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CIRR: a Rayleigh-Ritz type method

with contour integral

for generalized eigenvalue problems
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Abstract. We consider a Rayleigh-Ritz type eigensolver for finding a limited set of

eigenvalues and their corresponding eigenvectors in a certain region of generalized eigen-

value problems. When the matrices are very large, iterative methods are used to generate

an invariant subspace that contains the desired eigenvectors. Approximations are ex-

tracted from the subspace through a Rayleigh-Ritz projection. In this paper, we present

a Rayleigh-Ritz type method with a contour integral (CIRR method). In this method,

numerical integration along a circle that contains relatively small number of eigenval-

ues is used to construct a subspace. Since the process to derive the subspace can be

performed in parallel, the presented method is suitable for master-worker programming

models. Numerical experiments illustrate the property of the proposed method.

Key words: generalized eigenvalue problems, Rayleigh-Ritz procedure, Contour integral,

master-worker type algorithm.

1. Introduction

In this paper, we consider a method for computing a limited set of
eigenvalues and their corresponding eigenvectors in a certain region of the
generalized eigenvalue problem

Ax = λBx,

where A, B ∈ R
n×n are symmetric and B is positive definite.

The generalized eigenvalue problems arise in many scientific and en-
gineering applications. In such applications, the matrices are often very
large, and iterative methods are used to generate a subspace that contains
the desired eigenvectors. Approximations are extracted from the subspace
through a Rayleigh-Ritz projection. Various methods can be derived from
this scheme. Techniques based on the Krylov subspaces are powerful tools
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to building desired subspaces for large-scale eigenvalue problems [1, 2, 8, 9].
The relations among Krylov subspace methods, moment-matching approach
and Padé approximation are shown in [2].

In [11], a moment-based method that finds eigenvalues in a given do-
main is presented, which is based on a root-finding method for an analytic
function described in [4, 5, 10]. In this method, a small matrix pencil
that has only the desired eigenvalues is derived by solving systems of linear
equations constructed from A and B. These systems can be solved inde-
pendently, thus we solve them on remote servers using asynchronous remote
procedure calls. This approach is suitable for master-worker programming
models. A parallel implementation of the method using a GridRPC system
is presented in [12, 13].

Our purpose is to improve numerical stability of the method [11]. The
computation of eigenvalues using explicit moments is sometimes numerically
unstable. We show that a Rayleigh-Ritz procedure can be used to avoid
the explicit use of moments. In the next section, we briefly describe the
results about a moment-based eigensolver in [11]. In Section 3, we present
a Rayleigh-Ritz type method with a contour integral. In this method, we can
avoid the explicit use of the moments, and obtain a subspace which contains
an invariant subspace spanned by the desired eigenvectors. In Section 4,
some numerical experiments illustrate the property of our method.

2. A moment-based eigensolver

In this section, we review a moment-based method for generalized eigen-
value problems presented in [11]. This method, which is based on a moment-
based root finding method [4], finds eigenvalues that are located inside a
given circle.

Let A, B ∈ R
n×n be symmetric, and let B be positive definite. Let

(λj , xj), 1 ≤ j ≤ n be eigenpairs of the matrix pencil (A, B). The pencil
(A, B) is called regular if det(λB − A) is not identically zero for λ ∈ R.

Suppose that m distinct eigenvalues λ1, . . . , λm are located inside a
positively oriented closed Jordan curve Γ in C. For a nonzero vector v ∈
R

n, we define the moments

μk :=
1

2πi

∫
Γ
(z−γ)k(Bv)T(zB−A)−1Bvdz, k = 0, 1, . . . , (1)

where γ is located inside Γ. Let the m × m Hankel matrices Hm and H<
m
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be

Hm := [μi+j−2]mi,j=1 =

⎛
⎜⎜⎜⎝

μ0 μ1 · · · μm−1

μ1 μ2 · · · μm
...

...
...

μm−1 μm · · · μ2m−2

⎞
⎟⎟⎟⎠

and

H<
m := [μi+j−1]mi,j=1 =

⎛
⎜⎜⎜⎝

μ1 μ2 · · · μm

μ2 μ3 · · · μm+1
...

...
...

μm μm+1 · · · μ2m−1

⎞
⎟⎟⎟⎠ .

Then we have the following theorem ([11]).

Theorem 1 Let the matrix pencil (A, B) be regular. Then the eigenvalues
of the pencil (H<

m, Hm) are given by λ1 − γ, . . . , λm − γ.

The corresponding eigenvectors x1, . . . , xm are obtained using the con-
tour integral

sk :=
1

2πi

∫
Γ
(z−γ)k(zB−A)−1Bvdz, k = 0, 1, . . . , m−1. (2)

Theorem 2 Let uj (1 ≤ j ≤ m) be eigenvectors of the pencil (H<
m, Hm).

