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Local isometric imbeddings of P?(H) and P?(Cay)

Yoshio AGAOKA and Eiji KANEDA
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Abstract. We investigate local isometric imbeddings of the quaternion projective plane
P2(H) and the Cayley projective plane P2(Cay) into the Euclidean spaces. We prove
a non-existence theorem of local isometric imbeddings (see Theorem 2), by which we can
conclude that the isometric imbeddings given in Kobayashi (8] are the least dimensional
isometric imbeddings of P?(H) and P?(Cay).
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1. Introduction

In this paper we investigate local isometric imbeddings of the quaternion
projective plane P2(H) and the Cayley projective plane P2(Cay) into the
Euclidean spaces.

In [5], we determined the pseudo-nullity p(G/K) for each compact rank
one symmetric space G/K. (For the definition of the pseudo-nullity, see
[5].) Utilizing p(G/K), we have obtained the following result concerning
the non-existence of isometric imbeddings of the complex projective spaces
P™(C)(n > 2), the quaternion projective spaces P"(H) (n > 2) and the
Cayley projective plane P?(Cay) (see Theorem 5.6 of [5]).

Theorem 1 Let G/K be one of the complex projective space P*(C) (n >
2), the quaternion projective space P"(H) (n > 2) and the Cayley pro-
jective plane P?(Cay). Define an integer ¢(G/K) by setting ¢(G/K) =
2dim G/K — p(G/K), i.e.,
min{4n — 2, 3n+1}, if G/K = P"(C) (n > 2),
¢(G/K) =< min{8n -3, Tm+1}, if G/K=P"(H) (n>2),
25, if G/K = P*(Cay).
Then, any open set of G/K cannot be isometrically imbedded into the Fu-
clidean space R with Q < ¢(G/K) — 1.
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As is well known, P*(C) (resp. P*(H), resp. P?(Cay)) can be glob-
ally isometrically imbedded into R™*¥2" (resp. R¥" 13" resp. R2) (see
Kobayashi [8]). By these facts, it follows that if G/K = P2(H) or P?(Cay),
then G/K can be isometrically imbedded into R¥G/K)*1 Then a natural
question arises: Is there any isometric imbedding of G/K = P?(H) or
P?(Cay) into the Euclidean space RIG/K) 7

In this paper, we will solve this problem. The main result of this paper
is the following

Theorem 2 Let G/K be the quaternion projective plane P2(H) or the
Cayley projective plane P%2(Cay). Then any open set of G/K cannot
be isometrically imbedded into the Euclidean space RYG/E), Accordingly,
RUCTEML s the least dimensional Euclidean space into which G/K can be
locally isometrically imbedded.

2. The Gauss equation

In the following G/K implies the quaternion projective plane P2(H) =
Sp(3)/Sp(2)xSp(1) or the Cayley projective plane P?(Cay) = Fy/Spin(9).

Let g (resp. &) be the Lie algebra of G (resp. K). Let g = £+ m be the
canonical decomposition of g associated with the Riemannian symmetric
pair (G, K). We denote by ( , ) the inner product of g given by the (—1)-
multiple of the Killing form of g. As usual we identify m with the tangent
space T,(G/K) at the origin o = {K} € G/K. We assume that the G-
invariant Riemannian metric g of G/K satisfies g(X, V)= (X, Y) (X, Y €
m). Then the curvature tensor R at o is given by

R(X,Y)Z=-[[X,Y],Z], VX,Y,Zem. (2.1)

Suppose that there is a local isometric imbedding of G/K into the
Euclidean space R, i.e., there is an open set U of G /K and an isometric
imbedding f of U into R%. Because of homogeneity, we may assume that
U contains the origin 0 € G/K. Let N be the normal space of f(U) at f(o)
and let { , ) be the inner product of IV induced from the canonical inner
product of R9. Then N is a vector space with dim N = @ —dim G/K and
the second fundamental form W of f at o, which is regarded as an IN-valued
symmetric bilinear form on m, must satisfy the following Gauss equation:

—(R(X,Y)Z,W) = (¥(X, Z), B(Y,W))

—(T(X, W), ¥(Y,2)), VX,Y, Z, Wem. (2:2)
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On the contrary, we can prove

Theorem 3 Let G/K = P?(H) or P?(Cay). If dimN < ¢(G/K) —
dim G/ K, then the Gauss equation (2.2) does not admit any solution, i.e.,
there is no N -valued symmetric bilinear form ¥ on m satisfying (2.2).

