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Decay estimates for hyperbolic systems
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Abstract. In this work we study the Sobolev spaces generated by pseudo-differential
operators associated with the group of symmetry of general first order hyperbolic systems.
In these spaces we establish pointwise estimates of the solutions of a class of first order
systems having convex eigenvalues. Various physical models belong to this class. For
example, we consider crystal optics systems and anisotropic elasticity equations.
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1. Introduction

The aim of this work is to study the Sobolev spaces generated by
pseudo-differential operators associated with the group of symmetry of gen-
eral first order hyperbolic systems. More precisely we consider the following
first order system

Bu—»_ A;d;u=F, (1.1)
j=1

where u, F: R® xR — R¥, and A; are constant (N x N) matrices. For the
principal symbol

A(g) = ZAjfj,

we assume that

A;‘.:Aj for j=1,...,n;
(H1)
A(€) has real eigenvalues of constant multiplicity

for £ € R™\ {0}.
Here and below A* denotes the complex conjugate to the matrix A.
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It is easy to see that the above assumption implies that the number of
different non-zero eigenvalues is even; in particular these eigenvalues can be
ordered as follows

Ak () < < Anr(§) < Ar(é) < - < Ak(8).

These eigenvalues are homogeneous functions of degree 1 in £. Moreover,
we require that

the surface Iy, := {Ax(§) =1}, is strictly convex (Hg)

for each non-zero eigenvalue A, with k=1,..., K.
This class of systems includes, for example
- Dirac-Pauli system,;
- Maxwell system for uniaxial crystals;
- Wayve equations with different speeds of propagation;
- Equations of elasticity in some anisotropic media.

The natural group of translations in the space and time leaves the
solutions of (1.1) invariant for F = 0. This group generates the classical
Sobolev spaces H™(R™) and the corresponding Banach spaces

i C™ I (I; HI(R™)) for any integer m > 0 and for any time interval
I C R. The classical L? estimate for (1.1) gives the boundedness of the
map

m m
Fe ™[0, T HIR™) — u e () C™7([0, T); H/(R™))
3=0 3=0
provided T > 0 and u satisfies the zero initial condition u(z,0) = 0. A Lie
algebra of pseudo-differential operators I'; satisfying

[T 00— Y 456, = (8- Y 446,),
J J

has been introduced in [2]. Here [A, B] denotes commutator of the operators
A, B.

--The main goal of this work is to obtain a decay estimate of the L
norm of the solution of the form

u(z, £)] < Ot + |a]) "7 sup L+8)* D> ITF(, o)l (12)
Lot lol<M

It is well-known (see [6]) that such estimate in combination with energy
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type estimates can be used to obtain global existence results for small data
solutions of nonlinear systems. In fact, using the estimate of Corollary 5.2
(see Section 5 below) one obtains the above estimate with a = (n — 1)/2,
if n > 4 (similar result for the wave equation is obtained in [5]). If the
nonlinearity is F'(u) is quadratic in u and the space dimension is n > 4,
then by means of the above estimate one can look for a global solution
provided the initial data are small enough. If the space dimension is n = 3,
then a = 1 + ¢, where ¢ is arbitrary positive number (a similar estimate for
the wave equation is true, see [5]).

In order to establish L2-L* estimate, we reduce the system to n pseudo-
differential equations. For each of these equations we apply the stationary
phase method and get a suitable dispersive inequality. The proof is con-
tained in Section 3. Section 4 is the main part of this paper: here we show
how to associate generalized Sobolev spaces to first order systems. In Sec-
tion 5 we obtain estimates of type (1.2) for the solution of the system. In the
last section we treat the examples mentioned above. A particular attention
is devoted to some elliptic conditions which arise in the case of vanishing
eigenvalues.

Finally, we shall mention some previous results. In [11] we have es-
tablished L1-L* estimate for the solutions of homogeneous systems using
a reduction to pseudo-differential equations. In this case the initial data
appear in classical Sobolev norm. Instead here we treat the inhomogeneous
estimates and we use modified Sobolev spaces generate by {I';}.

The relevance of the convexity of ¥y, is discussed by Liess in [9] where
an important counter-example of a non-convex surface £y, is studied and a
loss of decay rate appears. In this direction Sugimoto, in [14], studied some
generalizations of LP-LP estimates for higher order hyperbolic equations
such that 3, is convex, but not strictly convex. The order of the contact
between the surface and its tangent hyperplane plays a crucial role in that
paper.

For the case of non-elliptic }°; A;0;, i.e. when ker A(§) # {0}, we
refer to [12], where the ellipticity assumption is relaxed to suitable elliptic
complex assumptions.

Notations The inner product in R™ will be denoted by (-, -).
Our choice for the coefficients of the Fourier transform is

&) = F(f) = / e~HE) £(3) dy.



86 V. Georgiev, S. Lucente and G. Ziliotti

If f depends also on ¢ € R, then we use Fourier transform with respect to
the space variable only.

Let F: R®" xR — R. The support of the function z — F(z, t), for fixed
t € R, is denoted by supp, F(z,t).

We omit to write R™ if it is a domain of a function space; we also denote
by || - ||p the LP(R™)-norm.

We indicate with p(z, D) a pseudo-differential operator with symbol

p(z,§):
P(a, D)(1)(z) = (20)™ | Hep(z, )F()dg

n

for any function f € S(R™). In particular p(D) is called convolution type
operator.

