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Some estimates for strong uniform
approximation on sphere
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Abstract. Let d > 3 and T4_; be the unit sphere in R% For f € L(Z4-1), denote
by afl the Cesaro means of its Fourier-Laplace series of order 6. In this paper, we study
the strong uniform approximation by a‘,sl with the critical index in certain continuous
function spaces, which shows that the results in our previous paper are best possible in
a suitable sense.
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1. Introduction and Main Results

Let 4_1 be the unit sphere in R? centered at the origin. We will assume
that d > 3 and write A = (d — 2)/2 throughout this paper. Denote by z - y
the usual inner product of z and y in R% The Lebesgue measure on R
induces a measure on Y41 invariant for rotations around the origin. Let
H¢ be the space of spherical harmonics of degree k. If f € L(34-1) then
f has its expansion in spherical harmonics, so-called the Fourier-Laplace
series,

o0

o(f)(z) =D Yilf,2), (1)

k=0

where Yi(f, ) is the projection of f on HZ and can be expressed as a spher-
ical convolution,

nihe) = CE [ )R e s k=012,

Here, P}(t) is the ultraspherical (or Gegenbauer) polynomial of degree k
associated with A, which can be defined in terms of a generating equation
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as follows,

PM)r*, 0<r<1, | <1 (2)

M8

(1-2rt+r?)~> =

B
Il

0

It is well-known that if f € L?(X4_1) then there exists a unique rep-
resentation, f(z) = > po, Yi(f, ), where the series on the right-hand side
converges to f in the L? norm.

For more information on the spherical harmonic analysis and approxi-
mation theory, we refer the readers to [7], [11] and [17].

Denote by Sy(f) the partial sum operator of the series in (1), says,
Sn(f)(z) = Son, Yi(f, z). Tt is known that the Lebesgue constant of the
operator Sy has the order N*, see [17] p.48 or [5] for details. Thus, in
general, the convergence properties of the partial sum operator is not good.
Indeed, in 1973, Bonami and Clerc [2] pointed out that, for any p # 2
and 1 < p < oo, there is a function f € LP(X4-1) such that Sy does not
converge to f in LP norm (also see [17] p.49). So, it is natural and important
to consider the linear summation of the Fourier-Laplace series. However,
among others, Cesaro means is the most important one. For f € L(¥4_1)
and a > —1, the nth Cesaro means of order o of the series in (1) are defined
by

1 n
o2(f Z_EZ G Ye(fx), n=0,1,2,...,

n k—'—-
where

o Tlk+a+1) _
Af = o+ DTkt 1)’ k=0,1,2,....

In the same paper mentioned above, Bonami and Clerc proved that
there exists a function f € LP(X4_1) such that o5 (f) does not converge to
fin LP norm when 0 < aa < A = -d——z and 1 < p < 5121) orp > ;_%:21
(also see [17] p.49). For more 1nformatlon on Cesaro means on sphere, we
refer the readers to [1], [2], [4] and [14] ~ [17].

It is known that the special value of «, (d — 2)/2, is critical, and the
Cesaro means of critical order, o)), plays a role as like as the partial sum
operator of the classical Fourier series. So, it is natural and significant to

study the strong summability of o;}(f) with index ¢ > 0, which is defined
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Hyn(f) ) —op(f ()|, for ¢>0.

Con+ 1

In 1994, Wang and the author [18] studied the uniform approximation
of Hyn. In 1995, the author considered the pointwise convergence of Hy ,,
in [19].

To state our results, let us first recall some definitions and notations.
Denote by C(X4-1) the continuous function space on £4_1 with the norm
Ifllc = max{|f(z)| : z € Z4-1}, by Ex(f) the best approximation of f €
C(X4-1) by spherical polynomials of order k, see [17] p. 161 for its-definition.

Let £ € £4-1 and 0 < y < 7, denote by 4¢y = {n € Lg—1 : £ -n = cosv}
and by £(v) its length, obviously, £(y) = |Zq_2|sin? 2. For f € L(X4_1),
we define the spherical translation operator by

1

57(f)(§)=@ , F(m)dleq(n).

