Some estimates for strong uniform approximation on sphere

Pu Zhang

(Received October 11, 1995; Revised June 23, 2003)

Abstract. Let $d \geq 3$ and Σ_{d-1} be the unit sphere in \mathbb{R}^d . For $f \in L(\Sigma_{d-1})$, denote by σ_n^{δ} the Cesàro means of its Fourier-Laplace series of order δ . In this paper, we study the strong uniform approximation by σ_n^{δ} with the critical index in certain continuous function spaces, which shows that the results in our previous paper are best possible in a suitable sense.

Key words: spherical harmonics, Fourier-Laplace series, Cesáro means, strong uniform approximation, modulus of continuity.

1. Introduction and Main Results

Let Σ_{d-1} be the unit sphere in \mathbb{R}^d centered at the origin. We will assume that $d \geq 3$ and write $\lambda = (d-2)/2$ throughout this paper. Denote by $x \cdot y$ the usual inner product of x and y in \mathbb{R}^d . The Lebesgue measure on \mathbb{R}^d induces a measure on Σ_{d-1} invariant for rotations around the origin. Let \mathcal{H}_k^d be the space of spherical harmonics of degree k. If $f \in L(\Sigma_{d-1})$ then f has its expansion in spherical harmonics, so-called the Fourier-Laplace series,

$$\sigma(f)(x) = \sum_{k=0}^{\infty} Y_k(f, x), \tag{1}$$

where $Y_k(f,\cdot)$ is the projection of f on \mathcal{H}_k^d and can be expressed as a spherical convolution,

$$Y_k(f,x) = \frac{(k+\lambda)\Gamma(\lambda)}{2\pi^{\lambda+1}} \int_{\Sigma_{d-1}} f(y) P_k^{\lambda}(x \cdot y) dy, \quad k = 0, 1, 2, \dots$$

Here, $P_k^{\lambda}(t)$ is the ultraspherical (or Gegenbauer) polynomial of degree k associated with λ , which can be defined in terms of a generating equation

²⁰⁰⁰ Mathematics Subject Classification: 33C55, 40F05, 42C15, 43A90.

as follows,

$$(1 - 2rt + r^2)^{-\lambda} = \sum_{k=0}^{\infty} P_k^{\lambda}(t)r^k, \quad 0 \le r < 1, \ |t| \le 1.$$
 (2)

It is well-known that if $f \in L^2(\Sigma_{d-1})$ then there exists a unique representation, $f(x) = \sum_{k=0}^{\infty} Y_k(f, x)$, where the series on the right-hand side converges to f in the L^2 norm.

For more information on the spherical harmonic analysis and approximation theory, we refer the readers to [7], [11] and [17].

Denote by $S_N(f)$ the partial sum operator of the series in (1), says, $S_N(f)(x) = \sum_{k=0}^N Y_k(f,x)$. It is known that the Lebesgue constant of the operator S_N has the order N^{λ} , see [17] p. 48 or [5] for details. Thus, in general, the convergence properties of the partial sum operator is not good. Indeed, in 1973, Bonami and Clerc [2] pointed out that, for any $p \neq 2$ and $1 \leq p \leq \infty$, there is a function $f \in L^p(\Sigma_{d-1})$ such that S_N does not converge to f in L^p norm (also see [17] p. 49). So, it is natural and important to consider the linear summation of the Fourier-Laplace series. However, among others, Cesàro means is the most important one. For $f \in L(\Sigma_{d-1})$ and $\alpha > -1$, the nth Cesàro means of order α of the series in (1) are defined by

$$\sigma_n^{\alpha}(f)(x) = \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha} Y_k(f, x), \quad n = 0, 1, 2, \dots,$$

where

$$A_k^{\alpha} = \frac{\Gamma(k+\alpha+1)}{\Gamma(\alpha+1)\Gamma(k+1)}, \quad k = 0, 1, 2, \dots$$

In the same paper mentioned above, Bonami and Clerc proved that there exists a function $f \in L^p(\Sigma_{d-1})$ such that $\sigma_n^{\alpha}(f)$ does not converge to f in L^p norm when $0 < \alpha \le \lambda = \frac{d-2}{2}$ and $1 \le p \le \frac{2(d-1)}{d+2\alpha}$ or $p \ge \frac{2(d-1)}{d-2-2\alpha}$ (also see [17] p. 49). For more information on Cesàro means on sphere, we refer the readers to [1], [2], [4] and [14] \sim [17].

