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Cell boundary element methods for elliptic problems

Youngmok Jeon and Eun-Jae Park
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Abstract. In this review we summarize the results on the cell boundary element meth-

ods (CBE methods) and the multiscale cell boundary element method (MsCBE method)

based on papers by Jeon and his colleagues. In the CBE methods, flux is conserved on

each cell and normal fluxes on intercell boundaries are continuous for unstructured trian-

gulations. The CBE method can be understood as an finite element version of the finite

volume method.
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1. Introduction

We consider the following elliptic problem:

−∇.(a∇u) = f in Ω (1.1)

u = 0 on ∂Ω,

where a is a piecewise continuous, positive definite, symmetric tensor, f ∈
H0(Ω) and Ω is a convex, bounded polygonal domain. When a is a highly
oscillatory coefficients with different scales we call the problem as a multi-
scale problem.

In this review we introduce the cell boundary element(CBE) methods
and its multiscale version(the multiscale cell boundary element(MsCBE)
method) for multiscale problems, which are developed by author and his
colleagues [9, 10, 11, 12, 13]. According to their researches the cell boundary
element(CBE) method has the following characteristics.
• The CBE methods as well as the MsCBE method conserve flux on

each cell and normal flux is continuous on each cell interface.
• They provide natural flux recovery formulas for a broad class of elliptic

equations. Therefore, it may have advantage over the nonconforming
finite element method(NcFEM) in terms of flux recovery formula.
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Fig. 1. Relation of the CBE methods with existing methods

• The CBE methods are very similar in view of flux oriented derivation
to the finite volume method(FVM) except that they do not need covol-
ume generations. Therefore, the CBE methods may be more flexible
in mesh generation than the finite volume methods, especially in three
dimensional cases. Moreover, the CBE approach introduces the 2nd
order flux preserving methods naturally.

We refer to [3] and [4, 15] for more general accounts on the finite element
and finite volume methods, respectively.

Figure 1 represents the relation of the CBE method with other existing
methods. The CBE methods can be interpreted as an finite element ver-
sion of the finite volume methods. The conforming CBE method was firstly
introduced and analysed in [13, 12]. In here flux continuity on intercell
boundaries is satisfied only when some special condition is satisfied by the
triangulation. The CBE for the convection diffusion equation is successfully
introduced in [10]. It is observed numerically that the CBE approach pro-
vides a nonoscillatory numerical scheme for convection diffusion equations.
Recently, the nonconforming CBE methods are introduced and analysed in
[11]. For the nonconforming CBE flux conservation for arbitrary subdomain
holds for unstructured meshes. More recently, the multiscale CBE method
based on the oversampling technique is introduced and analysed in [9]. The
aim of this paper is to review the latest results on the CBE methods; that
is, the nonconforming CBE methods and the MsCBE method.

Let Th be the triangulation of Ω and let Eh be set of edges in Th. We
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denote by Nh and N i
h midpoints of edges and midpoints of interior edges,

respectively. Then there exists a bijection between Nh and Eh. The skeleton
of a triangulation Th is

Kh =
⋃

e∈Eh

e.

To introduce the CBE method we firstly approximate Eqn (1.1) as follows.

−∇.(ah∇u) = fh in Ω (1.2)

u = 0 on ∂Ω.

Here, ah is the piecewise constant approximation of a on each T ∈ Th and
fh is the flux preserving approximation of f such that

fh|T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
|T |

∫
T

fdx,

piecewise constant approximation,

Ph(f) +
1
|T |

∫
T
(f − Ph(f))dx,

piecewise linear approximation.

Here, Ph(f) can be a linear interpolation of f or a L2 projection of f by
linear functions on T .

2. The P1 nonconforming cell boundary element method

For the nonconforming P1 method we have a complete numerical anal-
ysis [11]. It provides a very natural flux recovery formula even when a is in
a tensor form.

