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The nullity of a compact minimal hypersurface
in a compact symmetric space of rank one

Tohru GOTOH
(Received September 5, 2002)

Abstract. We determine a compact minimal hypersuface with the least nullity in the
Cayley projective plane. Combining this with the preceding results, we conclude the
following: Let X be a compact symmetric space of rank one and M a compact minimal
hypersuface in X. Then the nullity of M is bounded from below by the dimension of X.
When the nullity of M is equal to the dimension of X, M must be a minimal geodesic
hypersphere in X. Conversely,the nullity of a minimal geodesic hypersphere in X is equal
to the dimension of X.

Key words: minimal submanifolds, nullity, Cayley projective space, compact symmetric
spaces of rank one..

1. Introduction
In this article, we will prove the following:

Theorem 1.1 Let M be a compact minimal hypersurface in the Cayley
projective plane. Then its nullity satisfies nul(M) = 16. When the nullity
of M is equal to 16, then M must be a minimal geodesic hypersphere.

Similar results on the nullity of minimal hypersurfaces in spheres were
obtained by Simons([S]), in real projective space by Ohnita([O]) and in
complex or quaternion projective spaces by the present author([G1], [G2]).
Those results are summarized as follows:

Theorem 1.2 Let X be a compact symmetric space of rank one and M
a compact minimal hypersuface in X. Then the nullity of M ‘is bounded
from below by the dimension of X. When the nullity of M is equal to
the dimension of X, M must be o minimal geodesic hypersphere in X.
Conversely, the nullity of a minimal geodesic hypersphere in X is equal to
the dimension of X.

In Section 2, we give a brief review on the Jordan algebra and the group
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F4 s0 as to describe the Cayley projective plane. In Section 3, we give a
proof of Theorem 1.1. The key ingredient of our proof is the computation of
the first eigenvalue of the Laplacian on S*® with a canonically varied metric.
The first eigenvalue of the Laplacian with respect to such metric was studied
by Berard Bergery and Bourguignon([BB]). In Section 4, following their
method, we compute the first eigenvalue of a geodesic hypersphere and the
nullity of a minimal geodesic hypersphere in the Cayley projective plane.

2. Preliminaries

2.1. The Jordan algebra and the group Fj

For detailed account on this subsection, see [Y, Chapter 5. We de-
note the field of Cayley numbers by Cay and its standard basis by ey =
1, e1, ..., e7. We also denote by Re Cay (resp. Im Cay) the linear subspace
of Cay spaned by eq (resp. e1, ..., er) over R. The Jordan algebra J is a 27-
dimensional real algebra consisting of all Hermitian 3-matrices with entries
in Cay. The Jordan product o is defined on J by X oY = (XY + Y X)/2,
X,Y € 3. For triples £ = (£1, &2, £3) in R® and @ = (21, 22, 3) in Cay?,
we put

& x3 o2
X(ga iﬂ) = f3 52 x1
z2 T1 &3

and, for x € Cay,

B = X((l’ 0’ 0)’ O)a E2 = X((O» 17 0)7 O)
E3 = X((07 0) 1)) O) Fl(x) = X(O) (37, 0)
Fy(z) = X(0, (0, 2, 0)), Fs(z) =X(0, (0,0

Then the set {E4, Eq, E3, Fi(e;), Fale;), F3(es), e = 0,1, ..., 7} forms a
real basis of J.