Theorem 3 implies that if G/K = P2(H) or P?(Cay), then there is no
local isometric imbedding of G/K into RAG/K), proving Theorem 2.

We now make a preparatory discussion for the proof of Theorem 3.
Take and fix a maximal abelian subspace a of m. Then we have dima = 1,
because rank(G/K) = 1. We consider the root space decompositions of ¢
and m with respect to a. Let A € a. We define subspaces (A\) (C ¢) and
m(A) (C m) by setting

N ={Xet | [H [H X]] =-()\ H)?X, VHEa},
m(\)={Y em | [H [H Y]] =—(\ H)?, VHEada.
A is called a restricted root when m(A) # 0. We denote by X the set of
non-zero restricted roots. In the case where G/K = P%(H) or P?(Cay),
it is well known that there is a restricted root u satisfying X' = {£u, +2u}
and

E=2(0) +&(u) + £(2u) (orthogonal direct sum), (2.3)
m=m(0) + m(u) + m(2u) (orthogonal direct sum), (2.4)

where m(0) = a = Ry (see § 5 of [5]). In the following discussions we fix
this restricted root p and the decompositions (2.3) and (2.4).
For convenience, for each integer i we set

b =t([|p), m; =m(filp) (i <2) and & =m; =0 (Ji| > 2).
Then we have
Proposition 4 (1) Leti,j=0,1,2. Then:
(8, €] C &y + 8y,
[my, mj] C &4 + &5, (2.5)
[, mj] C myyy +my_j.

(2) dimé¢; =dimm; (=1, 2).
(3)  The following table summarizes the basic data for P2(H) and P?(Cay).
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G/K dimG/K dimm; dimmy ¢(G/K)
P%(H) 8 4 3 13
P?(Cay) 16 8 7 25

Proof. (1) and (2) are well known (see Helgason [7], p. 335). (3) is obtained
by Table 2 and Table 3 of [5]. O

3. Proof of Theorem 3

In this section we prove Theorem 3. Here we suppose that dim IV =
¢(G/K) — dim G/K and that there is a solution W of the Gauss equation
(2.2).

Let Y € m. We define a linear map Py of m to N by

Ty mo>Y' — ¥(Y,Y') e N.

By Ker(¥y)(C m) we denote the kernel of the linear map ¥y. We now
show a key proposition, which plays an important role in the following
discussion.

Proposition 5 LetY € m (Y # 0) and let k € K satisfy Ad(k)u € RY.
Then

Ker(¥y) = Ad(k)ms. (3.1)
In particular, Ker(¥,) = mq.

Before proceeding to the proof of Proposition 5, we recall the notion
of pseudo-abelian subspaces of m defined in [5]. Let V" be a subspace of m.
Then, V is called pseudo-abelian if it satisfies [V, V] C & (or equivalently,
[V, V], a] =0). By (2.5) we can easily verify that m is pseudo-abelian.
On the contrary, we have

Lemma 6 Let G/K = P?(H) or P?(Cay). Then, any pseudo-abelian
subspace V' of m with dimV > 2 must be contained in mo.

Proof. Let V be a pseudo-abelian subspace of m satisfying V ¢ my. Then
by Lemma 5.4 of [5], we obtain dimV < 1+ n(u), where n(u) is the local
pseudo-nullity associated with u. (For the definition of the local pseudo-
nullity, see § 3 in [5].) Moreover, we have n(u) = 1 if G/K = P?(H) or
P2(Cay) (see Table 2 of [5]). Therefore, we get dimV < 2, proving the
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lemma. U
We now start the proof of Proposition 5.

Proof of Proposition 5. We first note that dim Ker(¥y) > dimmy > 2.