Let S = [s0, . . . , sm−1]. Then the eigenvectors associated with λ1, . . . , λm

are given by

xj = Suj , j = 1, 2, . . . , m.

Therefore, the original eigenvalue problem is reduced to the problem
with the m × m Hankel matrices.

When Γ is a circle with the center γ and the radius ρ, we obtain the
following approximations for μk by approximating the integral (1) via the
N -point trapezoidal rule:

μk ≈ μ̂k :=
1
N

N−1∑
j=0

(ωj − γ)k+1(Bv)T(ωjB − A)−1Bv,

k = 0, 1, . . . ,



748 T. Sakurai and H. Tadano

where

ωj := γ + ρe(2πi/N)(j+1/2), j = 0, 1, . . . , N − 1.

We also approximate sk by

ŝk =
1
N

N−1∑
j=0

(ωj−γ)k+1(ωjB−A)−1Bv, k = 0, 1, . . . . (3)

In these computations, we need to solve the systems of linear equations

(ωjB−A)yj = Bv, j = 0, 1, . . . , N−1. (4)

When matrices A and B are large, the computational costs for solving the
systems of linear equations (4) are dominant in the method. Since these
linear systems are independent for each j, they can be solved in parallel.
The implementation with GridRPC system is presented in [12, 13].

Defining the m × m Hankel matrices Ĥm and Ĥ<
m by

Ĥm := [μ̂i+j−2]mi,j=1 and Ĥ<
m := [μ̂i+j−1]mi,j=1,

we obtain the approximate eigenpairs by solving the eigenvalue problem
with the matrix pencil (Ĥ<

m, Ĥm).
The influence of the quadrature error for the eigenvalues of the pencil

(Ĥ<
m, Ĥm) are discussed in [5] and [10]. The accuracy of the results is

sometimes improved by using the M × M Hankel matrices with M (> m)
instead of m.

For the moment-based method with the contour integral, we need the
estimation of the circles that include appropriate number of eigenvalues.
The method using the substructuring of the matrices can be used to estimate
such circles ([14]).

If some of the eigenvalues in Γ are very close, the derived Hankel matri-
ces become ill-conditioned and we can not separate these close eigenvalues.
In the next section, we show a Rayleigh-Ritz type method with the contour
integral. By this approach, we can avoid the explicit use of moments, and
improves numerical accuracy for close eigenvalues.
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3. A Rayleigh-Ritz type method with a contour integral

3.1. A Rayleigh-Ritz procedure
Many methods for finding eigenvalues and eigenvectors of a large-scale

matrix pencil proceed by generating a sequence of subspace containing ap-
proximations to the desired eigenvectors. A Rayleigh-Ritz procedure is
widely used to accomplish this end.

We apply a Rayleigh-Ritz procedure with an orthonormal basis Q ∈
R

n×m. The projected matrices are given by Ã = QTAQ and B̃ = QTBQ.
The Ritz values of the projected pencil (Ã, B̃) are taken as approximate
eigenvalues for the original pencil (A, B) with corresponding Ritz vectors.
The algorithm is as follows.

Rayleigh-Ritz Procedure
1. Construct an orthonormal basis Q.
2. Form Ã = QTAQ and B̃ = QTBQ.
3. Compute the eigenpairs (θj , wj) (1 ≤ j ≤ m) of (Ã, B̃).
4. Set pj = Qwj , j = 1, . . . , m.

The Galerkin approximation to the matrix pencil (A, B) on the sub-
space spanned by [x1, . . . , xm] provides the exact eigenpairs (λj , xj) (1 ≤
j ≤ m) by this procedure ([7, 9]).

3.2. The CIRR method
Now we present a method using the Rayleigh-Ritz procedure with an

orthonormal basis Q which is derived by the integration.
Concerning the contour integral (2), we have the following lemma.

Lemma 1 Let sk be defined by (2). Suppose that v is expanded by the
eigenvectors {x1, . . . , xn} as

v =
n∑

j=1

αjxj . (5)

Then

sk =
m∑

j=1

αj(λj−γ)kxj , k = 0, 1, . . . , m−1. (6)



750 T. Sakurai and H. Tadano

Proof. It follows from (2) and (5) that

sk =
1

2πi

∫
Γ

n∑
j=1

αj(z−γ)k(zB−A)−1Bxjdz. (7)

Since (λj , xj) is an eigenpair of the matrix pencil (A, B), we have

(zB − A)xj = (z − λj)Bxj ,

and thus

(zB − A)−1Bxj = (z − λj)−1xj .