Let Fy be the group of autmorphisms of the Jordan algebra. We denote
by (, )cay the inner product on Cay with respect to which the standard

basis eg, ..., e7 becomes an orthonormal basis. An inner product on J is
defined by (X, Y)3=Tr(X oY) for X, Y € J. Precisely
3

(X(&, IIJ), X(nv y))3 = Z(ﬁzm + 2(557,7 yz‘)Cay)'

i=1
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It is known that every element in Fy preserves the trace and Fj is contained
in the orthogonal group O(J).
The Lie algebra of Fy is

fa={DcEndg(J)| D(XoY)=D(X)oY +XoD(Y), X,Y €J},

which has following structures. Let 91~ be the set of all skew-Hermitian 3-
matrices with entries in Cay. Then we have 9™, 3] C J and [J, J] C MM~
For A € M, define A : J — J by A(X) = [4, X]. Then A belongs to f4 if
Tr A =0. We set

A={Acf | AcM and diag(A) =0}

We put for a € Cay,

0 0 O 0 0 —a 0 a O
A1(a)=0 0 a],A2(a)={0 0 0 |,43(a)={-a 0 O
0 —-a 0 a 0 O 0 00

and A; = {4;(a) € f4 | a € Cay}. Then A=A & Ay ® As.
Next we set

542{5€f4’5(Ei):0, i:1,2,3},

which is described as follows. Let so(Cay) be the set of skew-symmetric
endomorphisms of the real vector space Cay with respect to (, )cay-

The Principle of Triality in so(Cay)
(1) For each Dy € so(Cay), there exist Dy and D3 € so(Cay) satisfying

(D1a)b+ a(Dgb) = D3(ab), a, b€ Cay.

Those Dy and D3 are determined uniquely by Dj.
(2) For Dy, Ds, D3 € so(Cay), suppose the equality

(D1a)b + a(Dab) = D3(ab), a, b€ Cay

holds. Then we also have

(Dga)b + a(ng) =D (ZIE) and (D3a)b + a(le) = DQ(_C%),
a, b € Cay.
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Now for Dy € so(Cay), choose Dy and D3 € so(Cay) satisfying the
triality equality (Dia)b + a(D2b) = D3(ab), a, b € Cay, and then define a
map §(D1): J — J by

§(D1)(X (&, x)) = X(0, (D121, D22, D3z3)).

The map §(D;) belongs to §4 and the correspondence D; — §(D;) gives
an isomorphism between the real Lie algebras so(Cay) and d4. Especially,
dim §4 = 28.

Finally §4 is decomposed as

fa=01dA=0,0A ® Ay ® As

as vector spaces. For a, s € Cay, define three endomorphisms nga, °) (1=
1, 2, 3) of Cay by

/(2) = (20)5 — (z5)a,
()
(2)

Dga, s
Diee 4((a, 2)Cays — (5, T)Caya),
pi®* 3

(az) — a(sz).

I

Then those DEG’S)’S (1 =1, 2, 3) belong to so(Cay) and satisfy the triality
equality

(D{" )y + z(D§"y) = D§**) (7).

By means of those endomorphisms, Lie bracket operations in f4 are com-
puted as follows:

[5(D1), Ai(a)]=Ai(Ds(a)), i=1,2,3,

[41(a), Ai(s))=6(D5?),

[As(a), As(s)]=5(DS>?),

[A3(a), As(s))=6(DS>?), (2.1.1)
(A1 (a), Ay(s)]=—As (@),

[A1(a), As(s))=A2(3a),

[A2(a), A3(s)|=—A,(a3)

2.2. Spinor groups and the Cayley projective plane
Let SO(Cay) and SO(ImCay) be the special orthogonal groups for
Cay and Im Cay with respect to the inner product ( , )cey. We regard
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SO(Im Cay) as a subgroup of SO(Cay) consisting of elements each of which
fixes the unit ey of Cay.
For a1, ag, as € SO(Cay), define the map f(aq, ag, asz) : J — J by

floa, ag, a3)(X(§, ) = X(&, (1), aa(z2), as(zs))).

If the three «;’s satisfy the triality equality ai(z)as(y) = as(Zy) for all
z, y € Cay, then f(a1, as, as) belongs to Fy. Thus we set

o, ag, a3€SO(Cay) satisfying
Spin(8)=1q f(au, a2, a3) € Fy | cn(z)az(y)=03(z7)
for all z,yeCay

Then it is known that Spin(8) becomes a simply connected closed subgroup
of Fy and the map f(ou, ag, a3) — o1 defines a double covering map from
Spin(8) onto SO(Cay). '
We also set
Spin(7) = {f(o1, az, a3) € Spin(8) | as € SO(Im Cay)}.