In fact, since dim N = ¢(G/K) — dim G/K = dim G/K — dimmgy, we have

dim Ker(¥y) > dimG/K — dim N = dimmgy > 2 (see Proposition 4 (3)).
In § 1 of [2], by considering the Gauss equation (2.2), we have proved

R(Ker(¥y), Ker(¥y))Y =0. (3.2)
Because of (2.1), the equality (3.2) means

[Ker(Ty), Ker(Ty)], Y] =0. (3.3)
Applying Ad(k~!) to the both sides of (3.3), we get

[[Ad(k~Y)Ker(®y), Ad(k~")Ker(®y)], 1] = 0.

(Note that Ad(k~1)Y can be written as Ad(k~1)Y = cu for some c € R (c #
0).) Since a = Ry, we know that Ad(k~})Ker(Py) is a pseudo-abelian
subspace of m with dim Ad(k~1)Ker(¥y) > dimmy > 2. Therefore, we
have Ad(k~!)Ker(¥y) = ms (see Lemma 6). This proves (3.1). O

Utilizing Proposition 5, we will characterize solutions ¥ of the Gauss
equation (2.2). For this purpose we need more informations about the action
of the isotropy group Ad(K).

As is well known, any element of m is conjugate to an element of Ru(=
a) under the action of Ad(K). More strongly, under our assumption G/K =
P%(H) or P?(Cay), we have

Proposition 7 (1) Let Yy € a+ mg satisfy Yo # 0. Then there is an
element ko € K satisfying Ad(ko)u € RYy and Ad(ko)(a + mz2) = a + ms.
Consequently, Ad(ko)ma coincides with the orthogonal complement of RYj
ma+mg, te.,

Ad(ko)mg = {Yy € a+mz | (¥y, Yo) = 0}. (3.4)

(2) Let Y1 € my satisfy Y1 # 0. Then there is an element k1 € K satis-
fying Ad(k1)p € RY1 and Ad(k1)(a + mg) = my. Consequently, Ad(ki)mg
coincides with the orthogonal complement of RY7 in mq, i.e.,

Ad(kl)mg = {Yll c my ‘ (Yll, Yl) = 0} (35)
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Under the same setting in Proposition 7(2), we have

Proposition 8 Let Y1 € my satisfy Y1 # 0. Then there is an element
k] € K satisfying

rd(k)a= s dut i . (3.6)
Ad(K))Ys = %{Yg + m [, Yi), V2] } W emy  (3.7)

Here |v| denotes the norm of v € m, i.e., |v] = (v, v)V/2.

The proofs of Proposition 7 and Proposition 8 will be given in §4.
Utilizing Propositions 5, 7 and 8 we first show the following;:

Proposition 9 Assume that dim N = ¢(G/K) —dim G/K and that there
is a solution W of the Gauss equation (2.2). Then there exist two vectors A
and B € N satisfying

U (Yo, Yy) = (Yo, Y3)A, VYo, Yj€a+my, (3.8)

(Y, Y!)=(v1,Y])B, VY3, Yiem, (3.9)
1

\IJ(}/I’ Y2) = (u /11>2 \I’(N’) [[M) Yl]) }/2]); Vi/l €emy, VYZ Em2(310)

Proof. First we prove
¥ (Y, Yy) =0, VY, Y] € a+ my satisfying (Yp, ¥§) =0. (3.11)

We may assume that Yy, Y # 0. Then, by Proposition 7 (1), we know that
there is an element ky € K satisfying Ad(ko)u € RYp. Since (Yo, Yy) =0,
we have Yy € Ad(ko)ma. Then, by Proposition 5, we know Y € Ker(¥y,).
Hence ¥(Yp, Yy) = 0, completing the proof of (3.11).

