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On the prolongation of 2-jet space

of 2 independent and 1 dependent variables
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Abstract. We will formulate the Monster Goursat manifolds for multi independent

variables cases. We will classify the singularities which appears in the prolongation of

2-jet space of 2 independent and 1 dependent variables.
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1. Introduction

In this paper, we will consider the extension of “Monster Goursat man-
ifolds” in [MZ] to multi independent variables case.

Let m,n be positive integers and M a manifold of dimension m+n. We
denote Jk(M, n) the k-jet space over M with n-independent variables and
by Ck the canonical system on it (see Section 2).

We define, for x ∈ Jk(M, n), the set Σx of n-dimensional integral ele-
ments of Ck through x;

Σx =
{
n-dim. integral elements of (Jk(M, n), Ck)

}
,

and the subset

Σ(Jk(M, n)) :=
⋃

x∈Jk(M,n)

Σx

of the Grassmannian J(Ck, n) = Gr(Ck, n) of n-dimensional linear sub-
spaces of the distribution Ck;

J(Ck, n) =
⋃

x∈Jk

Cx, Cx = Gr(Ck(x), n).

2000 Mathematics Subject Classification : 53C15, 58A15, 58A20, 58A30.
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Here the integral elements of a differential system on a manifold are
generally defined as follows;

Let (R, D) be a differential system, i.e., R is a manifold and D is a
subbundle of TR. We take a system of local defining 1-forms {$1, . . . , $s}
of D. An n-dimensional integral element of D at x ∈ R is an n-dimensional
subspace v of TxR such that

$i|v = d$i|v = 0 (i = 1, . . . , s).

That is, n-dimensional integral elements are candidates for the tangent
spaces at x of n-dimensional integral manifolds of D.

By definition,

Jk+1(M, n) ⊂ Σ(Jk(M, n)) ⊂ J(Ck, n).

The set Σ(Jk(M, n)) of integral elements is the candidate for the ex-
tension of the notion “Monster Goursat manifolds” introduced in [MZ] to
the case of several independent variables. However the subset Σ(Jk(M, n))
of J(Ck, n) = Gr(Ck, n) may not be a submanifold of J(Ck, n). This sit-
uation is quite different from the case of 1 independent variable. One of
main purpose of this paper is to check when the set Σ(Jk(M, n)) of inte-
gral elements of Ck becomes a submanifold of J(Ck, n) or not in the case
n ≥ 2. If Σ(Jk(M, n)) is a submanifold of J(Ck, n), then we define the
canonical differential system D on Σ(Jk(M, n)). In this case, we regard
Σ(Jk(M, n)) endowed with the canonical differential system as an extension
of procedure to construct “Monster Goursat manifolds” or the procedure of
“prolongation” of the jet space.

When n = 1, Σ(Jk(M, 1)) are called “rank 1 prolongation” of Jk(M, 1)
in [SY]. Note that

Σ(Jk(M, 1)) = J(Ck, 1).

We can repeat the procedure of “rank 1 prolongation”, starting from any
differential system. We can define “k-th rank 1 prolongation” inductively.
Moreover, when n = m = 1, “k-th rank 1 prolongation” of (J(M, 1), C) are
called “Monster Goursat manifold” in [MZ].

Generally Σ(Jk(M, n)) is a variety and is not a submanifold in J(Ck, n).
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Then we have the following result as one of main theorems in this paper;

Theorem 3.1 The set Σ(Jk(Mm+n, n)) of integral elements of the canon-
ical system Ck on the jet space Jk(Mm+n, n) over the m + n-dimensional
manifold M with n-independent variables is a submanifold of the Grass-
mannian J(Ck, n) = Gr(Ck, n) if and only if (k, n,m) = (2, 2, 1), (k, 1,m),
(1, n, 1).

It is well known that Σ(Jk(Mm+n, n)) is a submanifold in the cases
n = 1 or k = m = 1. In the case n = 1, Σ(Jk(Mm+1, 1)) is nothing but
a rank 1 prolongation. As for the case k = m = 1, Σ(J1(M1+n, n)) is a
Lagrange-Grassmann bundle L(J), by definition. Hence it is known that
Σ(J1(M1+n, n)) is a submanifold of J(C1, n). We call these cases trivial
cases.