Then it is known that Spin(7) becomes a simply connected closed subgroup
of Fy and the map f(a1, a9, ag) — as defines a double covering map from
Spin(7) onto SO(Im Cay).
Now the Cayley projective plane is defined by
CayP={X€J|XoX =X and Tr(X)=1}.

The group Fj acts transitively on CayP. The isotropy subgroup at Eq has
a structure of a simply connected double covering space over SO(9). For
this reason, we denote it by

Spin(9) = {f € Fu| f(E1) = Er}.
The Lie algebras of those spinor groups are
spin(9)=d4 ® /11,
spin(8)=d4,
spin(7)={4(D1) € 64 | D3 € so(ImCay)}.
(Fy, Spin(9)) is a compact symmetric pair with the canonical decomposition

fa= (610 .A1) @ (A © As).
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We identify the tangent space Tg, CayP to CayP at Ey with p = Ay @ As.
The inner product (, ), on p is given by

(A2(a) + As(b), Az(s) + A3(t))p = (@, S)cay + (b, t)Cay,
a, b, s, t € Cay.
The linear isotropy action of Spin(9) on Tx, CayP is equal to the adjoint
action of Spin(9) on p. For later use, we write down here the ajoint action
of Spin(7) on p = Ay @ As.

Ad(f(ar, ez, a3))(Az2(a))=Az(az(a)), (2.2.1)
Ad(f(ea, a2, a3))(43(a))=As(as(a)), a < Cay.
Let R be the curvature tensor of the symmetric space CayP=Fy/Spin(9).

Then, at the base point E1, Rg, (X, Y), X, Y € p,isgiven by Rg, (X, Y) =
—ad[X, Y]. Hence we obtain from (2.1.1)

R, (Aa(s), Aa(t))(Aa(u))=—Aa(DS" (u)),

Rp, (Aa(s), Aa(1)) (As(w)=—As(D5 (),

Rp, (Aa(s), As(8))(As(u)=—As(a(st)), (2.2.2)
Rg, (Aa(s), As(t))(As(u))=Az((st)n),

Rp, (As(s), As(t))(As(u))=—As(DS 9 (w)),

for s, t, u € Cay. As a consequence, we have

Proposition 2.1 There exists no totally umbilical hypersuface (even lo-
cally) in CayP.

Proof. Suppose there would be a totally umbilical hypersuface M in CayP.
We may assume that M contains F;, and the tangent space T, M is iden-
tified with As @ Im A3 under the identification Tg, CayP =p = As @ .»213,
where we put Im A3 = {A3(a) | @ € ImCay}. By means of Codazzi equa-
tion, for X, Y, Z € p, if X and Y are perpendicular to Z, then Rg, (X, Y)Z
must be tangent to M. However if we take X = Ay(e1), Y = As(e;) and
Z = Ay(eg), then (2.2.2) implies R(X, Y)Z = As(eg), which is perpendicu-
lar to M. This contradiction shows the assertion. O

We note that this proposition is already known. In [C], B.Y. Chen
proved that there is no totally umbilical submanifolds of dimension greater
than 8 in the Cayley projective plane. Moreover, if a submanifold is to-
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tally umbilical, then it has parallel second fundamental form, hence the
classification of such submanifolds follows from the classification of paral-
lel submanifolds in the Cayley projective plane. Such a classification was
completed by K. Tsukada in [T].

Let M be a compact minimal hypersurface in CayP. Then, because of
(2.2.2), the Jacobi operator Jys : I'(NM) — T'(NM) of M (e.g. see [G2] for
definition) is given by

Tu (V)= -ANMy _ (36 + || B||*)V. (2.2.3)

Here NM is the normal bundle of M, I'(N M) is the space of sections of
NM, ANM is the negative rough Laplacian with respect to the normal
connection on NM, and B is the second fundamental form of M. Since Jps
is a strongly elliptic operator, its kernel is of finite dimensional. The nullity
of M is defined to be the dimension of the kernel of Jas.

