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The Weierstrass representation
for pluriminimal submanifolds
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Abstract. In this paper a Weierstrass representation formula for pluriminimal subma-
nifolds of the Euclidean space is proposed. Holomorphic 1.0 forms on Kéhler varieties
are used to globalize the local data. As an application we construct immersions of C2 in
R® generalizing the example given by Furuhata. We also show that any affine algebraic
variety admits a pluriminimal immersion into some Euclidean space.
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Introduction

The classical methods to describe minimal submanifolds of riemannian
manifolds are complex analysis for 2-dimensional domains, and the study
of the minimal equation for hypersurfaces. In the intermediate cases these
tools do not give a satisfactory description of the picture. It is then na-
tural to restrict the class of minimal submanifolds. For example, when A
is a complex manifold of dimension m, (X, g) is a riemannian manifold,
following Eschenburg and Tribuzy ([7]) we set:

Definition An immersion f: M — X is called pluriminimal if the re-
striction to any smooth complex curve in M is a minimal immersion into
X.

We remark that if m = 1 pluriminimal is equivalent to minimal.

The first problem is to show that this class of submanifolds contains
interesting examples.

In this paper we study the case when (X, g) is the Euclidean space.
We propose an analogue of the Weierstrass representation for pluriminimal
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maps. As for minimal surfaces, this formula allows to construct many ex-
amples, either by explicit calculations, or by using techniques of complex
geometry to establish existence results. We give an application of both ways
by constructing infinite families of pluriminimal immersions in particular of
C? into R, generalizing the fundamental example found by Furuhata ([8]),
where implicitely the representation formula was given.

We also solve a general existence problem in arbitrary dimension, once
again drawing analogy with the case of minimal surfaces. In fact we prove
that all affine algebraic manifolds (i.e. compact projective minus an ample
divisor) admit a pluriminimal nonholomorphic immersion into some Eu-
clidean space. The corresponding result for minimal surface in 3-space has
been proved in [13], where it is shown that any compact Riemann surface
minus any set of point can be minimally immersed into R®.

Using the Weierstrass representation we also give a simple proof of the
fact that pluriminimal immersions induce a Kéhler metric on the domain.
Thus these submanifolds can be seen as isometric pluriharmonic immersions
of Kéhler manifolds, which have been extensively studied by many authors,
in particular we refer to the work of Dajczer, Gromoll and Rodriguez ([2],
(3], [5], [6]). We underline that this relation holds only for submanifolds
of Fuclidean spaces. This suggests that pluriminimal immersions have a
variational characterization, which greatly enhances interest in their study,
and which has been successfully used by many authors to solve rigidity
questions for Kéhler manifolds, see e.g. Siu ([14]).

Because of these considerations, it seems natural to ask to which ex-
tent the analogy with the two dimensional case carries over. In particular,
we point out the problem of the extension of Osserman’s Theorem ([12]),
which states that, if the minimal surface has finite total curvature, the
holomorphic 1-forms which appear in the Weierstrass formula extend to
meromorphic data on a compact Riemann surface. We believe it would be
very interesting to find the geometric hypothesis which allow to compactify
the pluriminimal submanifold in such a way that the Weierstrass formula
extend to meromorphic data on the compactification.

Acknowledgment We wish to thank Professor Eschenburg for many clar-
ifying conversations on this topic.
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1. The Weierstrass formula

Let M be a complex manifold of dimension m, we will denote by J its
complex structure. Let f: M — R™ be a smooth map. We can write:
Q Q
1@ = [ 1) =Re [ “on, .., w4 1),

where the w; are (1, 0)-forms on M, that is they are smooth sections of the
complex cotangent bundle Q}, of M. In local coordinates:

m
wi(zl, ey Zm) = Zwij(zl, ey zm)dz]
7j=1

The conformality tensor will be the section of Sym? Q}V[ defined by:

n
Q= Z w; @ w;.
i=1
The following result characterizes the pluriminimal immersions.