It is known that the special value of α , (d-2)/2, is critical, and the Cesàro means of critical order, σ_n^{λ} , plays a role as like as the partial sum operator of the classical Fourier series. So, it is natural and significant to study the strong summability of $\sigma_n^{\lambda}(f)$ with index q > 0, which is defined

by

$$H_{q,n}(f)(x) = \frac{1}{n+1} \sum_{k=0}^{n} |f(x) - \sigma_k^{\lambda}(f)(x)|^q$$
, for $q > 0$.

In 1994, Wang and the author [18] studied the uniform approximation of $H_{q,n}$. In 1995, the author considered the pointwise convergence of $H_{q,n}$ in [19].

To state our results, let us first recall some definitions and notations. Denote by $C(\Sigma_{d-1})$ the continuous function space on Σ_{d-1} with the norm $||f||_C = \max\{|f(x)| : x \in \Sigma_{d-1}\}$, by $E_k(f)$ the best approximation of $f \in C(\Sigma_{d-1})$ by spherical polynomials of order k, see [17] p. 161 for its definition.

Let $\xi \in \Sigma_{d-1}$ and $0 < \gamma \le \pi$, denote by $\ell_{\xi,\gamma} = \{ \eta \in \Sigma_{d-1} : \xi \cdot \eta = \cos \gamma \}$ and by $\ell(\gamma)$ its length, obviously, $\ell(\gamma) = |\Sigma_{d-2}| \sin^{d-2} \gamma$. For $f \in L(\Sigma_{d-1})$, we define the spherical translation operator by

$$S_{\gamma}(f)(\xi) = \frac{1}{\ell(\gamma)} \int_{\ell_{\xi,\gamma}} f(\eta) d\ell_{\xi,\gamma}(\eta).$$

The idea of the spherical translation operator may be found in [6] and [8], cf. [1] and [17] p. 57.

For $f \in C(\Sigma_{d-1})$, the modulus of continuity of f is defined by

$$\omega(f,t) = \sup\{|\mathcal{S}_{\gamma'}(f)(x) - \mathcal{S}_{\gamma''}(f)(x)| : |\gamma' - \gamma''| \le t, \ x \in \Sigma_{d-1}\}.$$

In 1994, we established the following uniform approximation theorem for the strong summation $H_{q,n}$ in [18].

Theorem 1 ([18]) Let $f \in C(\Sigma_{d-1})$ and q > 1, then there is a positive constant $C_{d,q}$ depending on d and q, such that

$$\left\|\frac{1}{n+1}\sum_{k=0}^n|f-\sigma_k^\lambda(f)|^q\right\|_C\leq \frac{C_{d,q}}{n+1}\sum_{k=0}^n\left[\omega\left(f,\frac{1}{k+1}\right)\right]^q.$$

In this paper, we continue the study of [18]. We will prove that Theorem 1 is best possible in certain suitable sense.

Let $\{F_k\}_{k=0}^{\infty}$ be a monotone sequence of positive numbers with $\lim_{k\to\infty} F_k = 0$ and $\omega(t)$ be a modulus of continuity. Write

$$C(F) = \{ f \in C(\Sigma_{d-1}) : E_k(f) \le F_k, k = 0, 1, 2, \ldots \}$$

and

$$H^{\omega} = \{ f \in C(\Sigma_{d-1}) : \omega(f, t) \le \omega(t), \quad 0 \le t \le \pi \}.$$

In the sequel, we reserve the notation $\phi \sim \psi$, which means that there exist absolute constants $C_1 > 0$ and $C_2 > 0$ such that $C_1 \psi \leq \phi \leq C_2 \psi$. Now, our main results can be stated as follows.