To derive the CBE we consider the localized problem of (1.2):

−∇ · (ah∇u) = fh in T, (2.1)

[(ah∇u) · ν] ≡ (ah∇u) · ν + (a′h∇u) · ν ′ = 0 on ep = ∂T ∩ ∂T ′,

where ν and ν ′ are the unit outward normal vectors on ∂T and ∂T ′, respec-
tively. The solution u of (1.2) admits the following decomposition:

u = v + G(fh) on T. (2.2)

Here v satisfies −∇ · (ah∇v) = 0 on T and v = u on ∂T , and G(fh) is a
Green bubble function such that −∇(ah∇(G(fh)) = fh. Then we have
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Fig. 2. A problem domain: Ωh(p)

[(ah∇u) · ν] = [(ah∇v) · ν] + [(ah∇G(fh)) · ν] on ∂T.

Using flux continuity on cell interfaces, we have∫
ep

[(ah∇v) · ν]ds = −
∫

ep

[(ah∇G(fh)) · ν]ds, p ∈ N i
h, (2.3)

where ep is the edge related to p ∈ Nh.
Introduce the nonconforming P1 approximation space for v:

ST = span{1, x, y},
Sh = {v ∈ ⊕T∈Th

ST : v is continuous at midpoints of edges}.

Note that v ∈ ST satisfies −∇·(ah∇v) = 0 on T and we call ST as the space
of harmonic polynomials. The natural interpolations Ih,T : C(T ) → ST and
Ih : C(Ω) → Sh are called as the harmonic interpolation. As long as there
is no confusion, we denote Ih,T by Ih for notational simplicity.

Now we consider approximation of the bubble function G(fh). Let ah =[
a11 a12

a21 a22

]
on certain T . Then we can take, in the two dimensional case,

F (fh) =
d0

2(a11 + a22)
(x2 + y2) +

d1

6a11
x3 +

d2

6a22
y3

for fh = d0+d1x+d2y. Then, (F (fh)−Ih(F (fh))) satisfies −∇·(ah∇(F (fh)−
Ih(F (fh))) = fh and it approximates G(fh).
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The P1 CBE method is to find vh ∈ Sh such that
∫

ep

[(ah∇vh) · ν]ds = −
∫

ep

[(ah∇(F (fh) − IhF (fh))) · ν]ds,

p ∈ N i
h. (2.4)

After solving vh, we have approximate solution uh and its flux as follows:

uh = vh + (F (fh) − Ih(F (fh))),

ah∇uh = ah∇vh + ah∇(F (fh) − Ih(F (fh))).

3. Flux conservation and numerical analysis

Note that

(ah∇uh) · ν = (ah∇vh) · ν + (ah∇G(fh)) · ν on ∂T.

By definition of the P1 CBE method,∫
ep

(ah∇uh) · νds +
∫

ep

(a′h∇uh) · ν ′dsds = 0.

Let D be arbitrary subdomain composed of triangles, simple Calculation
yields ∫

∂D
(ah∇uh) · νds =

∑
T⊂D

∫
∂T

(ah∇uh) · νds

=−
∫

D
fdx.

Now we introduce some results on numerical analysis. Introducing a
piecewise constant test function on Kh, Eqn (2.4) can be rewritten as

∫
Kh

[(ah∇vh) · ν]φpds =
∫
Kh

[(ah∇(Ih(F ) − F )) · ν]φpds,

p ∈ N i
h (3.1)

where φp is the local basis function of Sh and φp is a piecewise constant
function on Kh such that φp = (1/|e|)

∫
ε φpds on each edge e ⊂ Kh. The

following theorem asserts that the CBE has the same stiffness matrix as
the Crouzeix-Raviart P1 finite element method and the right hand side is
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different by Dh [3]. The following two theorems are from [11], where the
proofs are given for the case that a is a scalar function.