Theorem 1.1 Let wi, ..., w, be (1, 0) smooth forms of M, such that
Rew; is exact for every i. Then

Q
f(@) = Re/ (w1, -+ ., wn)+ const, (1)

P

defines a pluriminimal immersion if and only if.
a) the w; are closed holomorphic;
b) the conformality tensor vanishes:

n
Z w; @ w; = 0; (2)
i=1

c) the (complex) jacobian matriz (wy) has mazimal rank at every point.

Proof. The classical Weierstrass representation formula for minimal sur-
faces implies that if the properties a), b) and c) hold, the map f defined in
(1) is a pluriminimal immersion.

Conversely, let us first prove that each one of the w; is holomorphic:
indeed, we know that w;|c is holomorphic on each holomorphic curve C
(see [12]). Chosen P € M, we can find local coordinates z1, ..., 2 such
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that z;(P) = 0 for every j. Since w; = 370, wij(z1, .., 2m)d2;, we can
write

m
5 Owij .
Ow; = E 82]: dZx A dz]'.

4, k=1
Restricting this form to each line z = a¢, a = (a;) € C*, £ € C, we get

T Bwis

E - ajdkdf/\ dt = 0,
‘ 0z,
Jy k=1

where ¢ is a complex coordinate of the curve. This clearly implies Ow;;/0Z
= 0 for any j and k.

Let us now prove that w; has to be closed: we know that Rew; is closed
and w; is holomorphic. Then 0 = (8 + 9)(w; + @;) = Ow; + 0w;. Since dw;
is of type (2, 0) and Ow; is of type (0, 2) we get Hw; = 0 and dw; = 0 which
immediately imply dw; = 0.

The conformality condition b) follows directly from the fact that given
any vector in complexified tangent space v € Te M, there exists a complex
curve with v as tangent vector. On this curve f has to be minimal, which,
by the classical Weierstrass representation formula, implies Q(v, v) = 0.

Condition c) follows by contradiction. Indeed, if v € ker D¢(f), where
D stands for the jacobian, we can take a complex curve C' in M tangent to
v. By restricting f to this Riemann surface we get w;(v) = 0 for any ¢, and
then f|c is not an immersion. O

The geometrical meaning of condition c) is given in the following:

Remark 1.2 Let W = spanc{wi, ..., wy} be the space generated by the
wi, and consider the natural map A: A™W — H®(M, QF), where Q
is the canonical bundle of M. Then, the immersion property c¢) holds if
and only if the linear system |[A(A™ W)| is base point free. We note that
the associate map g: M — |[A(A™ W)| is the composition of the (complex)
Gauss map with the Pliicker embedding. This explains why it is more
difficult for m > 1 to see the appearance of the Gauss map in the Weierstrass
formula.

We also note that dim W = dimspanc{wi, ..., wy} is an invariant of
the pluriminimal immersion.
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Definition 1.3 A plurinimimal map f: M — R" is full if dim W =n.

Remark 1.4 The notion of full is here opposite to holomorphic. In fact
for holomorphic immersion f: M — CF = R?# s.t. f(M) is not contained
in any affine proper subspace, it holds dimW = k, (see 2.2 for further
explanations).

The condition b) can be used to give simple proofs of two well-known
results:

Proposition 1.5 The riemannian metric induced by a pluriminimal im-
mersion is Kdhler.

Proof. Let us consider local coordinates z; = xx + 1y, on M. We can write

m m
wj = Z ajrdry — Bikdyk +1 (Z ajidyr + ﬂjzd$l> 7

k=1 =1

j=1,..., n, and in matrix form
w = Az — By+i(Ay+ Bz). (3)

Therefore, having set g the pull-back of the Euclidean metric, we can
write the matrix associated to g as

Al AAt —AB?
(A _B) <_Bt>=<_BAt BBt)
The vanishing of the tensor Q = Y 7 ; w; ® w; = 0 gives, by equation (3),
the following system of equations

—AB' = —BA*=0, AA'= BB

Therefore the matrix associated to g is hermitian and its associated form
can be written, as in the classical case of minimal surfaces, as Y ., wr A®p
which is clearly positive definite and of type (1, 1). It is also closed since
each w, is closed. O

The above proposition is crucial to link our definition and more stan-
dard notions in the theory of higher dimensional submanifolds of Euclidean
spaces. In particular let us observe that pluriminimal immersions are part
of a broader class of submanifolds studied in general by many authors (e.g.