The idea of the spherical translation operator may be found in [6] and
(8], cf. [1] and [17] p.57.
For f € C(X4-1), the modulus of continuity of f is defined by

w(f,t) = sup{|Sy(f)(z) = Sy (@) : Y =" <t, = € Baa}.

In 1994, we established the following uniform approximation theorem
for the strong summation H,,, in {18].

Theorem 1 ([18]) Let f € C(¥4-1) and g > 1, then there is a positive
constant Cgq depending on d and q, such that

-], < 255 (s 1))

In this paper, we continue the study of [18]. We will prove that Theo-
rem -1 is best possible in certain suitable sense.

Let {F:}32, be a monotone sequence of positive numbers with
limg—00 Fi; = 0 and w(t) be a modulus of continuity. Write

C(F)={feC(Z4-1): Ex(f) < Fg, k=0,1,2,...}
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and
HY ={f e C(Zq1) :w(f,t) Sw(t), 0<t< 7}

In the sequel, we reserve the notation ¢ ~ 1, which means that there
exist absolute constants C7; > 0 and Cs > 0 such that Ci9 < ¢ < Coeb.
Now, our main results can be stated as follows.

Theorem 2 Let {Fy}$2, be a monotone sequence of positive numbers with
limg_,oo Fx = 0, then for q > 1 there has

1 n
n+121f_"’c Nn+1];0qu'

Theorem 3 If there is an absolute constant B > 0 such that

k 1 1
Zw(m> < B(k+ 1)w<m), (3)

fGC(F)

then for any q > 1, the following holds

-0l ~ X )

Our theorems are the spherical analogues of the corresponding results
for the classical Fourier series (see [9]). The basic idea of the proof is from
[9], [10] and [12].

sup
feEHw

2. Auxiliary Lemmas

In this section, we recall and prove some elementary inequalities to be
used.

Lemma 1 ([13]) Let P)(t) be the ultraspherical polynomials defined by
(2), then

PA1) = AP and |RR(t)] < AP

)
Lemma 2 (Chebysev’s 1nequahty, 3] p.9) Let ai,...,an and by,... bn
are real numbers such that a1 < ---<ap and by < ---<b, 0or a1 > --- >
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an and by > -+ > b, then
k13 1 n 7
YILUEE) SH) SN
Lemma 3 Let {F;}{2, be a sequence of real numbers and satisfy the fol-
lowing condition
B ZFk—i—l >0, k£k=0,1,2,....
Then for any o > 0 there has

Aa ZA"‘ L >——2Fk, (4)

T k=0

where Co, = o when 0 < e < 1 and n > 1, and otherwise C, = 1.

Proof. Whenn =0 or a = 1, it is easy to see that (4) becomes an identity
with C, = 1. Now, we assume that n > 1 and o # 1.
(i) HTO0<a<1then Ag:,i > A%l k=0,1,...,n, and then

1 & Aa 1 n n
A—;Az:i ZF’C‘ Z =

3R

(5)

(i) If o > 1 then A5 ,ﬁ > An i_1» £ =0,1,...,n. Applying the
Chebysev’s inequality (Lemma 2) for ar, = Af{:,i and by = F}, we obtain
the following inequality

n _ 1 n n
DATRFZ g > AT P (6)
From (6) and noting that > p_, A%~} = AZ, we have

e ZA ZO (7)

7 k=0

It follows from (5) and (7) that (4) is true when o # 1 and n > 1.
Summing up the discussion above, we finish the proof of Lemma 3.
a
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3. Proof of the Theorems

In this section, we prove Theorems 2 and 3. To this end, we first
establish a inequality, in which we control the strong uniform approximation
in terms of the best approximation.