Theorem 3.1 The stiffness matrix and the right hand side of the equation
(3.1) satisfy the following relations:∫

Kh

[(ah∇vh) · ν]φpds =
∑

T∈Th

∫
T
(ah∇vh) · ∇φpdx.

and ∫
Kh

[(ah∇(Ih(F ) − F ) · ν)]φpds =
∑

T∈Th

∫
T

fhφpdx + Dh(fh, φp),

where

Dh(fh, φp) =
∑

T∈Th

∫
∂T

(ah∇(Ih(F ) − F )) · ν(φp − φp)dx.

Theorem 3.2 For f ∈ L2(Ω), let u be the exact solution of (1.1) and uh

be the P1 CBE approximate solution. Then we have an error estimate

‖uh − u‖1,h ≤ Ch‖f‖0,Ω.

Here, ‖g‖1,h =
∑

T∈Th
‖g‖1,T .

Proof. Comparison with the Crouzeix-Raviart P1 FEM yields the theorem.
�

4. The second order methods

In this section we introduce the 2nd order method, the harmonic P ∗
2

method and its modified method, the modified harmonic P ∗
2 method. At

present the second order methods are available only when the coefficient a is
a piecewise constant scalar function. Convergence analysis is not available
and the second order convergence is observed only experimentally.

When a is a piecewise constant scalar function (a = ah), the localized
problem of (1.2) becomes:

−aΔu = fh in T, (4.1)[
a
∂u

∂ν

]
= 0 on ep = ∂T ∩ ∂T ′.
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Fig. 3. Basis functions for the test function space Wh on a triangle T

Then u = v + G(fh), where v is harmonic on T with v = u on ∂T and
G(fh) is the Green bubble function that satisfies −ΔG(fh) = fh/a. For
approximation of v with the six-point interpolation, it is very natural to
consider the space spanned by harmonic polynomials of degree of freedom
six. For G(fh), fh must be approximated by a volume preserving linear
function for the second order convergence.

ST = span{1, x, y, xy, x2 − y2, x3 − 3xy2},
Sh = {vh | vh ∈ ⊕T∈Th

ST , vh is continuous at each node}.
Let Ih be the natural interpolation from C(T ) to ST . To obtain the desired
2nd order convergence we need to introduce test function spaces and this
fact is observed numerically. The test function space Wh is the P1 functions
on the skeleton Kh (see Fig. 3). Then the harmonic P ∗

2 CBE method is to
find vh ∈ Sh such that∫

Kh

[
a
∂vh

∂ν

]
ψpds = −

∫
Kh

[
a
∂(F (fh) − Ih(F (fh)))

∂ν

]
ψpds,

ψp ∈ Wh. (4.2)

Then uh = vh + (F (fh) − Ih(F (fh))) is the solution we are looking for.
In the above method flux is conserved in each cell, but average flux is not
continuous at the cell interfaces. Therefore, we need to modify the test
function space to have a flux conserving numerical scheme. The modified
harmonic P ∗

2 CBE method is obtained by replacing Wh in (4.2) with W ′
h,

which is defined as follows:

W ′
h = span{ψ′

p |ψ′
p =ψp for p, a vertex of a triangle T and

ψ′
p =ψp for p, a mid edge point of a triangle T for ψp∈Wh}.
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Then the modified harmonic P ∗
2 CBE method preserves flux in arbitrary

subdomain.

5. A multiscale elliptic problem and the oversampling technique

We consider the following multiscale elliptic problem:

Lε(uε) = −∇ · (aε∇uε) = f on Ω, (5.1)

uε = 0 on ∂Ω,

where aε is a ε-periodic, positive definite, symmetric tensor. Then the
solution uε has an expansion:

uε(x) = u0(x, y) + ε(u1(x, y) + θuε) + O(ε2) (5.2)

where y = x/ε. The homogenized solution u0 and u1, θuε satisfy the follow-
ing relations [2, 14].

L0(u0) = −∇ · a0∇u0 = f in Ω,

u0 = 0 on ∂Ω,

where

a0 =
1
|Y |

∫
Y

aε(I + ∇yχ)dy,

and χ is the periodic solution of

∇y · aε(y)∇yχ = −∇yaε(y)

with
∫
Y χjdy = 0. Here, Y = εI and I is a unit box. The function u1 is

defined by

u1(x, y) = χ(y)∇u0(x).