Now, we will be concerned with the local equivalence problem of
Σ(J2(M1+2, 2)). (We denote it Σ(J2) for short.) We distinguish any point
on Σ(J2) where the canonical system (Σ(J2), D) is not locally isomorphic
to the generic model (J3(R3, 2), C3) for the 3-jet space. Here, we call ϕ an
isomorphism from a differential system (R1, D1) to (R2, D2), if ϕ : R1 → R2

is a diffeomorphism such that ϕ∗(D1) = D2. The equivalence problem of
“Monster Goursat manifolds” of 1 independent variable cases is studied in
[M1] and [M3].

First, the points in Σ(J2) are classified in two types according to singu-
larities of the canonical differential system D in the sense of Tanaka theory
(Proposition 5.2):

Σ1 = {w ∈ Σ(J2) | dim(w ∩ fiber) = 1}
Σ2 = {w ∈ Σ(J2) | dim(w ∩ fiber) = 2}

where we mean by the fiber, the fiber of π∗ : T (J2(M1+2, 2)) ⊃ C2 →
T (J1(M1+2, 2)). Then, along Σ1, we have the following normal form by
constructing local isomorphisms, directly:

We define the differential system D̂ on R12 with coordinate (x, y, z, p, q,

r, s, t, a,B, c, e) by

D̂ = {$0 = $1 = $2 = $y = $r = $s = 0}
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where




$0 = dz − pdx− qdy $y = dy − adx−Bdt

$1 = dp− rdx− sdy $r = dr − cdx− (a2 + eB)dt

$2 = dq − sdx− tdy $s = ds− edx + adt.

Then we have

Theorem 5.7 (normal form) For any w ∈ Σ1, the differential system
(Σ(J2(M1+2, 2), D) around w is locally isomorphic to the germ at the origin
of (R12, D̂).

It turns out that the classification along Σ2 is more complicated. In
fact the local isomorphism classes of (Σ(J2), D) along Σ2 are divided into 3
types by using graded Lie algebras, namely, the hyperbolic type, the elliptic
type, the parabolic type (Remark 5.12).

To describe the classification of (Σ(J2), D) along Σ2, we need to intro-
duce another normal form: We define the differential system D̄ on R12 with
coordinate (x, y, z, p, q, r, s, t, B, D, E, F ) by

D̄ = {$0 = $1 = $2 = $x = $y = $t = 0}

where





$0 = dz − pdx− qdy $x = dx− (DE −BF )dr −Bds

$1 = dp− rdx− sdy $y = dy −Bdr −Dds

$2 = dq − sdx− tdy $t = dt− Edr − Fds.

Theorem 5.13 There exists a decomposition of Σ2

Σ2 = Σh ∪ Σe ∪ Σp

into disjoint three subsets such that, if w ∈ Σh, then (Σ(J2(M1+2, 2), D)
around w is locally isomorphic to the germ of (R12, D̄) at (0, . . . , 0, 1, 0), if
w ∈ Σe, then, (0, . . . , 0,−1, 0), and if w ∈ Σp, then, (0, . . . , 0, 0, 0).

In Section 2, we briefly review the geometric construction of jet bun-
dles in general, following [Y1] and [Y2], which is our basis for the later
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considerations. In Section 3, we extend the procedure of “Monster Gour-
sat manifolds” to the case of n ≥ 2. Actually we consider the geometric
construction of jet spaces without the transversality conditions which are
candidates for the generalization of “Monster Goursat manifold”. We will
give a criteria for the generalization of “Monster Goursat manifold” to be a
manifold (Theorem 3.1). In Section 4, we review the Tanaka theory to con-
sider the equivalence problem of the canonical system on Σ(J2) in Section
5. In Section 5, we give the proofs of Theorem 5.7, 5.13, and, summarizing
the results obtained in this section, we give the complete classification of
the canonical distribution on Σ(J2) (Corollary 5.15).

2. Geometric construction of Jet Spaces

Let M be a manifold of dimension m + n. Fixing the number n, we
form the space of n-dimensional contact elements to M , i.e., the Grassmann
bundle J(M, n) = Gr(TM, n) over M consisting of n-dimensional subspaces
of tangent spaces to M . Namely, J(M, n) is defined by

J(M, n) =
⋃

x∈M

Jx, Jx = Gr(Tx(M), n),

where Gr(Tx(M), n) denotes the Grassmann manifold of n-dimensional sub-
spaces in Tx(M). Let π : J(M, n) → M be the bundle projection. The
canonical system C on J(M, n) is, by definition, the differential system of
codimension m on J(M, n) defined by

C(u) = π−1
∗ (u) = {v ∈ Tu(J(M, n)) | π∗(v) ∈ u} ⊂ Tu(J(M, n)) π∗−→ Tx(M),

where π(u) = x for u ∈ J(M, n).
Let us describe C in terms of a canonical coordinate system in J(M, n).