Theorem 2 Let $\{F_k\}_{k=0}^{\infty}$ be a monotone sequence of positive numbers with $\lim_{k\to\infty} F_k = 0$, then for q > 1 there has

$$\sup_{f \in C(F)} \left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_C \sim \frac{1}{n+1} \sum_{k=0}^{n} F_k^q.$$

Theorem 3 If there is an absolute constant B > 0 such that

$$\sum_{\nu=0}^{k} \omega\left(\frac{1}{\nu+1}\right) \le B(k+1)\omega\left(\frac{1}{k+1}\right),\tag{3}$$

then for any q > 1, the following holds

$$\sup_{f \in H^{\omega}} \left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_C \sim \frac{1}{n+1} \sum_{k=0}^{n} \left[\omega \left(\frac{1}{k+1} \right) \right]^q.$$

Our theorems are the spherical analogues of the corresponding results for the classical Fourier series (see [9]). The basic idea of the proof is from [9], [10] and [12].

2. Auxiliary Lemmas

In this section, we recall and prove some elementary inequalities to be used.

Lemma 1 ([13]) Let $P_k^{\lambda}(t)$ be the ultraspherical polynomials defined by (2), then

$$P_k^{\lambda}(1) = A_k^{2\lambda - 1}$$
 and $|P_k^{\lambda}(t)| \le A_k^{2\lambda - 1}$.

Lemma 2 (Chebysev's inequality, [3] p. 9) Let a_1, \ldots, a_n and b_1, \ldots, b_n are real numbers such that $a_1 \leq \cdots \leq a_n$ and $b_1 \leq \cdots \leq b_n$ or $a_1 \geq \cdots \geq a_n$

 a_n and $b_1 \geq \cdots \geq b_n$ then

$$\sum_{k=1}^{n} a_k b_k \ge \frac{1}{n} \sum_{k=1}^{n} a_k \cdot \sum_{k=1}^{n} b_k.$$

Lemma 3 Let $\{F_k\}_{k=0}^{\infty}$ be a sequence of real numbers and satisfy the following condition

$$F_k \ge F_{k+1} > 0, \quad k = 0, 1, 2, \dots$$

Then for any $\alpha > 0$ there has

$$\frac{1}{A_n^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha-1} F_k \ge \frac{C_{\alpha}}{n+1} \sum_{k=0}^{n} F_k, \tag{4}$$

where $C_{\alpha} = \alpha$ when $0 < \alpha < 1$ and $n \ge 1$, and otherwise $C_{\alpha} = 1$.

Proof. When n=0 or $\alpha=1$, it is easy to see that (4) becomes an identity with $C_{\alpha}=1$. Now, we assume that $n\geq 1$ and $\alpha\neq 1$.

(i) If $0 < \alpha < 1$ then $A_{n-k}^{\alpha-1} \ge A_n^{\alpha-1}$, k = 0, 1, ..., n, and then

$$\frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} F_k \ge \frac{A_n^{\alpha-1}}{A_n^{\alpha}} \sum_{k=0}^n F_k = \frac{\alpha}{n+\alpha} \sum_{k=0}^n F_k \ge \frac{\alpha}{n+1} \sum_{k=0}^n F_k.$$
(5)

(ii) If $\alpha > 1$ then $A_{n-k}^{\alpha-1} > A_{n-k-1}^{\alpha-1}$, k = 0, 1, ..., n. Applying the Chebysev's inequality (Lemma 2) for $a_k = A_{n-k}^{\alpha-1}$ and $b_k = F_k$, we obtain the following inequality

$$\sum_{k=0}^{n} A_{n-k}^{\alpha-1} F_k \ge \frac{1}{n+1} \sum_{k=0}^{n} A_{n-k}^{\alpha-1} \sum_{k=0}^{n} F_k.$$
 (6)

From (6) and noting that $\sum_{k=0}^{n} A_{n-k}^{\alpha-1} = A_n^{\alpha}$, we have

$$\frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} F_k \ge \frac{1}{n+1} \sum_{k=0}^n F_k. \tag{7}$$

It follows from (5) and (7) that (4) is true when $\alpha \neq 1$ and $n \geq 1$. Summing up the discussion above, we finish the proof of Lemma 3.