Finally A(z) ~ B(z) means that there exists a constant C > 0, inde-
pendent of z, such that C'B < A < CB.

2. Generalized Sobolev spaces on Xy
Consider the following Cauchy problem

{ u —iADju=F zecR"

u(z,0) =0 21)

where A(D) is a pseudo-differential operator with symbol A(¢) homogeneous
of order one. We suppose that A : R® — R is positive, homogeneous of
degree one. Moreover let

ai={AE) =1}

be the unit surface associated with this symbol.
Our first step is to find a family of operators Y that satisfy the com-
mutator relations

[Y, P] =cP, (2.2)

where P = 0y —iA(D) and ¢ = c(Y) is a real constant. It is clear that &, Oz,
j=1,...,n are n+ 1 vector fields that commute with P.
For the case of A(&§) = || one can use the generators

:Ejazk - :Ekag;j
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of SO(n), so that these generators commute with |D|. In order to consider
the general case of A\(¢) homogeneous of degree 1, following [2], we consider
a pseudo-differential operators §2;%(\) with symbol

—i/2(z B (E) — ;BN (E)). (2.3)
Thus, we have

Qi k(A f(2)

—if22m) " [ 9 (@00 (E) ~ 2,06, 2O) O (2.)

n

and also
Qk(\) = —i/2 (zx0;N*(D) — 2;063%(D)) .
We see that these operators commute with A(D).
Lemma 2.1 With the above notations, one has:
A(D), k()] = 0.

Proof. Combining (2.4), the algebraic rule [A, BC] = [A, B]C + B[A, C]
and the fact that two operators of convolution type commute, we check

i

D), Q34(N] = 5 (D), 2HO;N(D) + LA (D)A(D), 5]

Since (z;f)" = i8; f, integrating by parts, we get
[a(D), z;] = —i(8;a) (D) (2.5)
for any convolution type operator a(D). Whence,
1 1
(A(D), 25 x(X)] = —gaj/\2(D)(3k/\)(D) + §5k/\2(D)(3j>\)(D) =0.
This gives the conclusion. O

Let us denote by S the scaling operator

S=10+ Y ;00 = t0; + (z, Va). (2.6)
J

Note that [A(D), 8] = [A\(D), 8z,] = 0; on the contrary, from (2.5) it follows
(D), 8] = —{(VA(D), V) = A(D);
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then [0; —iN(D), S] = 8; —iA(D). This relation is a natural analogue of the
well-known property for wave equation: [0y — A, S] = 2(8x — A).

Next step is to introduce the Sobolev spaces associated with the gener-
ators

{02,506, 8, Q5 (M)} k=1,...m, j<k- (2.7

For brevity these generators shall be denoted by Y1,...,Yy. Here N =
(n?+n+4)/2. Thus, Y; are pseudo-differential operators and they generate
a Lie algebra if [V, Yy, = 30N ¢} mYr. It is possible to define a Sobolev

r=1
space associated with these generators whenever the structural coefficients
Gk satisfy suitable a-priori estimates. In our specific case we shall see that
these coefficients are zero order homogeneous pseudo-differential operators
of convolution type.

Lemma 2.2 Let Yy, Yy, be two elements of (2.7). Then

N
Y, Y] =Y e n(D)Yr,
r=1

where czm(D) 18 a pseudo-differential operator of convolution type with sym-
bol homogeneous of degree 0.

Proof. It is evident that [0y;,0:] = [0z, 0z, = [Qk(A), 0] = 0, while
[S, 8¢ = 0, [S,0z,] = —0r;. We recall that ia(D) = (Va(D), V) for all a
homogeneous of degree 1; we gain

[Q,k(A), Oz,] = i(0k,r 05 M(D) — 65O A(D))A(D)

= (8,0 A(D) — 45, BAD)) (3 0nA(D)O).  (28)

m

By using (2.5), we see that
i
[Qj,k(A)’ :E,.] = *5 (8]2,7‘)‘2(D)$k - 8}%,7'A2(D)$j) s
hence [©;%(N), S] = 0. It remains to consider the commutators of Q; x(\):

[k(N), Qum(N)] = 82122 (D)Qm(A) — 82, A2 (D)250(N)
— 05X (D)QUyn(A) + 82 n A2 (D) (N).
(2.9)
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The last relation is obtained applying once more (2.5). O

This lemma assures that the operators (2.7) generate a Lie algebra Ay;
one can consider the Sobolev norm associated to Ajy:

1 fllk,45 = Z 1Y fll L2 @ny-
la|<k

On the other hand usual Sobolev spaces on £y are defined by means of the
norm

lullFsmyy = D 19N ullfez,y seN. (2.10)
e]<s

Here ij are the operators
Qi = (0;2%)(D)0g, — (86A*) (D)0, (2.11)

They generate the tangent space to Xy. In term of symbols we see that

~

(r(N)F)(©) = 505N FE). (212)

In [11] we studied fractional version of these spaces and gave a proof of the
following result based on stationary phase method.