Now (3.8) can be proved by (3.11) as follows: Let Yy and ¥ be two
elements of a + my of the same length. Since (Yp + Yy, Yo — Yy) = 0, we
obtain W (Yp + Yy, Yy — Yy) = 0. Hence, we have ¥(Yy, Yp) = ¥ (Y], YJ).
This implies that ¥(Yy, Y5)/(Yo, Yo) (Yo € a+mg, Yy # 0) takes a constant
value A (€ N). Therefore, we have ¥(Yp, Yy) = (Yo, Yo)A for any Y €
a+ mg. Now (3.8) follows immediately from this equality.

In a similar manner, by applying Proposition 7 (2) we can prove (3.9).

Finally, we prove (3.10). Without loss of generality, we may assume
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that ¥1 # 0. Apply Proposition 8 to this ¥ (€ my). Then there is an
element &} € K satisfying (3.6) and (3.7). By (3.1) we have

0= (Ad(k})u, Ad(K))Y5)

1 |1 1
—cw (e By Yo — - W Ya]).
2% (1 o Y2+ g e 30 )

Note that [[u, V1], Y2] € my (see Proposition 4 (1)) and [[u, Y2, Y1] =
2[[u, Y1], Y2] (see Lemma 5.3 of [5]). Then, we have

([l Y1) ¥el) =2 (%, (I, Ya), i]) = =5 (1%, Vi), [, Ya]) =0,

Hence by (3.9) we have ‘If(Yl, [[u, Yi], Yg]) =0. This together with ¥(u, Y3)
= 0 proves (3.10). O

To calculate the left hand side of the Gauss equation (2.2), we prepare
one more proposition, which will be proved in the last section of this paper.

Proposition 10 (1) Let Yy, Yy € a+mg and Y1 € my. Then:

[Yo, [Yo, Y1]] = — (&, #)(Yo, Yo) 11, (3.12)
—4(,&, M)(Y(h }/b)y/a 7’f (Yba Y/) = O>
[Yo, (Yo, Y4l ={ 0 0 i Yle ;zyo RNCAE)
(2) LetY1, Y] €my and Yy € a + my. Then:
Yy, 7, Y| = 14
[ 1 [ 1, 1]] { O, Zf }/—1/ € R}/i, (3 )
(Y1, [Y1, Yol] = (i, #)(Y1, Y1)Yo. (3.15)

With these preparations, we start the proof of Theorem 3. We first
show a series of lemmas by using the Gauss equation (2.2) and Proposition
9.

Lemma 11 (A, A) = (B, B) = 4(u, u).

Proof. Take an element Ys € mg satisfying (Y2, Y2) =1. Pt X =Z =p
and Y =W =Y, into the Gauss equation (2.2). Then, since ¥(u, ¥2) =0,
we have

([l Y2), 1], Y2) = (®(u, p), ¥(Ya, Y2)).
Since ¥(, )/ (ps p) = Yz, Y2) = A and (Hl“'a Yal, N], YQ) = 4(p, “)Qa
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we have (A, A) =4(u, p).

Next, we prove (B, B) = 4(u, u). Take elements Y7, Y/ of m; satisfying
(Y1, Y1) =(Y],Y/)=1land (V1,Y{)=0. Put X =Z =Y, and Y =W =
Y/ into (2.2). Then, since ¥ (Y7, Y{) =0, we have

([1, Y{), 7], YY) = (@ (Y1, Y1), ©(Y/, V)).

Since W(Y1, Y1) = ¥(Y{,Y]) = B and [[V3, Y{], V1] = 4(u, p)Y] (see
(3.14)), we have (B, B) = 4(y, p). O

Lemma 12 (A, ¥, (m;)) = (B, ¥,(m;)) =0.
Proof. Let Y7 be an arbitrary element of m;. Take an element Yo € mo

satisfying (Ys, ¥Y2) = 1. Pt X =2 =Y,, Y = pand W = Y] into (2.2).
Then, since ¥(u, Y2) = 0, we have

([[Y27 ,u], Y2]> Yl) = <‘I’(Y2, Y2), \Il(u, Y1)>.

Since W(Y3, Y2) = A and [[Y, ul, Y2] = 4(u, p)p (see (3.13)), we have
(A, ®(u, Y1) = 4(p, p)(p, Y1) = 0. Since Y1 is an arbitrary element of
my, we have (A, ¥, (m1)) = 0.