21, 3], 5], 6]).
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Proposition 1.6 The second fundamental form B of a pluriminimal im-
mersion satisfies

B(X,JY)=B(JX,Y),
i.e. a pluriminimal timmersion is circular.

Proof. Since the induced metric is Kahler, at every point of M we can
choose an orthonormal basis for the tangent space of the form {ej, ..., em,
Jei, ..., Jey}. Since the map restricted to every holomorphic direction has
to be minimal, B(e;, e;)+B(Je;, Je;j) = 0for any j =1, ..., m. Therefore
B(ej + ek, e5 + ek) + B(J(ej + ek), J(ej + ek))
= 2(B(ej, ex) + B(Je;, Jeg)) =0

Thus, (B) = —(J!BJ), which implies directly the conclusion. O

2. Constructions of pluriminimal immersions

We look for holomorphic functions of two complex variables z and y,
whose differentials satisfy the quadratic relation

AP\ ®dPy+dP3QdPy+dPs®dPs = 0. (4)

By a diagonalization process on the above tensor, in such a way that
the condition b) of the Theorem 1.1 is satisfied, we can write the map f
defined in (1) as:

Re(Pi + P,)
Il’l’l(P2 ot Pl)
Re(P3 + Fy)
@) = | 1(p, - ) (5)
Re(Ps + Fs)
Im(PG - P5)
Let W = spang[dP, ..., dPs); if W satisfies the condition c¢), we

can choose, in local coordinates, Ps = z and Ps = y. Moreover, we set
Pi(z, y) = zy. Then the equation (4) translates into the system:

y(PQ)x + (P4):c =0
z(P2)y + (Ps)y =0 (6)
Y(Po)y + 2(P2)z + (Pa)y + (Ps)z =0
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A simple calculation shows that the solutions of (6) are of the following
form:

Py(z, y) = g'(z) —; /')
Py(z, y) = fly) - y—g,(m) ; )
Ps(z, y) = g(z) - mﬂ’)_;tM

where f and g are arbitrary holomorphic functions of one complex variable.

We observe that by taking f, g entire functions we obtain pluriminimal
immersions of C? in R®. Moreover when the quadratic relation satisfied
by the dF; is of rank greater than zero, the pluriminimal immersions con-
structed cannot be holomorphic w.r.t. any complex structure of R® compat-
ible with the standard euclidean metric. This will be shown in general in
Remark 2.2.

The only example of this sort known to us is due to Furuhata ([8]),
and belongs to our class for f = 23 and g = 0, up to a real constant.
We remark that the Furuhata example is (see 1.3) full Nevertheless by
direct computation it is possible to show that Furuhata’s example is not an
embedding, i.e. the map is not injective. We believe this should be true for
all such maps.

Conjecture Any complete pluriminimal full immersion from C2 to RS is
not an embedding.

It is clear that with a similar procedure, choosing meromorphic or al-
gebraic functions, we could construct families of pluriminimal immersions
of more complicated domains. For other examples, see also [4].

We underline that the Weierstrass representation theorem also allows to
prove general existence theorems, without explicitly finding the holomorphic
differentials, in total analogy with the theory of minimal surfaces in R3.

We now prove that every affine algebraic manifold admits many plurim-
inimal embeddings into Fuclidean spaces. Let us then start with a smooth
projective manifold, X, of complex dimension m, and let H be a hyperplane
section. Set M = X\ H. Let HY(X, Ox(nH)) (and HY(X, Q% ((n+1)H)))
be the vector space of meromorphic functions (and respectively ((1, 0)-
forms) on X, holomorphic on M and having poles on H of order at most n.
By Hirzebruch-Riemann-Roch’ s Theorem (see, for example, [10] and [11,
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p. 432]) and vanishing Theorem B (see [9, p. 159]) we know that, for large
n:

m

H
dim H(X, Ox(nH)) = — "+ P(n),

where P is a polynomial of degree at most m — 1 in the variable n. In
order to construct holomorphic (1, 0)-forms on the manifold M = X \ H,
we consider the image V of the exterior differential d: HY(X, Ox(nH)) —
HO(X, Q% ((n+ 1)H)).