6 P. Zhang

3. Proof of the Theorems

In this section, we prove Theorems 2 and 3. To this end, we first establish a inequality, in which we control the strong uniform approximation in terms of the best approximation.

Proposition 1 If $f \in C(\Sigma_{d-1})$ and q > 1 then

$$\left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_C \le \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} \left[E_k(f) \right]^q.$$

Proof. By Theorems 6.2.3 and 6.2.6 in [17] (also see Theorem 4.3.1 and Lemma 4.3.2 in [4]), we have

$$\omega\left(f, \frac{1}{k+1}\right) \le \frac{C_d}{k+1} \sum_{i=0}^k E_i(f). \tag{8}$$

Applying Theorem 1 and the Hardy-Landau's inequality (see [3] p. 144), we have

$$\left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_{C} \leq \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} \left[\frac{C_d}{k+1} \sum_{i=0}^{k} E_i(f) \right]^q$$

$$\leq \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} \left[E_k(f) \right]^q.$$

This is what we want. So complete the proof.

Proposition 1 can be regarded as a spherical analogue of the corresponding result of the classical Fourier series, cf. [9].

Proof of Theorem 2. Recall the definition of C(F), it follows from Proposition 1 that

$$\sup_{f \in C(F)} \left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_C \le \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} F_k^q. \tag{9}$$

Next, we shall deduce the reserve inequality of (9) by using the idea from Sun [12]. Fix a point $e \in \Sigma_{d-1}$ as the north pole of Σ_{d-1} . Set

$$f_0(x) = \sum_{\nu=1}^{\infty} (F_{\nu-1} - F_{\nu}) (A_{\nu}^{2\lambda-1})^{-1} P_{\nu}^{\lambda}(x \cdot e), \text{ for all } x \in \Sigma_{d-1}.$$

This function was constructed by Ugulava in [14]. It is not difficult to see that $f_0 \in C(\Sigma_{d-1})$. Denote by $S_k(f_0)$ the kth partial sums of f_0 , says,

$$S_k(f_0)(x) = \sum_{i=0}^k Y_i(f_0, x).$$

From the second inequality in Lemma 1, we have

$$E_{k}(f_{0}) \leq \|f_{0} - S_{k}(f_{0})\|_{C}$$

$$= \left\| \sum_{\nu=k+1}^{\infty} (F_{\nu-1} - F_{\nu}) (A_{\nu}^{2\lambda-1})^{-1} P_{\nu}^{\lambda}(x \cdot e) \right\|_{C}$$

$$\leq \sum_{\nu=k+1}^{\infty} (F_{\nu-1} - F_{\nu}) = F_{k}.$$

This shows that $f_0 \in C(F)$. Since

$$\sigma_n^{\alpha}(f_0)(x) = \frac{1}{A_n^{\alpha}} \sum_{k=1}^n A_{n-k}^{\alpha}(F_{k-1} - F_k)(A_k^{2\lambda - 1})^{-1} P_k^{\lambda}(x \cdot e), \quad \alpha > 0,$$

and noting that $A_0^{\alpha}=A_0^{\alpha-1}=1$ and $A_{n-k-1}^{\alpha}-A_{n-k}^{\alpha}=-A_{n-k}^{\alpha-1}$ $(k=0,1,\ldots,n-1)$. It follows from the first inequality of Lemma 1 that

$$\sigma_n^{\alpha}(f_0)(e) = \frac{1}{A_n^{\alpha}} \sum_{k=1}^n A_{n-k}^{\alpha}(F_{k-1} - F_k)$$

$$= \frac{1}{A_n^{\alpha}} \sum_{k=0}^{n-1} \left(A_{n-k-1}^{\alpha} - A_{n-k}^{\alpha} \right) F_k + F_0 - \frac{A_0^{\alpha}}{A_n^{\alpha}} F_n$$

$$= F_0 - \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} F_k.$$

Since

$$f_0(e) = \sum_{\nu=1}^{\infty} (F_{\nu-1} - F_{\nu}) (A_{\nu}^{2\lambda - 1})^{-1} P_{\nu}^{\lambda}(1) = F_0,$$

then

$$f_0(e) - \sigma_n^{\alpha}(f_0)(e) = \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha - 1} F_k, \quad \alpha > 0.$$
 (10)