Next, let Y7 be an arbitrary element of m;. Take an element Y € my
satisfying (Y/, Y1) =0and (Y{,¥/) =1. Put X =Z2 =Y/, Y = p and
W =Y into (2.2). Then, since ¥(Y7, Y{) = 0, we have

(1Y, 4, ¥{), Y3) = (W (Y, ¥7), @, 10)).

& Since ¥(Y{, Y{) = B and [[Y], p], Y{] = (i, p)p (see (3.15)), we have
<B, W (u, Y1)> = (u, u)(p, Y1) = 0. Since Y] is an arbitrary element of my,
we have <B, \Ifﬂ(ml)> =0. O

Viewing Proposition 4 (3), we have dim N = dimm;+1. Since Ker(¥,)
Amy = myNmy = 0, we have dim W, (m;) = dimm; = dim /N — 1. Con-
sequently, by Lemma 12 and Lemma 11, we easily have B = £A. More
strongly, we can show

Lemma 13 A = B.

Proof. By the above discussion, it suffices to prove (A, B) > 0. Let Y3 €
my satisfy (Y1,Y1) =1 In (22), weput X =Z =pandY =W = Y.
Then, we have

([[Ua Yl]’ /'L]a Yl) = <‘I’(/~1’a /‘l')’ ‘P(Yl) }/1)> - <\I’(:U'7 Yl)) ‘Il(ifla ,LL)>
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Since W(u, u) = (u, p)A, ®(Y1, Y1) = B and [[u, 1], u] = (4, p)*Y1, we
have

(s p)(A, B) = (1, ) (Y1, Y1) + (¥ (1, Y1), ¥ (u, 1)) > (1, 1)
This proves (A, B) > 0. O
Utilizing Lemma 13, we have

Lemma 14 Let Yy, Y] € my. Then

(@ (p, Y1), ®(p, Y1) = 3(u, w)*(¥1, Y7). (3.16)
Proof. Put X =Z=p,Y =Y and W = Y] into (2.2). Then we have

(“M’ Yi]a M]? Yll) = <\I’(,U,, :u)a ‘IJ<Y17 Yll)> - <\I’(:U'7 }/1/)7 ‘II(Yla N)>

Since W (u, p) = (u, p)A, ¥(Y1, Y{) = (Y1, Y{)B and A = B, the first term
of the right hand side becomes (¥ (u, p), ¥ (Y1, ¥{)) = 4(u, p)*(¥1, Y{)
(see Lemma 11). Therefore, by [[u, V1], ] = (i, p)*Y1, we have

(W, Y1), ®p, Y))=4(p, p)*(Y1, Y1) = (4, 0)*(¥1, Y1)
=3(n, w)*(Y1, 19).
O

We are now in a position to complete the proof of Theorem 3. Let V7 €
my (Y1 #0) and Y € my (Yz # 0). Note that [Y1, Ya] € ¥; (see Proposition
4 (1)). We also note that [Y7, Y2] # 0. In fact, if [¥1, Ya] = 0, then the
2-dimensional subspace generated by Y7 and Y5 forms an abelian subspace
of m, which contradicts rank(G/K) = 1. Now, set ¥{ = [[¥1, Y2, u]. Then
it is clear that ¥/ € my (see Proposition 4 (1)). Moreover, we have Y{ # 0,
because [u, Y] = (4, u)?[Y1, Y2] # 0.

Now, put X = Y1, Y =Y, Z = ppand W = Y/ into (2.2). Since
¥ (Y, p) =0, we have

([v1, ¥2], p], Y1) = (¥ (Y1, p), ®(Y2, YT)). (3.17)
By (3.10) and (3.16), the right hand side of (3.17) becomes

(0 (Y, 1), ®(Ya, Y])) = (2, V1), ©lu, (I, Y1), Ya)))/ (1, o)?
:—3(Y1, [[/% Y1/]7 YQ])
=3([¥1, Yal, [, Y1)
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=3([[¥1, ¥2), pl, Y{).