Proposition 1 If f € C(X4-1) and g > 1 then
1 ¢ A Cayg
n+1zlf_"’“(f) n+1Z
k=0

Proof. By Theorems 6.2.3 and 6.2.6 in [17] (also see Theorem 4.3.1 and
Lemma 4.3.2 in [4]), we have

<f’k+1)—k+1ZE ®)

Applying Theorem 1 and the Hardy-Landau’s inequality (see [3] p. 144),
we have

n+l k=0 1=0
Caq . q
< [Ex(f)]
n+1 =
This is what we want. So complete the proof. O

Proposition 1 can be regarded as a spherical analogue of the correspond-
ing result of the classical Fourier series, cf. [9].

Proof of Theorem 2. Recall the definition of C(F'), it follows from Propo-
sition 1 that

sup
fec(r)

1 & C
n+1kzzo‘f_a’§(f)q <njqu1Z (9)

Next, we shall deduce the reserve inequality of (9) by using the idea
from Sun [12]. Fix a point e € £4-1 as the north pole of 34-;. Set
= 1
fo(x) =Y (Fo1 = B)(APH) T P)(z-e), forall z€ g

v=1
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This function was constructed by Ugulava in [14]. It is not difficult to see
that fo € C(Z4-1). Denote by Sk(fo) the kth partial sums of fy, says,

k

Sk(fo)(=) = Y Yi(fo, ).

1=0

From the second inequality in Lemma 1, we have

Ex(fo) < HfO - Sk(fO)HC’

0o
= Z (Fy-1 — FV)(AEA_l)_lPV)\(m -e)
v=k+1 c¢
oo
< Z (Fu—l _Fv) :Fk~
v=k+1

This shows that fo € C(F). Since

1 & il
o2 (fo)(z) = o= Y AY 4 (Fro1 — F)(AP )Pz - e), >0,
A%
and noting that Af = Ag‘_l = 1land A2 , |, — A, = —Ag:i (k =
0,1,...,n—1). It follows from the first inequality of Lemma 1 that

on(fo)(e) = > An p(Foo1 — Fy)

1

n

1 Ag
= A_g (A?L‘—k—l - Ag..k;)Fk + F(] - Z% Fn

AT
Since
>
fole) =Y (Fvoy — BYADHTRX1) = R,
v=1
then
1 &
fole) = o5 (fo)(e) = -5 D AT R, o> 0, (10)
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Applying Lemma 3 for a = A = (d — 2)/2, we have
| fo(e) = on(fo)(e)] > ‘—ZFk

Noting that Fy > Fgqq for £ =0,1,..., we have, for ¢ > 1,

k
Cy a

n

nHZ!fo &) — o} (f) (@) =

k=0 =0
> L Ff
n+1 P
This shows that

1 ¢ Ay (g Ca,q -
sup f—oip(f) > —L N gl 11
fEC'(F) ’I’L"‘l;J k( C n+lk=0 k ( )
Theorem 2 follows from (9) and (11). So finish the proof. O

Proof of Theorem 3. Fix a point e € ¥4_; as the north pole of ¥4_;. Set

9 =e3 [o(}) ()| 40 R, veeTin
k=1

where ¢ is an undetermined constant.
We first check that f € H* for certain suitable e. Denote by Si(f1)(z)
the kth partial sum of fi(z). Obviously, we have

Ex(f1) < fi = Se(f)llc

= 3 w 1 —w 1 22-1y"1pAr, .,
- V__;*_l[ <1/) <I/+1>](A'/ ) Pz -e) .
<< > G -G

From (8), (12) and (3), we have
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- kgidlz <z+1)

< aCdBw(kil)

where B is the constant in (3).
Let ¢ = (2C4B) ~! then the above inequality gives that w(fi, —k—jlr—l) <

w(k_H) which implies f1 € H%. Set F}, = (ﬁ), k=0,1,.... Reasoning
as (10), we have

£« a1l 1
file) = o (1)) = 45 ZjAn_kw(—,“r ), a>o. (13)
By Lemma 3 and (13), we have, for any a = A
ECd 1
> — .
Aile) = oA Z () 2 Cansw(—5)
And then
- — > 25965 — .
pirs n+1g|f k(DF| 2 n+1 & [“’(k+1)] (14)

On the other hand, the reverse inequality of (14) follows from Theo-
rem 1. So complete the proof. O
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