Therefore, from (7), we have

sk =
n∑

j=1

1
2πi

∫
Γ

αj(z − γ)k

z − λj
xjdz, k = 0, 1, . . . , m−1. (8)

By the residue theorem, we obtain the result of this lemma. �

Define the m × m Vandermonde matrix with λ1 − γ, . . . , λm − γ by

V =

⎛
⎜⎜⎜⎝

1 (λ1 − γ) · · · (λ1 − γ)m−1

1 (λ2 − γ) · · · (λ2 − γ)m−1

...
...

...
1 (λm − γ) · · · (λm − γ)m−1

⎞
⎟⎟⎟⎠ .

From the equation (6) we have

S = XDV, (9)

where S = [s0, s1, . . . , sm−1], X = [x1, x2, . . . , xm],
and D = diag(α1, . . . , αm).

With the orthonormal basis {q1, . . . , qm} of the subspace spanned by
{s0, . . . , sm−1}, we have the following theorem.

Theorem 3 If λ1, . . . , λm are distinct and αj �= 0 for 1 ≤ j ≤ m then

span{q1, . . . , qm} = span{x1, . . . , xm} (10)

Proof. Since λ1, . . . , λm are mutually distinct and αj �= 0 for 1 ≤ j ≤ m,
V and D are nonsingular. Therefore, it follows from (9) that

span{s0, . . . , sm−1} = span{x1, . . . , xm}.
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Since the column vectors {q1, . . . , qm} are orthonormal basis of
span{s0, . . . , sm−1}, the equation (10) holds. �

This theorem implies that the eigenpairs (λj , xj) (1 ≤ j ≤ m) are
extracted by using

Q = [q1, . . . , qm]

for the projection in the Rayleigh-Ritz procedure ([7, 9]).
To obtain the orthonormal basis Q, we need to evaluate the contour

integral (2). We use the N -point trapezoidal rule defined in (3) to approx-
imate the integration. In the explicit moment method, it is efficient to set
the size of Hankel matrices larger than the exact number of eigenvalues in
the circle to decrease the influence of the quadrature error suffered from
eigenvalues located outside Γ. For the presented method in this section,
it is also efficient to set the larger size of subspace. Thus we construct
M (≥ m) orthonormal basis {q1, . . . , qM} from {s0, . . . , sM−1}. When
M is larger than the number of eigenvalues inside Γ, some Ritz values are
located outside Γ, or their corresponding residuals are not small. In this
case we shall remove them as a ghost. We show the algorithm in Table 1.

Algorithm: CIRR method
Input: v ∈ R

n, N , M , γ, ρ

Output: λ̂1, . . . , λ̂m, x̂1, . . . , x̂m

1. Set ωj ← γ + ρ exp(2πi(j + 1/2)/N), j = 0, . . . , N − 1
2. Solve (ωjB − A)yj = Bv for yj , j = 0, . . . , N − 1
3. Compute ŝk, k = 0, . . . , M − 1 by (3)
4. Construct an orthonormal basis Q from {ŝ0, . . . , ŝM−1}.
5. Form Ã = QTAQ and B̃ = QTBQ.
6. Compute the eigenpairs (θj , wj) (1 ≤ j ≤ M) of (Ã, B̃).
7. Set pj = Qwj , j = 1, . . . , M .
8. Select the approximate eigenpairs (λ̂1, x̂1), . . . , (λ̂m, x̂m)

from (θj , pj) (1 ≤ j ≤ M).

Table 1. Algorithm of the CIRR method

In the CIRR method, the invariant subspace associated with the eigen-
values in a given domain is obtained by a projection with the orthonormal
matrix Q constructed from S. Therefore the projected pencil (Ã, B̃) pre-
serves the numerical stability of the original pencil (A, B). This implies
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that the CIRR method is stable if the column vectors of S are lineally
independent.

When the eigenvalue λj in Γ is not simple, the projected pencil has a
simple eigenvalue λ̂j which approximate λj . The Ritz vector pj is a vector
which is a linear combination of the eigenvectors with respect to a multiple
eigenvalue λj .

We can easily extend the method for the case that more than one circu-
lar region is given. Suppose that Nc circles are given. Then we solve N ×Nc

systems of linear equations

(ω(k)
j B − A)y(k)

j = Bv, j = 0, . . . , N − 1, k = 1, . . . , Nc,

where ω
(k)
j , j = 0, . . . , N − 1 are the points on the k-th circle.

4. Numerical Examples

In the first example, we compare the numerical accuracy of the method
using explicit moments and the CIRR method in case that the eigenvalues
are given analytically.

Example 1 The matrices were

A = In, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 6 −4
1 −4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where In is the n × n identity matrix, and n = 2, 000, 000.