Putting this equality into (3.17), we have ([[Y1, Y2], p], ¥{) = 0, which
contradicts our assumption ([[Yl, Ya), ,u], Y/) = (Y{, Y{) #0.

As we have shown above, starting from the assumption that the Gauss
equation (2.2) admits a solution ¥, we finally arrive at a contradiction.
Accordingly, we can conclude that if G/K = P%(H) or P?(Cay), then
the Gauss equation (2.2) does not admit any solution in case dim N =
¢(G/K) — dim G/K. This completes the proof of Theorem 3. O

4. The action of the isotropy group Ad(K)

In this section we prove Propositions 7, 8 and 10, which are needed in
the proof of Theorem 3.

Lemma 15 Let X; €t (i=1,2). Then
[, [Xi, pl] = —i2(u, ) (Xa, Xo)pe. (4.1)
&

Proof. By (2.5) we have [X;, [X;, ,u]] € a + my;. By the Jacobi identity
we have

[u, (X, [ X3, u]]] = [[u X, X, pl] + [Xi, ([w, X, u]] =0,

because [[u, Xi], u] € RX;. Therefore, we have [X;, [X;, u]] € a. Since
a = Ry, there is a scalar ¢ € R satisfying [X;, [X;, p]] = cu. Then we have
c= —i2(u, p)(Xi, X;), because

c(p, w) = ([ X, [Xa, W], p) = (X, [[Xi, w4l 1))
= —(’Lﬂ, :U')Q(Xia Xz)

O
By the above lemma, we obtain
Lemma 16 Let X; € ¥ (i =1, 2) satisfy X; # 0. Then
Ad (exp(tXs)) p = cos(i|u] | Xilt)
sSnllullXlt) o 0 vie R (4.2)

] [ X
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Proof. Let n be a non-negative integer. By induction of n, we can easily
show

(ad Xi)*" = (=1)" (|l X:))*"
(ad X3)*" " u = (=)™ (il ul | X)) > X, .

Consequently, for all £ € R we have

° th t2n+1
Ad(exp(tXy))p = Z{ Gy (24 Xi)* M+ Ewm (ad Xi)2n+1ﬂ}
n=0 ’ :
oo
)
n=0

(=1~ ; I
+ iIMHXiI nz:% 2n + 1)!( |l X)X,

=cos(%|p|| X;|t) 1 -+ -
(4] ] | X |t) X

0

With these preparations, we proceed to the proof of Proposition 7. Let
Yo € a+my. If Yy € a, then we have only to set kg = e, where ¢ is the
identity element of K.

Now we assume that Yp ¢ a and write Yo = cu+ Yo (c € R, Y5 €
my, Yz # 0). Set Xo = [Yp, u]. Then we easily have Xy = [Ya, u] € £ and
[X2, p] = —4(u, u)?Ya. Moreover, we have | Xa| = 2|u|?|Yz|, because

(X2, X2)=([Ya, ul, [Y2, W) = — ([[Ya, m], 1], Yo) =4 (s, p)?(Ya, Vo).

Putting this X5 into Lemma 16, we have

Ad(exp(tXs))p=cos(4|ul?|Yalt) p _I—‘Y—’|Sln(4W|3|YQIt)YQ’ Vte R.

Take tg € R satisfying cos(4|u|®|Yalto) = c(|u|/|Yo|) and sin(4|u[?|Ya|te) =
—|Y2|/|Yo|. Let us set ko = exp(toX2). Then we have kg € K and

Ad(Bo) = Ad(exp(toXa))u I‘{,’“‘I (e +¥3) = i,

Thus we get Ad(ko)u € RYy. By (2.5) we immediately have [Xg, a+mg] C
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a + mg. Hence, we have Ad(kg)(a + mg) = a + mg. Since Ad(kg) is an
orthogonal transformation of m, we know that Ad(kg)my coincides with
the orthogonal complement of RY; in a 4+ my. This finishes the proof of
Proposition 7 (1).