Theorem 2.3 Consider a smooth function X : R\ {0} — R homogeneous
of degree 1. Suppose £y := {\(€) = 1} is strictly convez. Lets > (n—1)/2,
then

—1

/E e g(w) dO’n—«l(W)] < C|~’C|_n_2_”g||HS(ZA) z # 0.
A

We remark that the assumption of strict convexity for X, means that
{M=z) < 1} is a convex and compact set whose boundary 3, has strictly
positive Gaussian curvature. If \* is smooth, for some k € N, then these
surfaces are called ovaloids (see [4]). A basic example is the ellipsoid

n
A(§) = Za;?fiz a; € R.
i=1
In this case we have symmetry in £. This assumption appears in [11] The-

orem 2.10, but a slight different proof shows that the result holds in non-
symmetric case.
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A relation between H*(X,) and the Sobolev spaces generated by the al-
gebra A involves real power of A(D). Let a(D) a convolution type operator;
it is clear that for any s € N, (a(D))® has symbol a®(£); in particular

1(a(D))* Fll2 = [|a*(€) F(€)l2- (2.13)

On the right side we can use complex interpolation and define (a(D))® for
any real s > 0 in such a way that (2.13) holds. After this preparation one
has the following.

Lemma 2.4 For any integer s > 0, and any § > 0, it holds
+00
L 160, 40 < © 3 INDY (gl
] <s

Proof. Using the explicit norm (2.10) it follows that
oo 1426 2
L 180 s, o
<cy / P / B2 (N)3(p0) P dena () do

le|<s

<C Y IIME @M

|| <s

<C Y IIMDYEEMNGVIE = S IAD) QX (Vgll3

la|<s |e|<s
Here we use the relation (2.12). O
From this lemma we deduce the next result.

Corollary 2.5 For any integer s > 0. For any d,6 € R which satisfies
0<d+ 1<, one has

+00 n
/0 34500 ey 4 < Cass 3 1199 (A(D)) gl L2,

laf<s

Proof. As usual, by Schwartz inequality we have
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+oond
jg P 3(0 ez, dp

o 1/2 ; oo 1/2
< (/0 p1+2d<p>—25dp> </0 ,On_1<p>25||§(P')||%{S(E>\) dp> .

The right side is finite if 0 < d + 1 < 6. From the previous lemma we get
the claim. O
3. L2-L*° estimate for non homogeneous scalar equation

In this section we plan to evaluate the L° norm of the solution of (2.1)
by means of Sobolev norm of the data F.

Before stating the main result we shall justify a suitable localization of
the inhomogeneous term F in the pseudo-differential equation u;—iA(D)u =
F.

Lemma 3.1 Let t > 1 and A homogeneous of degree 1. Set
Co= |m|§>§ |VA(w)].
Assume that
supp, F'(y,s) C {|ly| > 3Cot}, 0<s<t. (3.1)

Then, for |z| < Cot, the solution of uz —iA(D)u = F having zero initial
data satisfies

" t
e 1 < O +1ol)7 [ IFC,9)lads

Proof. We start with the representation

w(z, t) = /Ot /Rn K(t,s,z,y)F(s,y)dyds, (3.2)

where the kernel K is given by the following oscillatory integral

K(ts,z,y) = (2m)™" / o a—3E+(t-9N@) ¢

n

The assumptions (3.1) and |z| < Cot imply that the gradient with respect
to £ of the phase function

Y= (z -y, + (¢t — 5)A)
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has norm greater than Cyt so integrating by parts, we get
|K(t,s,2,y)| < Cly[ ™™ (3.3)

More precisely, we make the decomposition

K= () [ velell e+ em™ [ eV - o) &
= K1 + Ko.

@ is a smooth cut-off function identically one near the origin. For K; we
have

Ko [ <oy
[€]1<1/ 1yl

In order to estimate K> we employ the operator

. Vet >
L= —=—" .
< lvle’v’f

Being Le'¥ = el¥, integrating by parts n + 1 times we obtain

Ky = (27r)_n/ e (L)1 (1 — w(l€llyl)) d.

n

We claim that
(L) (1 = @(élly))| < Clyl el (3.4)

From this the assertion follows, since we find

_ d¢ _
K SCy_nl/ e SRS
el = Gl el=1/1y) 1617 i

In turn this implies (3.3). Coming back to the representation formula (3.2)
we get the desired estimate. It remains to establish (3.4). This estimate is
consequence of the relations

IVey| < Clyl;
|Dgp(l€lly)] < Clel 7l
|DgVey| < Ctlg| 7o,

Vet
[Vey|?

'Dg < Cly|~Hje| el
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This completes the proof. O
The main result of this section is the following.

Theorem 3.2 Let n > 3. Consider a smooth function X : R™\ {0} — R
which verifies

(i) A is homogeneous of degree 1;
(i1) A(€) >0 for all £ € R\ {0};
(iii) X s strictly convez.
Let t > 1. There exists a suitable constant o > 0 such that for the solution
of (2.1), the following estimates hold:

el <0407 S [ rere ol
|a|<[n/2]+1
D DR 4 dQUIC if |al < ot;
. 1<la|<[n/2]

el <O+ S [ Yereolds i fel 2ot

|e|<[n/2)+k
(] < CA+t+[2)F 3 /nya )|l2ds
WA
+ > [YNFC )l
1 <lal<n/2)

Here k = 1 for even n, k = 2 for odd n. Moreover Y;(\) € Ay the Lie
algebra generated by {0, V, S, Q; k(A) }

Proof. The solution of (2.1) is given by

t
u(z, t) = (2m) "2 / / @O+ fr(¢, 5) de ds,
0 n

Using polar coordinates

{ p =)
w=¢/A(&)
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we find
t ptoo . R
u(z, t) = (27r)‘n/2/ / pn"l/ eirll@w)+(t=9)) fr( iy, s) dw dp ds,
o Jo PN
where
dw = |VA(W)| ™ dop_1 (w).

