f

∂t2
=D∂/∂tf∗

( ∂
∂t

)
= φ1

′(t)φ1(t)−1∂f

∂t

± 3φ1(t)−1η′(s)−1
(
φ1(t)η(s) + φ2(t)

)∂f
∂s
,

∂2f

∂t∂s
=D∂/∂tf∗

( ∂

∂s

)
= ±1

3
φ1(t)η′(s)ξ,

∂2f

∂s2
=D∂/∂sf∗

( ∂

∂s

)
= η′′(s)η′(s)−1∂f

∂s
,

∂ξ

∂t
=D∂/∂tξ = 9φ1(t)−1η′(s)−1∂f

∂s
,

∂ξ

∂s
=D∂/∂sξ = 0.

(34)

Since the third equation in (34) coincides with

∂

∂s

(
η′(s)−1∂f

∂s

)
= η′(s)−1∂

2f

∂s2
− η′′(s)η′(s)−2∂f

∂s
= 0,
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there exists a function µ in t such that

∂f

∂s
= η′(s)µ(t). (35)

By the last equation in (34), ξ = ξ(t) is a function only in t. By the second
equation in (34), we have

ξ(t) = ±3φ1(t)−1µ′(t).

By the fourth equation in (34), we have

∓3φ1
′(t)φ1(t)−2µ′(t)± 3φ1(t)−1µ′′(t) = 9φ1(t)−1µ(t).

Therefore, µ is a solution of

µ′′(t)− φ1
′(t)φ1(t)−1µ′(t)∓ 3µ(t) = 0. (36)

Since this is a second order linear differential equation, any solution of it can
be written as a linear combination of two linear independental solutions, i.e.

µ(t) = c1φ3(t) + c2φ4(t), (37)

where c1 and c2 are constants and φ3, φ4 are two linear independental
solutions of (36).

On the other hand, by (35), there exists a function α in t,

f(t, s) = η(s)µ(t) + α(t).

By the first equation in (34),

η(s)µ′′(t) + α′′(t)=φ1
′(t)φ1(t)−1

(
η(s)µ′(t) + α′(t)

)

±3φ1(t)−1µ(t)
(
φ1(t)η(s) + φ2(t)

)
.

Therefore,
(
α′(t)φ1(t)−1

)′=α′′(t)φ1(t)−1 − α′(t)φ1
′(t)φ1(t)−2

=±3µ(t)φ2(t)φ1(t)−2.

By (37), we have
(
α′(t)φ1(t)−1

)′=±3c1φ3(t)φ2(t)φ1(t)−2±3c2φ4(t)φ2(t)φ1(t)−2. (38)

Let φ5 and φ6 be functions in t which satisfy that
(
φ5
′(t)φ1(t)−1

)′ = ±3φ3(t)φ2(t)φ1(t)−2,
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(
φ6
′(t)φ1(t)−1

)′ = ±3φ4(t)φ2(t)φ1(t)−2.

Then, we obtain

α′(t)φ1(t)−1 = c1φ5
′(t)φ1(t)−1 + c2φ6

′(t)φ1(t)−1 + c3

where c3 is a constant. And let φ7 be a function in t which satisfies that
φ7
′(t) = φ1(t). Then we obtain

α(t) = c1φ5(t) + c2φ6(t) + c3φ7(t) + c4

where c4 is a constant. All solutions for (38) are given as these α. Hence,
the general solution of all equations in (34) can be represented as

f(t, s) = c1
(
φ3(t)η(s) + φ5(t)

)

+c2
(
φ4(t)η(s) + φ6(t)

)
+ c3φ7(t) + c4

(39)

with constant c1, c2, c3 and c4.
Now, any R3-valued function satisfying (34) can be written as (39)

with replacing the constants c1, c2, c3 and c4 into some constant vectors
C1, C2, C3 and C4. Here we may assume that C4 = 0 and {C3, C2, C1}
is linearly independent. Let {x, y, z} be the local coordinate system on
R3 with respect to these three vectors. Then all points p ∈ f(M) can be
uniquely written as p = xC3 + yC2 + zC1, with real coefficients x, y and z.
Then, we have

x = φ7(t), y = φ4(t)η(s) + φ6(t), z = φ3(t)η(s) + φ5(t).

Thus, the surface can be written as

z = y
φ3 ◦ φ7

−1(x)
φ4 ◦ φ7

−1(x)
+ φ5 ◦ φ7

−1(x)− φ6 ◦ φ7
−1(x)

φ3 ◦ φ7
−1(x)

φ4 ◦ φ7
−1(x)

.