To prove Proposition 7 (2), we first show

Lemma 17 Let Xq € £1. Then
(X1, [X1, Y2]] = — (&, w)(X1, X1)Y2, VY2 € ma.
Proof. By (4.1), we have
(X1, (X1, pl] = —(u, w)(X1, X1)p. (4.3)

Let Y5 be a non-zero element of mo. Then, as in the proof of Proposition
7(1), we know that there is a scalar g € R such that the element kg =
exp(toX2) € K satisfies Ad(ko)u € RYs, where we set Xo = [Ya, p] € .
Then, we have Ad(kg)¥; = 1, because [Xo, ;] C ¥ (see Proposition 4 (1)).
Now, applying Ad(kp) to the both sides of (4.3), we have
[Ad(ko) X1, [Ad(ko) X1, Yal] = — (1, p)(X1, X1)Y2
= ~(u, u)(Ad(ko) X1, Ad(ko)X1)Y2.

Writing X7 instead of Ad(kg)X; € £1, we get the lemma. O

Now we return to the proof of Proposition 7(2). Set X; = [Y1, u]. In
the same way as in the proof of (1), we can easily prove X1 € &, [X1, p] =
—(u, 1)?Y7 and | X;| = |u|?|Y1]. Applying Lemma 16 to this X;, we have

Ad(exp(tX1))u = cos(|ul*|Y1[t)u

- I|?'ul||sin(|u|3|Y1|t)Y1, vVt € R. (44)

Let Y5 € my. By Lemma 17, we have
(ad X1)*"Y2 = (= 1)"(|ull X1])*"Ya,
(ad X1)* Y = (—1)"(|pl X1 )* X, Yol.
From these equalities, it follows
Ad(exp(tX1))Ya = cos(|u[*|Y1]t) Ya
sin|ul*|Y1]t)

WFy - Dneh Y], Ve R (45)
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Let us take t; € R satisfying |u|3|Y1lt1 = —7/2 and set k1 = exp(t1X1).
Then we can easily show that k; € K, Ad(k1)u = (|u|/|Y1])Y1 € my and

Ad(kq)Ys = —W1|Y1| (Y1, 4], Ya]. (4.6)

Hence, we have Ad(ki)u € RY; and Ad(k;)mg C [[Y1, p], mp]. Since
[[¥1, p], mo] C my (see Proposition 4 (1)), we have Ad(k1)(a + mg) C my.
Therefore, we have Ad(k;)(a + mg) = my, because dim(a + mg) = dimm;
(see Proposition 4 (3)). Since Ad(k;) is an orthogonal transformation of m,
we know that Ad(k;)mg coincides with the orthogonal complement of RY;
in my. This completes the proof of Proposition 7 (2). O

Next we prove Proposition 8. Under the same situation as in the proof
of Proposition 7(2), let us set k] = exp(t1X1/2). Then by the equalities
(4.4) and (4.5) we easily obtain (3.6) and (3.7). O

Finally, we prove Proposition 10. First we show Proposition 10 (1).
If Yo € a, then there is nothing to prove. Hence we may assume that
Yy € a. Applying Proposition 7 (1), we have an element kg € K satisfying
Ad(ko)p € RYy and Ad(ko)(a + mg) = a + mg. Then, it is easily seen that
Ad(kg)m; = my. If we write Ad(ko)u = cYp (c € R), then we have ¢ =
(1, 1)/ (Yo, Yo). Let Y; be an element of m; (1 = 1, 2). Apply Ad(ko) to
the both sides of the equality [y, [1, ¥i]] = —i®(y, u)?Y; (i = 1, 2). Then,
since ¢ = (u, p)/(Yo, Yo), we have

[Yo, [Yo, Ad(ko)¥i]] = —*(u, 1) (Yo, ¥o) Ad(ko)¥;, i=1,2.

Now, (3.12) and (3.13) follow immediately from the above equality. (Note
the equality (3.4) and the fact Ad(kg)m; = mj.)

By applying Proposition 7 (2), Proposition 10 (2) can be also shown in
a similar manner. Details are left to the readers. [

Thus, we have completed the proofs of Propositions 7, 8 and 10.
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