Let uo ∈ J(M, n). Let (x1, . . . , xn, z1, . . . , zm) be a coordinate system
on a neighborhood U ′ of xo = π(uo) such that dx1, . . . , dxn are linearly
independent when restricted to uo ⊂ Txo

(M). We put U = { u ∈
π−1(U ′)|dx1|u, . . . , dxn|u are linearly independent}. Then U is a neighbor-
hood of uo in J(M, n). Here dzα|u is a linear combination of dxi|u’s, i.e.,
dzα|u =

∑n
i=1 pα

i (u)dxi|u. Thus, there exist unique functions pα
i on U such

that C is defined on U by the following 1-forms;
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$α = dzα −
n∑

i=1

pα
i dxi (α = 1, . . . , m),

where we identify zα and xi on U ′ with their lifts on U . The system of
functions (xi, z

α, pα
i ) (α = 1, . . . , m, i = 1, . . . , n) on U is called a canonical

coordinate system of J(M, n) subordinate to (xi, z
α).

The space (J(M, n), C) is called the (geometric) 1-jet space and espe-
cially, in case m = 1, is the so-called contact manifold. Let M , M̂ be
manifolds of dimension m + n and ϕ : M → M̂ be a diffeomorphism. Then
ϕ induces the isomorphism ϕ∗ : (J(M, n), C) → (J(M̂, n), Ĉ), i.e., the dif-
ferential map ϕ∗ : J(M, n) → J(M̂, n) is a diffeomorphism sending C onto
Ĉ. The reason why the case m = 1 is special is explained by the following
theorem of Bäcklund.

Theorem (Bäcklund) Let M and M̂ be manifolds of dimension m+n. As-
sume m ≥ 2. Then, for an isomorphism Φ : (J(M, n), C) → (J(M̂, n), Ĉ),
there exists a diffeomorphism ϕ : M → M̂ such that Φ = ϕ∗.

The essential part of this theorem is to show that F = Ker π∗ is the
covariant system of (J(M, n), C) for m ≥ 2. Namely an isomorphism Φ
sends F onto F̂ = Ker π̂∗ for m ≥ 2. (For the proof, see [Y2] Theorem 1.4.)

In case m = 1, it is a well known fact that the group of isomorphisms of
(J(M, n), C), i.e., the group of contact transformations, is larger than the
group of diffeomorphisms of M . Therefore, when we consider the geometric
2-jet spaces, the situation differs according to whether the number m of
dependent variables is 1 or greater.

(1) Case m = 1. We should start from a contact manifold (J,C) of
dimension 2n+1, which is locally a space of 1-jet for one dependent variable
by Darboux’s theorem. Then we can construct the geometric second order
jet space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle
L(J) over J consisting of all n-dimensional integral elements of (J,C);

L(J) =
⋃

u∈J

Lu ⊂ J(J, n),

where Lu is the Grassmann manifolds of all Lagrangian (or Legendrian)
subspaces of the symplectic vector space (C(u), d$). Here $ is a local
contact form on J . Namely, v ∈ J(J, n) is an integral element if and only
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if v ⊂ C(u) and d$|v = 0, where u = π(v). Let π : L(J) → J be the
projection. Then the canonical system E on L(J) is defined by

E(v) = π−1
∗ (v) ⊂ Tv(L(J)) π∗−→ Tu(J),

where π(v) = u for v ∈ L(J).
We denote by ∂E the derived system of E. Moreover we denote by

Ch(C) the Cauchy characteristic system of C.
Then we have ∂E = π−1

∗ (C) and Ch(C) = {0} (cf. [Y1]). Hence we get
Ch(∂E) = Ker π∗, which implies the Bäcklund theorem for (L(J), E) (cf.
[Y1]).

Now we put

(J2(M, n), C2) = (L(J(M, n)), E),

where M is a manifold of dimension n + 1.
Here recall that the derived system and the Cauchy characteristic system

of a differential system (R, D) are generally defined as follows;
The derived system ∂D of D is defined, in terms of sections, by

∂D = D + [D,D].

where D = Γ(D) denotes the space of sections of D. In general ∂D is
obtained as a subsheaf of the tangent sheaf of R (for the precise argument,
see e.g. [Y1], [BCG3]). Moreover higher derived systems ∂iD are defined
successively by

∂iD = ∂(∂i−1D),

where we put ∂0D = D by convention. D is called regular, if ∂iD is sub-
bundle for all i.