The exact eigenvalues are given by

λj =
1

16 cos4(jπ/{2(n + 1)}) , j = 1, 2, . . . , n.

Computation was performed with double precision arithmetic in
FORTRAN. The systems of linear equations were solved by a direct solver
for a band matrix. The elements of v were distributed randomly on the
interval [−1, 1] by a random number generator.
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In Fig. 1, we show the relative error of the approximate eigenvalues
obtained by the explicit moment method and the CIRR method with various
size of subspaces M according to the number of nodes N . The parameter
were γ = 4.0 and ρ = 0.0001. We found six eigenvalues in the circle, i.e.,
m = 6. From the figure, we can see that the relative errors of approximate
eigenvalues were improved by using the Rayleigh-Ritz procedure when M >

m.

(a) Explicit moment method (b) CIRR method

Fig. 1. Comparison of the relative errors in Example 1 with γ = 4.0 and
ρ = 0.0001 (• : M = 6, � : M = 9, � : M = 12, ◦ : M = 15).

In Table 2, we show the maximum relative error

max
1≤j≤m

|λ̂j − λj |
|λj |

with ρ = 0.000125. Seven eigenvalues were included in the circle. We
also show the results with ρ = 0.00015 in Table 3. Nine eigenvalues were
included in the circle.

Example 2 The test matrices were derived from computation of the mo-
lecular orbitals of lysozyme (129 amino-acid residues, 1,961 atoms) with
20,758 basis functions [3]. The structure of the lysozyme molecule has been
determined experimentally, and we added counter-ions and water molecules
around the lysozyme molecule in order to simulate in vivo conditions. The
size of A and B was n = 20, 758, and the number of nonzero elements was
NZ = 10, 010, 416.

Since the matrix ωjB − A with complex ωj is complex symmetric, the
COCG method [15] with incomplete Cholesky factorization with a complex
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Table 2. Comparison of the relative errors in Example 1 with γ = 4.0 and
ρ = 0.000125 (m = 7).

M Explicit moment method CIRR method

4 7.61 × 10−6 7.59 × 10−6

8 2.58 × 10−10 7.40 × 10−16

12 6.15 × 10−13 8.88 × 10−16

16 1.18 × 10−12 8.88 × 10−16

20 1.07 × 10−12 7.40 × 10−16

24 2.52 × 10−10 1.18 × 10−15

Table 3. Comparison of the relative errors in Example 1 with γ = 4.0 and
ρ = 0.00015 (m = 9).

M Explicit moment method CIRR method

4 4.69 × 10−6 3.55 × 10−6

8 3.62 × 10−6 6.16 × 10−6

12 7.33 × 10−6 4.52 × 10−8

16 4.44 × 10−6 8.07 × 10−14

20 7.84 × 10−6 1.78 × 10−15

24 7.52 × 10−6 1.62 × 10−15

shift [6] was used. In this case, a complex shift was effective to decrease the
number of iterations. The stopping criterion for the relative residual was
10−12. Computation was performed in double-precision arithmetic.

The parameter of circles were estimated by the method in [14]. These
circles include the energy levels of the highest occupied molecular orbitals
(HOMO) and the lowest unoccupied molecular orbitals (LUMO), which are
key factors in the amount of energy needed to add or remove electrons in
a molecule. The parameters are chosen as N = 32 and M = 24, and v =
(1, 1, . . . , 1)T.

In Fig. 2, we show the residuals ‖Ax̂j − λ̂jBx̂j‖2 for each approximate
eigenpairs. In the figure, the mark • shows the residuals by the explicit
moment method, and the mark ◦ shows those of the CIRR method. We
can see that the CIRR method gives smaller residuals. In case that we
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(a) Residuals around HOMO (b) Residuals around LUMO

Fig. 2. Comparison of residuals ‖Ax̂j − λ̂jBx̂j‖2 in Example 2 (• : Explicit
moment method, ◦ : CIRR method)

choose larger N , the residuals were decreased. However, from a view point
of computational costs, it is preferable to choose smaller N . It depends on
a requirement of applications.

5. Conclusions

In this paper we present a Rayleigh-Ritz type method with numerical
integration for generalized eigenvalue problems. In this method, a contour
integral is used to construct a subspace for the Rayleigh-Ritz projection.

For the computation of the contour integral, we solve a certain number
of systems of linear equations derived from matrices A and B. When A and
B are large, the computational costs for solving systems of linear equations
are dominant in the method. Since these linear systems can be solved
independently, the process to derive the subspace is performed in parallel.
Therefore the presented method is suitable for master-worker programming
models.

Through the numerical experiments, we can see that the presented
method gives good numerical results. More precise error analysis of the
CIRR method is a part of our future work.
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