We can write
—+00 . -
u(z, t) = / pr / e?tbe1() By (pw, p) dw dp
0 Za
where F} is the truncated Fourier transform

t
Ft(f,T) = (27r)—n/2/ / €_i<<y’£)+Ts)F(y,s) ds
0 JRm

¢
) = / e IS E(£, 5) ds.
0

Notice that this is a truncated space-time Fourier transform; indeed if we
define

F(r,&) = / ds / T F(s,y) ay,
-0 7
we get Fi(7,€) = (X[,4F) (7,€). Moreover, we have

t
Fe )l < [ 1B 9] ds. (3.5)
The involved phase is

bz t(w) = (z,w)/t + 1.

In order to integrate by parts with respect to p, it is necessary to distinguish
the cases ¢z t(w) > C and ¢z +(w) < C for a fixed constant C. To this aim
we put

o=

1 -1
5 dnt | s liew]

This is well-posed due to our assumption on A. Moreover for all z € R”,
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t >0, w € X we have

0<|zl/t <o = ¢oplw)>1/2.

Indeed
t t |z towesy | V2l
>1—a6 sup <—a—:—,w> 21.
WEX ‘ml 2

In what follows, we put ¢ = min{&, Cp}, where Cp = max |V A|.

The case |z| < of. After integration by parts, we get

| +00 . )
u(z,t) = it /O p g $ot (w)e?9=4) pd, F, (pw, p) dw dp.
A

Let S be the scaling operator defined in (2.6); since
pO,Fy(pw, p) = —(n + 1) Fi(pw, p) — (SF); (pw, p) + te P F(pw, t),

we find

1 +oo . .
u(z,t) =t ¢ / P2 / $7i(w)e?4 ) (ST (pw, p) dw dp
=0 0 A
o0

+ . . .
+ i/ pn2eTiet ¢;’% (w)eP=t) B (puw, t) dw dp.
0 PN

We apply further integration by parts and obtain by induction:

k +o0 . )
u(z,t) = t7FY & [ o b (w)e? et ) (SIF) (pw, p) dwdp

i +o0 . .
+ Z dht_h+1/0 pn—l—ke——lpt : ¢a—:’lz (w>elpt¢x,t(w) (Sh——lF)/\(pw’ t) dw dp
h=1 A

k k
=tk Z EjTj + Z dht—h_l-lBh.
=0 h=1

First we estimate T;. Fix a € N, b € R; using the Cauchy-Schwartz inequal-
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ity with respect to dp, we have

+oc0 n 1-2k+2b +o00
<c / AR / =By [ (TR (pw, p) [ dw dp.
4] A

The first 1ntegra,1 converges whenever the following condition is fulfilled:

—b<n/2—k<a-b. (3.6)
Coming back to the original coordinates, since A\(€) ~ ||, we get

T3] < CllIEI(€)(SF)y (€, M rary)-
Combining (3.5) with Minkowski inequality, we find

1< 300 [ IS ) aguny b
|e|<a

“In this contest, extended Hardy inequality implies (see [3]):

€I F@©)lz < NzlPflla b € [0,n/2).
In our case, this gives

€I~ (D*STFYNE, )l aryy < CllyP DS F(y, 8)ll r2ry)-
Being |z| < Cpt, Lemma 3.1 shows that we lose no generality assuming

supp, F(y, s) C {ly| < 3Cot},
we find
mi<or S / ID*STF(-, s)|ads b e [0,n/2).
jal<e

A similar argument works for Bp:

| By |?

N 400 pn—1—2k+2bh 00 1% 9 bl )
<[ o [ [ (5 (e P dwd
0 (p)2an 0 A

< Cllel=*()°r (8" F)M& )|z re)
< Ot (D) S F (- 1)1 T2y
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where the conditions
—bp <nf2—h<ap—>bn, byel0,n/2) (3.7)

are fulfilled. In conclusion, for any k € N, if |z| < ot then

k k b ¢
u(z, )] < ¢ f{gt /0 I(D)*F(-, )]s

k
+ )t (D) SP R b)) (3-8)
h=1

where a, b, ap, by, € R satisfy (3.6) and (3.7).
The case |z| > ot. We put |u(z,t)| < I+ II, where

1/le] , i
I= / p ! / e'Ptt=.t W) iy (pw, p) dw dp,
0 s

o i
II=/ pn_lei”t/ Pz By (pw, p) dw dp.
1/|z| Tx

Combining Cauchy-Schwartz inequality and Lemma 2.4, we get
" ﬁ _ 1/2
11 < el 2 ([ 1o e, o)

t
< 2|72 | F(&, ME) Il 2y SCI:L‘I_E/O IEC )|l 2@ny ds-

In the last estimate we use (3.5) and Minkowski inequality. In order to deal
with IT we need Theorem 2.3, so that