By restriction, the cup product map

pn: Sym® HY(X, Q% ((n+1)H)) — H°(X, Sym® Q% (2(n + 1) H))
defines an application
pr,: Sym®V — HO(X, Sym® Q% (2(n + 1)H)).

Any element in the kernel of ], represents a quadratic relation satisfied
by holomorphic (1, 0)-forms, and therefore we can diagonalize the tensor in
order to satisfy the condition b) in the Theorem 1.1.

We now show that ker(u/,) is not trivial for n sufficiently large. Indeed,
applying to the vector bundle Sym? Q% (2(n + 1)H) Hirzebruch-Riemann-
Roch’s Theorem and the vanishing Theorem B quoted above, for large n we
get:

dim H°(X, Sym? Q% ((n + 1)H))

— (M) B+ 27 + Qo)

2 ml

@ being a polynomial of degree at most m — 1. In fact the leading term in
the formula depends only on the rank of the vector bundles, i.e. m(m+1)/2
and on the maximal intersection of the first Chern class: ((2n + 2)H)™.
Since dim Sym?V grows as n®™, the map it has nontrivial kernel for n
large enough.

At this point we can construct a pluriminimal map by associating to
a nontrivial element ~ of ker u!, a set of independent exact (1, 0)-forms
dFy, ..., dFy, where k is the rank of +y, satisfying 2?21 dF; @ dF; = 0.
Then, the map ¢: X \ H — R* defined by

#(p) = Re(Fy, ..., Fy) + const
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is a pluriminimal map.

It is immediate to check that for n large enough one can find Fj s.t. ¢ is
an embedding. In fact if ¢: M — R™ and ¢: M — R* are pluriminimal map
then (¢, ¥): M — R**" is a pluriminimal map. If ¢: M — R?® = C® is an
holomorphic embedding into an affine space and 1 is any pluriminimal map,
we get new pluriminimal embeddings. Because of the open nature of the
embedding condition we remark that a small deformation of (¢, ¥) is still an
embedding. Let c¢(n) be the dimension of the variety which parameterises
the pluriminimal maps, that is the number moduli; the previous estimates
prove the following:

Theorem 2.1 Let X an affine algebraic variety of dimension m; then we
can find an integer k(m) such that for every n > k(m) there exist pluri-
minimal embeddings

¢: X - R

such that
1. the Gauss map g defined in Remark 1.2 is algebraic;
2. the moduli number c, satisfies

tn > O ™) oo

Remark 2.2 The fact that the ker i/, contains nontrivial elements implies
the existence of a non holomorphic map ¢ w.r.t. any complex structure
compatible with the standard euclidean metric. The proof is the same as
in the case m = 1 (e.g. see [1, Lemma 2.2]). We may assume k = 2n.
Suppose now that ¢ is j—holomorphic, where J is a complex structure on
R?”, but the rank of the quadratic relation of the dF; is not zero, i.e. v =
> dF; ® dF; € kerpl, v # 0. Remark that v # 0 when ¢ is full (see
1.3). We have J = CJyC~! for some orthogonal matrix C, where Jy is the
standard complex structure on R??. Denoting by J the complex structure
on M, the holomorphicity condition means that d¢(Jv) = CJoC~ dé(v),
and therefore C~1¢ is Jo-holomorphic. It is clear that any Jo-holomorphic
map is of the form Re qu(wl, ey Wny —W1, ..., —iwy,), and therefore the
holomorphic differentials involved satisfy a quadratic relation of rank zero.
If this was true the same would be true for ¢, i.e. v = 0, contradicting our
hypothesis. Hence, the map ¢ cannot be holomorphic as claimed.
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