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. For this purpose, we
recall the results obtained in our preceding paper [G2].

Let (G, H) be a compact symmetric pair and g = §+m be its canonical
decomposition. Let M be a compact minimal submanifold of G/H which
contains the origin o of G/H. We denote by m the subspace of m that
corresponds to the tangent space T, M under the canonical identification
between T,G/H and t. Define a linear map ¥ : h — Hom(m, m') by
U(Z)(X) = (ad(Z) (X))

Theorem 3.1 ([G2]) The nullity of M satisfies the inequality
nul(M) 2 codim(M) + dim Im .

If nul(M) = codim(M) 4+ dim Im ¥, then we have

(1) M is an orbit of a closed subgroup of G.

(2) Let Hy be the subgroup of H generated by Ker W. Then Hy leaves M
mvariant.

We are now in a position to prove Theorem 1.1. Let M be a compact
minimal hypersuface in CaylP. We may assume that M contains Fy, and
Tg, M = A; @ Im A3. We also put Re A3 = {A43(a) | a € ReCay}. In this
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case, the linear map ¥ : spin(9) — Hom(fig ® Im A3, Re As) is given by
U(Z)(B) = (2, B], A3(e0))pAs(e0)-

For Z = §(Dy) + Ay(a) in spin(9) and B = Ay(s) + As(t) in Ay @ Im As,
where a, s € Cay, t € ImCay, we have

([Z, B, As(eo))p=(A2(Da(s) + ta) + As(Ds(t) — @s), As(eo))s
:(DB(t) — as, eO)Cay
_Re(Ds(t) — a5).

This implies that ¥(Z) = 0 if and only if a = 0 and D3 € so(ImCay).
Hence we have Ker ¥ = spin(7) and dim Im ¥ = dim Spin(9) — dim Ker ¥ =
36 — 21 = 15. By virture of Theorem 3.1, we obtain

nul(M) 2 codim M + dimIm ¥ = 16.

We now assume nul(M) = 16 in what follows. Let v be a unit normal
field of M with vg, = 1‘13(60) € Re A3, and S” the shape operator of M
associated to v. By the assumption on the nullity of M, Spin(7) acts on M
as stated in Theorem 3.1. Hence we have

Ad(f)oS=SoAd(f) forall f e Spin(7), (3.1)

where we put S = S§YB1. We shall show that the shape operator S leaves
each of Ay and Im A3 invariant. For this purpose, denote the unit elements
in SO(Cay) and SO(Im Cay) by 1 and 1’ respectively. Then f(—1, —1, 1/)
belongs to Spin(7), and because of (2.2.1), it acts on Ay by (—1)x identity
and on Im A3 by identity. This, combined with (3.1), shows that the space
S (/ng) is perpendicular to Im As. Therefore both spaces As and Im Ajs are
leaved invariant by S respectively.

The adjoint actions of Spin(7) on Ay and Im A3 are given in (2.2.1). It
is then known that those actions are transitive on the unit spheres in both
Ay and Im As. Hence the number of the distinct eigenvalues of S is at most
two. Because M cannot be umbilic (Proposition 2.1), we conclude that M
has two distinct constant principal curvatures.

According to Iwata [I] or Kollross [K], the codimension one orbits of
some closed groups acting on the Cayley projective plane are essentially the
following two cases.

1. One of those is a geodesic hypershere, which has two distinct constant
principal curvatures.



The nullity of a minimal hypersurface 437

2. Another one is given by a cirtain action of Sp(3) x Sp(1) on CayP with
the orbit (Sp(3) x Sp(1))/(Sp(1) x Sp(1) x Sp(1)). An elementary
calculation shows that this orbit has four distinct constant principal
curvatures.