Since u0(x) + εu1(x, y) �= uε(x) on ∂Ω, θuε should satisfy

−∇ · aε∇θuε = 0 in Ω,

θuε = −u1 on ∂Ω.

To accommodate oscillatory property of the solution uε, we need to
construct an oscillatory finite element space for a good approximation of
solutions. T. Hou et al. introduced the celebrated oversampling technique
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Fig. 4. A cell T and the oversampling domain S

for construction of oscillatory local basis function and developed the mul-
tiscale finite element methods(MsFEM) based on the oversampling method
[5, 6, 7, 8]. Some results on the oversampling technique are briefly intro-
duced below. Consider a local homogeneous equation on the oversampling
domain S (see Fig. 4),

∇ · aε∇ψj
ε = 0 in S (5.3)

ψj
ε = ψj on ∂S,

where ψj is the nonconforming P1 function on S such that ψj(pi) = δij .
Then ψj

ε has the following representation:

ψj
ε = ψj + εχ∇ψj + εη∇ψj on S, (5.4)

where η satisfies −∇ · (aε∇η) = 0 on S and η = −ψ on ∂S. The multiscale
basis φj

ε on T is constructed in the following way. Let {cij}3
i,j=1 satisfies∑3

j=1 cijψ
j(qk) = δik for the nodal point qk ∈ ∂T . Set

φi
ε =

3∑
j=1

cijψ
j
ε |T .

Then the finite element space is defined as follows.
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ST = span{φi
ε},

Sh
ε = {vε ∈ ⊕T∈Th

ST : the homogenized part v0 of vε is

continuous at midpoints of edges}.

6. A multiscale cell boundary element method

To introduce the CBE method, let us look at the localized problem:

−∇ · aε∇uε = fh in T, (6.1)

[(aε∇uε) · ν] = 0 on ep = ∂T ∩ ∂T ′,

where

[(aε∇uε) · ν] = (aε∇uε) · ν + (aε∇uε) · ν ′.

The solution admits a local representation as follows:

uε = vε + G on T, (6.2)

where

−∇ · aε∇vε = 0 in T

with the boundary condition vε = u on ∂T , and

−∇ · aε∇G = fh in T

with the boundary condition G = 0 on ∂T . Flux continuity yields that∫
ep

[(aε∇vε) · ν]ds = −
∫

ep

[(aε∇G) · ν]ds, p ∈ N i
h.

The multiscale CBE method is to find vh
ε ∈ Sh

ε such that∫
ep

[(aε∇vh
ε ) · ν]ds = −

∫
ep

[(aε∇G) · ν]ds, p ∈ N i
h. (6.3)

Once vh
ε is solved, we have the solution and flux formulas as follows:

uh
ε = vh

ε + G, aε∇uh
ε = aε∇vh

ε + aε∇G

on each T .
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Theorem 6.1 [9] Suppose 0 < ε � h. Let uε is the exact solution with
the homogenized solution u0 ∈ W 2

∞(Ω) and f ∈ C(Ω). Then we have

‖uε − uh
ε ‖1,h ≤ C(h +

√
ε)(‖f‖∞,Ω + ‖u0‖2,∞,Ω).

7. Numerical results

We test convergences of the P1-CBE method, two different P ∗
2 -methods

and the MsCBE. The computational domain is taken as the unit square
Ω := [0, 1]× [0, 1] and we take an extremely non-regular triangulation (see
Fig. 5), the vertices are given as

xi = ti and yj = t2j , 0 ≤ i, j ≤ n,

and a quasi-uniform triangulation,

xi = ti and yj =
2tj

1 + tj
, 0 ≤ i, j ≤ n,

where {tj = j/n, j = 0, . . . , n} for Examples 7.1 and 7.2. We use the uni-
form triangulation for multiscale problems. Triangles are then generated
by bisecting each rectangle by the diagonal line. To show the mass con-
servation property, we consider a subdomain D = [0, 1/2] × [0, 1] and we
calculate the total numerical flux on D (fluxD) by integrating the normal
flux on ∂D.