_am1 [T g

171 < Clel ™% [ 677 il )iy

On the other hand, we know
t ~ A~
1B Pl < 3 [ 18P (o )2, s
o <s 70
At this point we can apply Corollary 2.5 with d = —1/2, a = 1, obtaining
n—1 t +oo n—1 =~ ~
m <Rl S [ [ 10 9l dods

le|<s
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< Clz|~ " / [AD)QF(, 8)]2ds

]a]<s
<Clel % Y / [YoF(-, 8[| ds.
la|<s+1
Being ¢t > 1 and |z| > ot, we can conclude

fu(z, )] < (1 +]a) > 3 / IYF(,5)l2ds,

|a|<s+1
s>(n-1)/2, seN. (3.9)

It remains to combine this expression with (3.8). In particular we have to
take k > ”_ . Since k represents the loss of derivatives in the integration
by parts, We can take k = [n/2]. This means that in (3.8) for odd n we can
choose b = by, = 0 and a = ap, = 1. The situation is slightly different for
even n: we fix b=1/2 and ¢ = 1 while b; = 0 and a; = n/2, by, =1/2 and
ap =n/2+1— h for h > 2. This inequality and (3.9) give the conclusion.
O

Remark 3.1 In the case n = 2, the proof of Theorem 3.2 is available
except that the conditions (3.7) leads to

-b <0 <ay— by,

so that we can not take by = 0. Than we choose by = ¢ > 0 and a; =0
obtaining

e, 0] < O+ )2 S [ IV EC o)llads
|a|<2 R
+ Gt FC, Dl (3.10)
Remark 3.2 Theorem 3.2 holds when A is negative and X_) is strictly
convex.
4. First order systems

We consider a first order system

8tu — Z Ajaju =F
J
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with u, F : R*» x R —» RY and Aj; constant matrices of order N. We
associate the matrix symbol A(§) = } . 4;{; and assume that it satisfies
(H;). In correspondence to non-zero eigenvalues we can take the Lie algebra
generated by

{Va, 8, 8, Qjn(m) = ;20 (D)zx — OpA (D)}
On the other hand, we can consider the operator

Qi =D Qk(m)mm(D) (4.1)

where 7, () is the projection on the eigenspace related to A\, (£). We recall
that

Tk = 0,k Tk (4.2)
) I=7TkerA+Z7rj (4.3)
J
A(E) = D A(©)m;(9). (4.4)
J

First of all, we investigate the invariance properties of 2; ; with respect
to the operator &; — Ej A;0;.

Lemma 4.1 Denoting by A the operator having symbol A(§) we get
[4,Q; %] =0.
Proof. Since A, and 7, are convolution type operators, we can write

A=>" XN(D)ym(D).
l

Recalling that convolution type operators commute, we find

[A, Q6] = > [M(D)m(D), @ p(m)mm (D)]
m,l
=" N(D)[m(D), Qj k(m))mm(D)
m,l
+ ) (D), Qi p(m)|mi(D) (D).
m,l

By using (4.2) and Lemma 2.1 we get [\(D), Qjx(m)]m(D)7mm (D) = 0. It
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remains to prove that
[mi(D), Yp(m)]mm(D)y =0 Vm,lI. (4.5)
A consequence of (2.5) is the following:
[mi(D), 2 x(m)|rm(D) =0 Ym # 1. (4.6)
In fact we have
[m(D), Qju(m)mm(D)
= [m(D), ;7% (D)x — A (D)j]mm(D)
= 8\ (D) [m(D), zx|mm (D) — 8k A5 (D) (D), z5}mm(D)
= —18;A5,(D)(0km) (D)7 (D) + 10X in (D) (85m) (D) (D).
On the other hand (4.3) implies (8;m)(D)nm(D) = —m(D)(0jmm)(D) so
that
[m(D), Qjk(m) (D) = —[mm (D), Qj k(m)]m(D) vm # 1.
Finally
[m(D), Qjp(m)]mm(D) = [m(D), Q; x(m)]7m(D)mm (D)
= —[mm (D), Qjx(m)]m(D)mm(D) = 0.
The same argument works for the identity
[Mier A(D); ()] (D) = 0.
Using (4.3) we see that last relation and (4.6) give
[Tm (D), 2 k(m)|mm (D) = 0. (4.7)
In detail
[mm (D), Qi k(m)]mm(D)
= T (D) k(M) (D) — Qj g (m)7m (D)

== " m(D)Q k(M) 7m(D) — Trer 4Q5,6(m) (D)
m#l
=~ > Qp(m)m(D)mm(D) — Qj (M) Mer A (D) = 0.
m#l
From (4.6) and (4.7) we obtain the conclusion. O
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Another consequence of (4.5) is the following:
[€2,, 7 (D)] = 0. (4.8)
In fact
[, 7e(D)] = D _[Q(m)Tm(D), 7r(D)]

= > [ 4(m), 77 (D)]mm(D) = 0.