We finally conclude that M must be a minimal geodesic hypersphere.
d

In the next section, we will show that the nullity of a minimal geodesic
hypersphere in CayP is actually equal to 16.

4. A minimal geodesic hypersphere in CayP and its nullity

All the notation which appeared in the preceding sections are used in
the present section. We also denote by Ajs the Laplacian of a Riemannian
manifold M acting on the space of smooth functions. The A-eigenspace of
Ay is denoted by Ey(Ap).

4.1. Geodesic hyperspheres in CayP
From (2.2.2), the Ricci transformation Ricg, 1 in the direction As(eo)
is given by

id on /:12,
on e A3.

We denote by 7yg, (., the geodesic in CayP with Vis( )(0) = F; and

e €0

0) = Az(e). Let B = By + B3 € Ay ® Im A3 and B;(t) the parallel
with B;(0) = B; (i = 2, 3). Then, from (4.1.1),

o
’YAs(eo)
vector field along vz, (
the vector field

en)

Z(t) = (sint) Balt) + %(sin 24) By (£) (4.1.2)

is the Jacobi field along 74, (ep)2 Which satisfies the initial conditions Z(0) =
0 and V:Z(0) = B. This implies that the injectivity radius of CayP is 7/2.
Consider the initial value problem
2 : —
Vt 615 + RIC,Y:%(eO)(t) OGt = 0,
S =0, (4.1.3)

thO = ldfiQ@ImAg’

for a differentiable function ¢t +— &; € End(Ay(t) @ Im A3(t)). Here As(t)
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and Im As(t) denote the spaces obtained by parallel translation of Ay and
Im A3 along As(eo)" Because the Jacobi fields along -« As(eo) BT€ given by
(4.1.2), the solution of (4.1.3) is given by

(sint)id on Ay (t)
=<1 ~ (4.1.4)
5 (sin2t)id on Im.As(t),

and its covariant derivative is given by

V.6, = {((cos t)id on A (t)

_ ~ (4.1.5)
cos2t)id on Im.Ajs(t).

Now let S; be the geodesic hypersphere in CayP centered at Fq and with
radius t (0 < t < w/2). It follows from (4.1.4) and (4.1.5) that the shape
operator of S at vz, eo)(t) associated to the unit normal vector 7143 (eo)(t)

is given by

(cott)id om As(t)

Ve ® _ 1 _ i
S "As(eo (Vi8:) 0 &; 2(cot2¢t)id on Im.As(t).

This implies

(4.1.6) S; has two constant principal curvatures cott and 2 cot 2¢.

(4.1.7) S; is a minimal hypersurface if and only if cot?t = 7/15.

(4.1.8) If S; is a minimal hypersuface, then we have ||S'“3(@0)(t) |> = 8 and
the Jacobi operator Js, : T'(NS;) — T'(NS;) is given by

T, (V) = —ANSTY — 44V,

because of (2.2.3) and (4.1.7). Especially its nullity is equal to
dim Ey4(As,), since S; is orientable.

4.2. The first eigenvalue of the Laplacian of $'° with a canoni-
cally varied metric

We denote by S™(r) the Euclidean n-sphere with radius r, and by ggn ()

its canonical metric. It is then known that there is a Riemannian submersion
with totally geodesic fibers:

S™(ry ——  S%(r)

|=

S8(r/2).
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The tangent space TpS™5(r) to S*5(r) at p is decomposed as T,S'5(r) =
Hy, ® V,, where H, and V,, are the horizontal and the vertical space with
respect to the Riemannian submersion. Define a metric gs(s > 0) on S*5 by

Js ‘ Vp x Hp =0,

Js [ Vo = 529515 (r) ] Vo,

gs ’ H = gsis(y ‘ H
In [BB], such a metric g is called a canonical variation of S**(r) associated
with the Riemannian submersion.