With taking

A(x) =
φ3 ◦ φ7

−1(x)
φ4 ◦ φ7

−1(x)

and

B(x) = φ5 ◦ φ7
−1(x)− φ6 ◦ φ7

−1(x)
φ3 ◦ φ7

−1(x)
φ4 ◦ φ7

−1(x)
,

we obtain the expression z = yA(x) +B(x). ¤
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4.4. The simplest expression of affine minimal ruled surface.
Conversely, we consider the surface given by

z = yA(x) +B(x)

where A and B are two arbitrary smooth functions in x.
Non-degeneracy of the surface is equivalent to A′(x) 6= 0 where ′ means

the differentiation by x. Since the surface is ruled, we have J ≡ 0. For the
immersion:

f : (x, y) 7→



x

y

yA(x) +B(x)


 ,

the affine normal vector field is given by



0
(∣∣A′(x)

∣∣−1/2)′
(∣∣A′(x)

∣∣−1/2
A(x)

)′


 ,

and the shape operator S is given as follows.

S
∂

∂x
= −(∣∣A′(x)

∣∣−1/2)′′ ∂
∂y
, S

∂

∂y
= 0.

Hence our surface is affine minimal. We are done. ¤

Remark 4.1 W. Blaschke [1, §79–81] have shown that any affine minimal
ruled surface can be written as:

f(u, v) =




∫
(V1V2

′ − V2V1
′)du

vV1 +
∫

(V3V1
′ − V1V3

′)du

−vV2 +
∫

(V2V3
′ − V3V2

′)du




where V1, V2 and V3 are functions in u. Here by this expression, we can
show (ii) of Theorem 2.3 by a different way as follows: By putting

x =
∫

(V1V2
′ − V2V1

′)du, y = v +
1
V1

∫
(V3V1

′ − V1V3
′)du
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and taking A
(
x(u)

)
= −V2(u)/V1(u) and

B
(
x(u)

)
=

∫
(V2V3

′ − V3V2
′)du+

V2

V1

∫
(V3V1

′ − V1V3
′)du,

we have also z = yA(x)+B(x). But our expression in Theorem 2.3 is better
than his, since in his expression one needs three equations but in ours one
needs only one, his requires three functions and ours requires only two, and
our expression is much simpler than his.

Proposition 4.2 On an affine minimal ruled surface, if the shape opera-
tor is parallel then the surface is affinely congruent to one of (4), (8) or (9)
in the list of Theorem 2.2.

Proof. On the surface z = yA(x) +B(x), we have

(∇∂/∂yS
) ∂
∂y

=
(∇∂/∂xS

) ∂
∂y

=
(∇∂/∂yS

) ∂
∂x

= 0

and

(∇∂/∂xS
) ∂
∂x

=

((∣∣A′(x)
∣∣−1/2)′′

∣∣A′(x)
∣∣−1/2

)′ ∣∣A′(x)
∣∣−1/2 ∂

∂y
.

Therefore the shape operator is parallel if and only if
(∣∣A′(x)∣∣−1/2)′′ is a

constant multiple of
∣∣A′(x)∣∣−1/2. If the constant is positive,

∣∣A′(x)∣∣−1/2 is
an exponential function, and it is easy to show that the surface is affinely
congruent to (8). If the constant is negative,

∣∣A′(x)
∣∣−1/2 is a trigonometric

function, and the surface is affinely congruent to (9). And if the constant
vanishes,

∣∣A′(x)
∣∣−1/2 is a linear function, and the surface is affinely congru-

ent to (4). ¤

Example 4.3 The affine surface of R3 given by the graph of z = yex +
xy, is semiparallel with shape operator is not parallel. In fact, the second
derivative of

∣∣(ex + x)′
∣∣−1/2 = (1 + ex)−1/2 is (1/4)ex(ex − 2)(1 + ex)−5/2,

which is not a constant multiple of (1 + ex)−1/2.

Example 4.4 The affine surface of R3 given by the graph of z = y log x,
is semiparallel with shape operator is not parallel. In fact, the second
derivative of

∣∣(log x)′
∣∣−1/2 = x1/2 is −(1/4)x−3/2, which is not a constant

multiple of x1/2.
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Fig. 1. The graph of z = yex + xy.

Fig. 2. The graph of z = y log x.

Example 4.5 The affine surface of R3 given by the graph of z = y cosx,
is semiparallel with shape operator is not parallel. In fact, the second
derivative of

∣∣(cosx)′
∣∣−1/2 = (sinx)−1/2 is (1/4)(2 + 3/ tan2 x)(sinx)−1/2,

which is not a constant multiple of (sinx)−1/2.
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Fig. 3. The graph of z = y cosx.
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