The last lemma gives the possibility to consider the Lie algebra A generated
by

{Vx, 8t, S, Qj,k}'

It is necessary to see that for I'1,I's € A the operator [I'1,I'9] is a linear
combination of the operators belonging to .A modulo coeflicient in S0. We
have the usual relations [9,8] = 0 and [S,8] = —9. Moreover formulas
(2.9), (4.5) imply

[, ] = Zcp,q(D)Qp,q-
P

It is also clear that [0;, ;] = 0 and [0;, ;] = 0. An application of (2.8)
leads to

[k, Ok] = D _[26(m), Bklmm (D)

m

= 213" 0)mn(D) (3 8\ (D), ) 7n (D).
In order to obtain

[k, 0] = Y (D)

with ¢;(D) € OPS°, we have to suppose that the projections are zero order
operators. It is easy to prove that if A;(€) is a non-vanishing homogeneous
function of degree one, then 7;(§) is a zero order matrix symbol with ho-
mogeneous coeflicient of degree zero. In this case we can use Euler formula
and conclude [S, 7] = 0. Combining this with (2.8) we get [S, Q] = 0.
Finally we proved the following.
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Lemma 4.2 Let A be generated by {Vz,0;, S, }, with Q;k associated
with hyperbolic operator 8; — 3, A;0; which satisfies (Hi), (Hz) . For any
I', 'y, € A it holds

N
T4, Tm) = > ] (DT,

r=1
where ¢} ., S a matriz-pseudo-differential operator of convolution type with
symbol homogeneous of order 0 and N = (n? 4+ n + 4)/2.

This lemma gives the possibility to define Sobolev spaces associate to
A. We want to relate the norm of this space with the norms of generalized
Sobolev spaces associated to each eigenvalue. This means to prove the
following equivalence

DoATule =Y > IT* (O mul: (4.9)

- |of<s b lal<s

being I' € A and I'(l) € A;. It is obvious that

> llmlls = flulla.

l

Now, we recall that ; x(m) is skew-symmetric in L? inner product, so that

19 kulls =D > (Qx(m)mmu | Qk(r)mu)

=— Z z (€ k(1) (M) T | Tru) .
m T

Using (4.7) one can see that §;x(m)mm = & k(M) 7, hence

T k(7)Y k(M) T, = 700 1 (T) T TS5 1 (M) T

This gives
19 kull3 = = (TmS k(M) 7 (M) T | Trur)
= > I1Qp(m)mmull.
m
It follows that (4.9) holds when |a| = 1.

For |a| > 2 the equivalence (4.9) can be proved by induction applying
different times the relations (4.5) and (4.8).
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5. L2-L* estimate for first order system

Combining Theorem 3.2 and the results contained in the previous sec-
tion we have the following

Theorem 5.1 Letn > 3 andt > 1. Let A(§) = 3, Aj&; satisfy the
assumption (Hy), (He) and ker A(§) = {0} for all £&. Given F: R" x R —
RN, the solution of

Owu(z,t) — A@zuxt Pz 5.1
)

having zero initial data satisfies the following estimates:

w(z )| <C1+H~F Y /||F°‘F 5)ll2ds

ler|<[n/2]+1
+C > rUFG )2 if |z|<ot  (5.2)

1<]al<[n/2]

u(z, B < CL+ )~ Y / IT<F(, 5)]l2ds
]a|<[n/2]+k
if |z|>ot (5.3)

(@, <O +t+ ) /”F"‘F( 5)[l2ds

|a|<L[n/2]+k

rC Y IrFC ) (5.4)

1<l <[n/2]
Here k =1 for evenn >3 and k=2 for oddn > 3 and
1 -1
o :max{max]V/\|;§1r3inE€i§1nf_l [ seult: I(¢, )@ }

Moreover T'(A\) € A is the Lie algebra generated by {8, V, S, Qjr}.

Proof. For simplicity we consider only the case |z| < ot, since the case
|z| > ot follows from (3.9) and the argument presented below. The relation

(4.3) implies
t) = Z’/Tj(D u(z,t
J
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so that we can write (5.1) in the form

3 < (ri (D))~ (D)D) = Yy (D)F.

j
Applying 7, (D), we find

< (mn(DY) — M (D) (mn( D)) = mi(D)F. (5.5)

By using Theorem 3.2 we get

lu(z, )] < lej(D u(z, t
J

<o+~ Y Y [ I GmOIFC i ds

lol<fn/2141 J

} +C Z ZHI‘O‘ N (DYF (- )|l ogrmy-

1<|el<[n/2] J
On the right side we apply (4.9), obtaining the required L?-L* estimate.
d

Corollary 5.2 Let n > 3 and t > 1. Let A(§) = X, Aj&; satisfy the
assumption (Hi), (Ha) and ker A(g) = {0} for all €. Given F: R* x R —
RN, the solution of (5.1) having zero initial data satisfies the following
estimate:

u(z, O S CQ+t+[a)F 32 sup (L4 )*[L°F(,8)ll2 (5.6)
|e|<[n/2)+k <s<t
Here

- 1, if n>3 is even;
] 2, if n>3isodd,

:{(n—np, if n >4 (5.7

l1+ee>0, fn=3
and I'()\) € A is the Lie algebra generated by {8;, V, S, i}

Proof. First we consider the case, when |z| > ot. Then (5.3) gives the
desired inequality.
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Let |z| < ot. The right side of the inequality (5.2) can be estimated
from above by constant times

t
A+ [ f(s)ds+ (),
0
where
fs)= > ITF(,s)]2
|l <In/2]+k

It is sufficient to note that

(Lot [ "F(s)ds + )

< O+~ D/2 sup (14 5)£(s),
0<s<t

where the constant ¢ is defined in (5.7). O
In the case ker A(§) # {0} the relation (4.3) gives

w(@,t) = Meer A(D)u(z, £) + Y m;(D)ulz, t),
J

F(z,t) = ier a(D)F(z,8) + »_ m;(D)F(z,1).
J

We can still deduce (5.5), but we have to consider the relation

< (Meer (D)) = e (D).