We investigate the first eigenvalue of the Laplacian Af’qls( r of (S (r),gs).
The vertical and the horizontal Laplacians A and A} for g5 are defined by

(AN P)=(AE,Hp) for feCP(SP(r),
AZZA§15(T) - A,(s)

Here [}, denote the fiber through p and A}p its Laplacian. After Berard
Bergery and Bourguignon [BB], we set, for non-negative real numbers b and

¢,
H?(b, ¢) = {f € C®(S®(r)) | A f = bf, AYf = f},

which is contained in Fpys(Adss (T)). One of the important observations in
[BB] is that the three Laplacians Ag;s (r) A3 and A} are commutative with

each other and hence the Hilbert space L2(S'®(r)) admits a Hilbert basis
consisting of elements in those spaces H®(b, ¢). Furthermore they have
shown

H(b,¢) = H*(b, s2¢) forall s> 0. (4.2.1)
Now the spectra of the Laplacians of S3(r), S7(r) and S8(r/2) are given
by
k
Spec(S)={ s = T [k =0,1,...,

Spec(57(r)):{gbk _ kk+6) k=01, } (4.2.9)

)
Spec(Ss(r/2)):{i(kT2+—7) } k=0,1, }

Foreachk 21and(=0,1, ..., Ly = max{l | ¢; S pr}, we put by | = pp —
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¢y. Precisely Ly is given by the table below:

k1] 25k<3|4<k<13|14Zk
Lr | 1| k+1 k+ 2 k+3

Then, each p; may be decomposed into the form
p = b+ ¢ and  H(bg,, ¢;) # 0. (4.2.3)

Note that the above range of [ is only a possibility. Accoding to the decom-
position (4.2.3), we set

1
ke, 1(8) = bg,1 + 2% 1=0,1,..., L.

Then pg,(s) is an eigenvalue of Assls(T) provided such a decomposition
(4.2.3) is possible. Using the notation as above, we have the following.

Proposition 4.1 When +/42/12 < s < 1, the first eigenvalue of ASS15(T) 18
equal to p1,1(s) = 172(8+7s72). Its eigenspace coincides with E,, (Agis()),
and hence its multiplicity is 16.

Proof. As was mentioned in [BB], H*(b, 0) = {fon | f € Ey(Ags(r/2))}-
Thus the decomposition 1 = b1,0 + ¢o is impossible bacause of (4.2.2).
On the contrary, the decomposition u; = b;1,1 + ¢1 is possible, because
eigenfunctions for u1; and ¢; are the restrictions of linear 1-forms on R'6
and R8 to S¥3(r) and S7(r). It is now easy to see that uy, 1(s) < uk,i(s) for
s, k, l with vV42/12 <s<1,k=2,3,...,1=0,1, ..., L. Hence u 1(s)
is the first eigenvalue of A%is (). Moreover we obtain from (4.2.1) that
ENI (ASIS(T‘)) = Hl(s/rz’ 7/’/“2) = HS(S/TZ) 7/(ST)2) = E,Ul,l(s) (AgIS(T))

O

4.3. The nullity of a minimal geodesic hypershpere in CayP

Let Ug,CayP be the fiber of the unit sphere bundle of CayP at Ej.
Then a map S; — S/ (0 < t < 7/2) defined by v, (t) — v (7/2) for
v € Ug, CayP gives a Riemannian submersion with totally geodesic fiberes.
Here S, /2 1s the cut locus of Ey. This fibration is equivalent to

S™(costsint) —— (S¥B(sint), geost)

!

S8(sint/2),
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where geost iS @ canonical variation of the metric on S'%(sint) with respect
to the fibration S”(sint) — S¥(sint) — S%(sint/2).

Now minimality condition for S; is cot?t = 7/15 (see (4.1.7)), when the

value of variation parameter is cost = +/154/22. Hence Proposition 4.1 is
applicable, and together with (4.1.8), we have

[BB]

1]

When cost = /154/22, the first eigenvalue of Ag, is equal to
that of AE and hence it is equal to py,1(V/154/22) = 44

S15(sint)’
and its multiplicity is 16. We conclude the nullity of a minimal

geodesic hypersphere is equal to 16.
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