Example 7.1 (The P1 method on a geometric triangulation)

−∇ · (a∇u) = f in Ω,

u = g on ∂Ω,

where a(x, y) = e−x, f(x, y) = −.11y−.9 and u(x, y) = exy1.1.

Table 1 shows that numerical results coincide well with the estimate
in Theorem 3.2. When a is a scalar as in this example the nonconforming
P1 finite element method with the Raviart Thomas flux recovery formula is
equivalent to the P1 nonconforming CBE. When a is a tensor, the noncon-
forming P1 CBE method provides a natural flux preserving flux formulas
while the P1 NcFEM does not. For finite volume method, the flux pre-
serving covolume generation can be very difficult for this kind of geometric
mesh and it becomes severer for three dimensional domains. In Tables the
rate of convergence is defined as α = log2(En/En+1), where En is the L2 or
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n2 ‖u − uh‖0,h α ‖∇u −∇uh‖0,h α fluxD

42 1.1362e-2 1.5041e-1 .55
82 3.0045e-3 1.9190 7.8822e-2 0.9322 .55

162 7.4702e-4 2.0079 4.0753e-1 0.9517 .55
322 1.8302e-4 2.0291 2.1836e-2 0.9002 .55

Table 1. Numerical results for the P1 nonconforming method on a geometric tri-
angulation

H1 errors.

Example 7.2 (The P ∗
2 method on a quasi-uniform triangulation) We con-

sider the following Dirichlet problem:

−∇2u = f in Ω,

u = g on ∂Ω,

where f(x, y) = 4 + 6x and the Dirichlet data g is given so that the exact
solution is u(x, y) = ex cos(y) + x2 + x3 + y2.

As shown in Tables 2 and 3, the harmonic P ∗
2 and modified harmonic

P ∗
2 methods show the similar kind of convergence behaviour. As designed

the modified harmonic P ∗
2 method preserves flux exactly. Their convergence

properties are unconventional in that they show the same order of conver-
gence in both the L2 and H1-norm. The L2 convergence is poorer than that
of the FEM and it may be disappointing. However, in many practical prob-
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n2 ‖u − uh‖0,h α ‖∇u −∇uh‖0,h α Error in flux
42 3.0404 e-4 1.3019-2 4.4105e-4
82 1.0316e-4 1.5594 3.3254e-3 1.9691 2.8160e-4

162 2.779e-5 1.8928 8.3794e-4 1.9886 1.3538e-4
322 7.0495e-6 1.9784 2.0986e-4 1.9974 4.3679e-5

Table 2. Numerical results for the harmonic P ∗
2 -method

n2 ‖u − uh‖0,h α ‖∇u −∇uh‖0,h α fluxD

42 3.0295e-4 1.3014e-2 2.75
82 5.9258e-5 2.3540 3.3055e-3 1.9771 2.75

162 1.2040e-5 2.2991 8.3086e-4 1.9922 2.75
322 2.7165e-6 2.1481 2.0812e-4 1.9972 2.75

Table 3. Numerical results for the modified harmonic P ∗
2 -method

lems we are more interested in the flux ∇u than the potential u, so that this
kind of convergence property will be still useful. As shown in Example 7.4
flux conservation property can be more important when we solve time de-
pendent problems. Moreover, the modified P ∗

2 CBE is a unique substantial
flux preserving second order method, at least to author’s best knowledge.
According to our experiments, two methods yield very little difference in
solutions for problems as in Example 7.4 since the error in flux between the
P ∗

2 method and modified P ∗
2 method is small enough.