If myer A(D)F = 0, then we have the conservation law
Tker 4(D)u(z, t) = Trer a(D)u(z, 0).

In order to have L?-L™ estimate we assume that the initial data satisfy
Tker A(D)u(z,0) = 0.

Theorem 5.3 Let n > 3. Consider a Cauchy Problem associated to (5.1).
Assume that all non-vanishing characteristic roots of A(§) satisfies the as-
sumptions of Theorem 3.2. Suppose in addition that

A

F(t) Lker A(E), 4(0) L ker A(). (5.8)
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Then (5.6) holds.

In the introduction we refer to the assumptions (5.8) like elliptic con-
ditions which guarantee that all components of u decay.

Remark 5.1 By the aid of Remark 3.1, one can write a similar estimate
to (5.6) for the case n = 2 with weights of type ¢ like in (3.10).

6. Examples

6.1. Dirac system
An important hyperbolic problem (see [16]) is the Dirac system

3
700 +1)_ v059(z,t) = 0. (6.1)

j=1

The solution (¢, z) : R® x R — C* is called spinor the coefficients v, are
~ the Dirac matrices defined as follows

I O 0 Ok
= = = 2 .
Yo < 0 —I ) s Yk < . 0 ) 3 k 17 73

The Pauli matrices o are determined by

/01 /0 i /10
=\ 1 0) 2T\ i 0 ) T o0 1)
We rewrite (6.1) in the form (8; — _; A;0;)¥(z,t) with
Alg) = 0 o161 + 0262 + 033 .
01&1 + 0282 + 0383 0

This is hermitian matrix; our technique still works since we use the symme-
try of A just to prove that the eigenvalues are real and the eigenspaces are
orthogonal. The correspondent characteristic form det(A(¢) — A\I) =0 is

M2 N + gt =0
We see that the eigenvalues are strictly convex:
Az= gl Asa=—[¢].

For this system the estimate (5.6) holds, taking only one field Q;x(\) =
z;0r — z10;. In this example is evident that our methods works for not-
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strictly hyperbolic systems.

6.2. Maxwell system for uniaxial crystals
We consider Maxwell system in anisotropic media:

(6.2)

e F = curl H + Fy,
OH = —curl E + F.

Here E(z,t), H(z,t), Fi(z,t), Fs(z,t) € R3 and =z € R%, t € R. Moreover
€o is a diagonal 3 by 3 matrix:

¢o = diag(a?, b%, ¢?).

Taking u = (eé/QE, H), F= (eal/QFl, F5) we can rewrite this system as
Ou— Bu=F,
with
) 0 € 12 curl
B := 1/
—curle, 0

[ 0o -] [0 U
0 —la|™¢s a6
U= 1o 0 —[b]7*&
—lel™e el 0
The characteristic form det(B(£) — AI) = 0 is given by
A = ()N + p(e)l€]*) =0, (63)

where

P(€) = (Ib] 72+ || ™)&F + (la] ™ + |c| )& + (|lal 7> + 5] 7)é3,
B(€) = |b]7%|c| 7263 + |al || %65 + |a|2[b| 23,

In the case b = ¢, B({) has eigenvalues

A2 =0,
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Nsa(€) = /07262 + 026 + a2,
Xs,6(€) = £[b] 1]

The most relevant point is that ¥y, is strictly convex for j > 3. On the
contrary for b # ¢, taking A\ = 1 in (6.3), one finds Fresnel surface with
four singular points. Hence ¥, is not strictly convex. This is consequence
of the variable multiplicity of the characteristic roots. Our technique is not
available.

This analytic difference correspond to different physical situations.
Maxwell system describes the propagation of the light in crystals. In par-
ticular, in uniaxial crystal, there is a single axis along which light can prop-
agate without exhibiting double refraction; along other axis a light beam
splits into two different components which travel at different velocities. This
corresponds to the choice ey = diag(a?, b?,42). On the contrary, in biaxial

crystals conical refraction take place: a ray incident on a surface of the crys-
“tal in a certain direction splits into a family of rays which lie along a cone.
To examine this case one takes ¢y = diag(a?,b?, c?) with three different
entries.

We state that our estimates works in uniaxial case. In this case

Ql,z()\3 4) = 2(0, x182 - b 56231)
Q13(M34) = 2(a™%2185 — b~ 22301,
02,3(X34) = 207 2(2205 — 2302),

Qi k(Xs6) = 2072(z;0k — z0;) 4, k=1,2,3.
We observe that the fields Q1 2(As4), £1,3(A3,4), are different from those
used in [6]. It remains to consider the conditions due to the presence of null
eigenvalues. We notice that the following conditions are equivalent

(G1,G2) L Ker B(¢),
div eé/zGl + divGy = 0.
In fact w € Ker B(£) if and only if w = (w1, ws) satisfies eé/2§ ANwy=0=
EN 651/211)1 that is we = B¢, w1 = ae(l)/zﬁ, for some «, 8 € R. Hence, the
following conditions are equivalent
(G, G 2) L Ker B(€),
aley/?¢, eoC) + BLE, Gz) =0,
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adive?Gy + BdivGy = 0.
In conclusion, considering ¢y having two different entries, if

divegEg = 0 = div Hy
div €0F1 =0 =div F2
then (5.6) holds for the solution of (6.2). In this case the elliptic conditions
connected with null eigenvalue have a clear physical meaning.
We remark that L!-L> estimate in usual Sobolev space are known (see

[10] for uniaxial crystals and [9] for biaxial case); the main point here is to
associate to Maxwell system generalized Sobolev spaces.