8 P. Zhang

Applying Lemma 3 for $\alpha = \lambda = (d-2)/2$, we have

$$|f_0(e) - \sigma_n^{\lambda}(f_0)(e)| \ge \frac{C_d}{n+1} \sum_{k=0}^n F_k.$$

Noting that $F_k \geq F_{k+1}$ for k = 0, 1, ..., we have, for q > 1,

$$\frac{1}{n+1} \sum_{k=0}^{n} |f_0(e) - \sigma_k^{\lambda}(f_0)(e)|^q \ge \frac{1}{n+1} \sum_{k=0}^{n} \left| \frac{C_d}{k+1} \sum_{i=0}^{k} F_i \right|^q \\
\ge \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} F_k^q.$$

This shows that

$$\sup_{f \in C(F)} \left\| \frac{1}{n+1} \sum_{k=0}^{n} \left| f - \sigma_k^{\lambda}(f) \right|^q \right\|_C \ge \frac{C_{d,q}}{n+1} \sum_{k=0}^{n} F_k^q. \tag{11}$$

Theorem 2 follows from (9) and (11). So finish the proof.

Proof of Theorem 3. Fix a point $e \in \Sigma_{d-1}$ as the north pole of Σ_{d-1} . Set

$$f_1(x) = \varepsilon \sum_{k=1}^{\infty} \left[\omega \left(\frac{1}{k} \right) - \omega \left(\frac{1}{k+1} \right) \right] \left(A_k^{2\lambda - 1} \right)^{-1} P_k^{\lambda}(x \cdot e), \quad \forall \, x \in \Sigma_{d-1},$$

where ε is an undetermined constant.

We first check that $f \in H^{\omega}$ for certain suitable ε . Denote by $S_k(f_1)(x)$ the kth partial sum of $f_1(x)$. Obviously, we have

$$E_{k}(f_{1}) \leq \|f_{1} - S_{k}(f_{1})\|_{C}$$

$$= \varepsilon \left\| \sum_{\nu=k+1}^{\infty} \left[\omega \left(\frac{1}{\nu} \right) - \omega \left(\frac{1}{\nu+1} \right) \right] (A_{\nu}^{2\lambda-1})^{-1} P_{\nu}^{\lambda}(x \cdot e) \right\|_{C}$$

$$\leq \varepsilon \sum_{\nu=k+1}^{\infty} \left[\omega \left(\frac{1}{\nu} \right) - \omega \left(\frac{1}{\nu+1} \right) \right]$$

$$= \varepsilon \omega \left(\frac{1}{k+1} \right). \tag{12}$$

From (8), (12) and (3), we have

$$\omega\left(f_{1}, \frac{1}{k+1}\right) \leq \frac{C_{d}}{k+1} \sum_{i=0}^{k} E_{i}(f_{1})$$

$$\leq \frac{\varepsilon C_{d}}{k+1} \sum_{i=0}^{k} \omega\left(\frac{1}{i+1}\right)$$

$$\leq \varepsilon C_{d} B \omega\left(\frac{1}{k+1}\right),$$

where B is the constant in (3).