Example 7.3 (A multiscale elliptic problem) We consider the following
(quasi-one-dimensional) model problem [1]:

−∇ ·
(
aε

(x

ε

)
∇uε

)
= f in Ω = (0, 1)2,

uε|ΓD
= 0 on ΓD := {x1 = 0} ∪ {x1 = 1},

n ·
(
aε

(x

ε

)
∇uε

)
|ΓN

= 0 on ΓN := ∂Ω \ ΓD,

where

a(y) =
1

2 + cos 2πy1
, y = (y1, y2) ∈ Y = (0, 1)2,

and f(x) = 1. The exact solution is given analytically as follows:
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uε(x1, x2) = −x2
1 −

ε

2π
x1 sin

(2πx1

ε

)

− ε2

4π2

(
cos

(2πx1

ε

)
− 1

)
+ 2x1 +

ε

2π
sin

(2πx1

ε

)
.

In implementing MsCBE, there are two processes.
• Construction of the local basis and bubble function in (5.3) and (6.2)

(the fine scale solver), which is parallelizable.
• The coarse scale CBE solver (6.3).

N ‖uε − uh
ε ‖0,h α ‖∇(uε − uh

ε )‖1,h α fluxh
D

8 2.25 e-3 9.28 e-3 -5.00 e-1
16 5.99 e-4 1.91 3.73 e-3 1.15 -5.00 e-1
32 1.49 e-4 2.01 1.65 e-3 1.18 -5.00 e-1
64 2.40 e-5 2.63 6.89 e-4 1.26 -5.00 e-1

Table 4. Convergence of the MsCBE; local solver: P1-CBE, ε = 1/64,
dist(K, ∂S) = 1/32, hG = hφ = h/32.

In Table 4 we use the fine scales of hφ = hG = h/32 for construction of
basis and the Green bubble function. For the fine scale solver of local basis,
the nonconforming P1 CBE method is used on a oversampling domain S ⊃
T such that dist(T, ∂S) ≥ 2ε. As shown in Table 4, the rate of convergence
coincides with the estimate in Theorem 6.1. We also observe that our
method is free from the ε-h resonance as in [8] and the multiscale finite
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t = .2 t = .4 t = .6 t = .8 t = 1 fluxh
D

‖S − SMsCBE
h ‖∞ 1.2477 e-3 1.1678 e-3 1.2108 e-3 1.2965 e-3 1.5048 e-3 -.50000

‖S − SMsFEM
h ‖∞ 1.4471 e-1 3.2593 e-1 5.4479 e-1 7.9053 e-1 1.0404 e 0 -.48588

Table 5. Error in S as time evolves

element method yields almost the same numbers as the MsCBE except the
flux. Fig. 6 shows the convergence of flux at each level of discretization for
the MsCBE and MsFEM [7, 6].

Example 7.4 (A convection diffusion equation) We consider a coupled
problem of a multiscale elliptic equation and a convection diffusion equation:

−∇ · (aε(x)∇uε) = 1 in Ω = (0, 1)2,

uε|ΓD
= 0 on ΓD := {x = 0} ∪ {x = 1},

n · (aε(x)∇uε)|ΓN
= 0 on ΓN := ∂Ω \ ΓD,

∂S

∂t
=−σ · ∇S + 0.01ΔS in Ω.

where σ = −aε∇uε. Here, we take ε = 1/20 and the exact solution uε is the
same as in Example 7.3.

We consider the MsCBE and MsFEM with a 20 × 20 uniform trian-
gulation (coarse triangulation) to produce the convective vector field σh =
aε∇uh,ε. To maintain flux conservation property, we use the CBE method
for generation of local basis and the bubble function with fine mesh of size,
1/400 (This corresponds to a 20 × 20 triangulation for a triangle T ). After
solving σh, we apply those σh to solve the convection diffusion equation:

∂Sh

∂t
= −σh · ∇Sh + 0.01ΔSh in Ω.

For the convection diffusion equation, we use the FV method with a 40×40
uniform rectangular mesh and the 4th order RK with a time step, Δt =
1/100.

In Table 5, the exact solution S means that it is obtained by solving
the convection diffusion equation with the the exact σ. Numerical results in
Table 5 clearly show that flux conserving vector fields produce much more
accurate approximate density Sh.
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