6.3. Wave equations with different propagation speeds
Some recent papers (see [7]) concern system of semilinear wave equa-
tions with different speeds of propagation:

) (O — c1A)uy = f1,
(6.4)
(Ot — enA)uny = fn.

Here ¢; € R\{0} represents the propagation speed of u;. Let us set
Ui = (Byus, /Ci0z, Uiy« - -, V/CiOgr i), U = (Un,...,Un),
Fi=(£,0,...,0), F=(F,...,Fy).

The system (6.4) can be written in the form 6,U — Zj A;0,,U = F with

B ()

A(E) = By ()

By (§)
The blocks on the diagonal have the following form:
0  Veab, -+ edn
e 0

Blg= |V 0 )

VG 0 0
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We see that
N N
det(A(€) — AT) = [ det(Bi(¢) — AT) = A DIN [[(X* = cilé ).
i=1 i=1

Non vanishing eigenvalues have the form A\;+ = %./¢;|§|; the correspon-
dent surfaces X, , are strictly convex and we can take eigenvectors ¥V, , =
0,...,Vi+,0...0) with Vi1 orthogonal eigenvectors for B;.

It remains to discuss the conditions due to the presence of the null
eigenvalue. We observe that V = (V4,...,Vn) € ker A(€) if and only if
V; € ker B;(£). The last condition is equivalent to & Vip = 0 and Dok &Vip =
0. In turn this gives Vg = 0. In our case £ is parallel to [7{ =
VCi(Oz Ui, . .., O, ui)”, so that U}(O) 1 ker B;(£). The condition for E =
(fi, 0,...,0) is trivial, in fact Fy 1 ker A(§) means fito = 0 with v = 0.

In conclusion without any assumptions on the initial data the solu-
_tion of (6.4) satisfies (5.6). The involved Lie algebra contains the fields

2 ci(ziO, — 2x0;)mi( D).

6.4. Equations of elasticity in anisotropic media
The motion of homogeneous elastic material is described by the system

—

Ou— (V- -o(Vu)T = F. (6.5)
Here
ul(ta .’17)
’LL(:L‘, t) = u2(t, :13) : RP’ xR — R3, o= (Ujk)j,k=1,2,3 € Mj
u3(t’ CL‘)

and V - o = (v1, v, v3) is the vector with components

3
ve =Y 0o k=1,2,3.
j=1

Moreover,
U1
T
(’01,02,’03) = | V2
U3

For a physical discussion of this model see [1], [8], [13]. We consider the
following ansatz for o
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o(Vu) = c¢- Vu+dtr(Vu)l

with ¢ a constant 3 x 3 matrix, A - B is the matrix product, d € R and
Vu represented by a matrix in which each column is the gradient of wuy,
i=1,2,3.

In isotropic case we have ¢ = I, d = A+ u, A, pn € Ry for the Lamé
coefficients. In order to study some anisotropic media we assume

¢ = {c;r} positively defined, d > 0. (6.6)
Explicitly, we have
Aug O, (divu)
(V- o(Vu))T = | Acug | +d | 8,(diva)
Acusg Oy (divu)

where A, = Zj i Ci,k0j0k. In Fourier transform coordinates (6.5) can be
rewritten as

~

@' — A(&)a = Fr (6.7)
deE+ €2 da&e d€1€3
A(¢) = déré&s  dE+ |12 déts | ;

d§:1€3 déts  dE§ +|€)2

€12 = Z i k€ik-
ik

The characteristic form det(A(§) — A(§)I) = 0 has solutions

AE) = €12,
w(€) = dig]* + |2

Due to (6.6), the corresponding surfaces 3, are strictly convex.

Next step is to reduce (6.7) in the form of first order system. We
observe that & = (£, &, &3) is an eigenvector associated to u(§), and wy =
(—€3,0,€1), wa = (—&2, &1, 0) are orthogonal eigenvectors associated to A(€).
This means that we have two projectors:

(wl . U>’w1' (’wz : ’U>w2
w1 |wa|?

(€ )¢

> 7."2(6)’0 = ‘é. )

m(§v =
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Taking v; = m;(D)u, i = 1,2, from (6.7) we have

{@+Mmm:mwm
(07 + p(D))vg = ma(D)F.

Considering U = (8yv1, v/ A(D)v1, g, v/ p(D)va) we arrive at

U, — A(E)U = F.

Here F = (m1(D)F, 0, m2(D)F,0) and

0 —/A(6) 0 0
BEY26) 0 0 0
Al = 0 0 0 —u®

0 0 —/ 1(§) 0

The corresponding eigenvalues are +A(£) and #u(£). This enable us to
associate to (6.5) a generalized Sobolev space and derive L?-L® estimates
for these equations.
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