Let $\varepsilon = \left(2C_d B\right)^{-1}$, then the above inequality gives that $\omega\left(f_1, \frac{1}{k+1}\right) \leq \omega\left(\frac{1}{k+1}\right)$, which implies $f_1 \in H^{\omega}$. Set $F_k = \omega\left(\frac{1}{k+1}\right)$, $k = 0, 1, \ldots$ Reasoning as (10), we have

$$f_1(e) - \sigma_n^{\alpha}(f_1)(e) = \frac{\varepsilon}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} \omega\left(\frac{1}{k+1}\right), \quad \alpha > 0.$$
 (13)

By Lemma 3 and (13), we have, for any $\alpha = \lambda$

$$|f_1(e) - \sigma_n^{\lambda}(f_1)(e)| \ge \frac{\varepsilon C_d}{n+1} \sum_{k=0}^n \omega\left(\frac{1}{k+1}\right) \ge C_{d,q,B}\omega\left(\frac{1}{n+1}\right).$$

And then

$$\sup_{f \in H^{\omega}} \left\| \frac{1}{n+1} \sum_{k=0}^{n} |f - \sigma_k^{\lambda}(f)|^q \right\|_C \ge \frac{C_{d,q,B}}{n+1} \sum_{k=0}^{n} \left[\omega \left(\frac{1}{k+1} \right) \right]^q.$$
 (14)

On the other hand, the reverse inequality of (14) follows from Theorem 1. So complete the proof. $\hfill\Box$

Acknowledgement The author would like to thank the referee for his comment and suggestion. It should be pointed out that the proof of Lemma 3 follows his idea.

References

- Berens H., Butzer P.L. und Pawelke S., Limitierungserfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. RIMS, Kyoto Univ., Ser A 4 (1968), 201–268.
- [2] Bonami A. and Clerc J.L., Sommes de Cesàro et multiplicateurs des dèveloppments en harmonique sphèriques. Trans. Amer. Math. Soc. 138 (1973), 223–263.
- [3] Kuang J.C., Applied Inequalities. (in Chinese), Hunan Education Press, Changsha, 1993.

- [4] Li L.Q., Summability and Approximation of Eigenfunction Expansions. PhD Thesis, Beijing Normal University, 1993.
- [5] Liflyand E.R., On the Lebesgue constants of Cesàro means of spherical harmonic expansions. Acta Sci. Math. (Szged) 64 (1998), 215-222.
- [6] Löfström J. and Peetre J., Approximation theorems connected with generalized translations. Math. Ann. 181 (1969), 225–268.
- [7] Müller C., Spherical Harmonics. Lecture Notes in Math. 17, Springer, Berlin, 1966.
- [8] Rudin W., Uniqueness theory for Laplace series. Trans. Amer. Math. Soc. 68 (1950), 287–303.
- [9] Shi X.L., On some inequalities of strong summability of Fourier series. (in Chinese) Acta Math. Sinica 16 (1966), 233-252.
- [10] Steckin S.B., On the approximation of periodic function by Fejér sums. (in Russian) Trudy Mat., Inst. V. A. Stecklova 62 (1961), 48-60.
- [11] Stein, E.M. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey, 1971.
- [12] Sun Y.S., The uniform approximation of continuous periodic function by Cesàro means of its Fourier series. Advances in Math. (China) 6 (1963), 379–387.
- [13] Szegö G., Orthogonal Polynomials. AMS Colloquium Publication, 1939.
- [14] Ugulava D.K., Approximation of functions on an m-dimensional sphere by Cesàro means of Fourier-Laplace series. (in Russian) Mat. Zametki 9 (1971), 343-353.
- [15] Wang K.Y., Equiconvergent operator of Cesàro means on sphere and its applications. J. Beijing Norm. Univ. (N.S.) (2) 29 (1993), 143-154.
- [16] Wang K.Y., Pointwise convergence of Cesàro means on sphere. J. Beijing Norm. Univ. (N.S.) (2) 29 (1993), 157–164.
- [17] Wang K.Y and Li L.Q, Harmonic Analysis and Approximation on the Unit Sphere. Science Press, Beijing, New York, 2000.
- [18] Wang K.Y. and Zhang P., Strong uniform approximation on sphere. J. Beijing Norm. Univ. (N.S.) (3) 30 (1994), 321-328.
- [19] Zhang P., Pointwise convergence of strong summability on sphere. Approx. Theory & its Appl. (3) 11 (1995), 1-10.

Department of Information and Computing Science Zhejiang Institute of Science and Technology Hangzhou 310018, P. R. China E-mail: puzhang@sohu.com