The Cauchy characteristic system Ch(D) of a differential system (R, D)
is defined by

Ch(D)(x) = {X ∈ D(x) | Xcdωi ≡ 0 (mod ω1, . . . , ωs) for i = 1, . . . , s},

where D = {ω1 = · · · = ωs = 0} is defined locally by defining 1-forms
{ω1, . . . , ωs}.
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(2) Case m ≥ 2. Since F = Ker π∗ is a covariant system of (J(M, n), C),
we define J2(M, n) ⊂ J(J(M, n), n) by

J2(M, n) = {n-dim. integral elements of (J(M, n), C), transversal to F},

C2 is defined as the restriction to J2(M, n) of the canonical system on
J(J(M, n), n).

Now the higher order (geometric) jet spaces (Jk+1(M, n), Ck+1) for k ≥
2 are defined (simultaneously for all m) by induction on k. Namely, for
k ≥ 2, we define Jk+1(M, n) ⊂ J(Jk(M, n), n) and Ck+1 inductively as
follows:

Jk+1(M, n) =
{
n-dim. integral elements of (Jk(M, n), Ck),

transversal to Ker (πk
k−1)∗

}
,

where πk
k−1 : Jk(M, n) → Jk−1(M, n) is the projection. Here we have

Ker (πk
k−1)∗ = Ch(∂Ck),

and Ck+1 is defined as the restriction to Jk+1(M, n) of the canonical system
on J(Jk(M, n), n).

Here we observe that, if we drop the transversality condition in our
definition of Jk(M, n) and collect all n-dimensional integral elements, we
may have some singularities in Jk(M, n) in general. Namely, a set of all
n-dimensional integral elements of (Jk(M, n), Ck) may be a variety.

Remark 2.1 In this paper, the notation J2(M, n) is used for the ge-
ometric 2-jet spaces, not for the ordinary 2-jet spaces J2(Rn,Rm). But
J2(M, n) is locally isomorphic to J2(Rn,Rm), that is, local isomorphisms
act on J2(M, n) transitively. Therefore the results of this paper are inde-
pendent of the difference.

3. Main theorem

Theorem 3.1 The set Σ(Jk(Mm+n, n)) of integral elements of the canon-
ical system Ck on the jet space Jk(Mm+n, n) over the m + n-dimensional
manifold M with n-independent variables is a submanifold of the Grass-
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mannian J(Ck, n) = Gr(Ck, n) if and only if (k, n,m) = (2, 2, 1), (k, 1,m),
(1, n, 1).

Proof. We showed the following theorem in [S];

Theorem 3.2 ([S]) Σ(Jk(Mm+n, n)) are not manifolds except for
Σ(J2(M1+2, 2)) and trivial cases.

Therefore, we only prove the following theorem. ¤

Theorem 3.3 The set of integral elements Σ(J2(M1+2, 2)) of
(J2(M1+2, 2), C2) is a submanifold of J(Ck, 2) = Gr(Ck, 2).

Proof. For w0 ∈ Σ(J2(M1+2, 2)), let p(w0) = v0 ∈ J2(M1+2, 2), where
p : Σ(J2(M1+2, 2)) → J2(M1+2, 2) is the projection. Let (U, (x, y, z,

p, q, r, s, t)) be a canonical coordinate in (J2(M1+2, 2), C2) around v0.
Namely,

C2 = {$0 = $1 = $2 = 0},

where $0 = dz − pdx− qdy, $1 = dp− rdx− sdy, $2 = dq − sdx− tdy.

Let π : J(C2, 2) → J2(M1+2, 2) be the projection. Then π−1(U) is
covered by 10 open sets in J(C2, 2):

π−1(U) = Uxy ∪ Uxr ∪ Uxs ∪ Uxt ∪ Uyr ∪ Uys ∪ Uyt ∪ Urs ∪ Urt ∪ Ust,

where

Uxy := {w ∈ π−1(U) | dx ∧ dy|w 6= 0}
Uxr := {w ∈ π−1(U) | dx ∧ dr|w 6= 0}

...
Ust := {w ∈ π−1(U) | ds ∧ dt|w 6= 0}.

In the following, we will explicitly describe the defining equation of
Σ(J2(M1+2, 2)) in terms of the inhomogeneous Grassmann coordinate of
Uxy, . . . , Ust.

(0) On Uxy;
In this case, note that dx ∧ dy|w 6= 0 is the transversality condition of
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the geometric construction of the jet spaces (Section 2). So the defining
equation of Σ(J2(M1+2, 2)) in Uxy will be that of the third order jet space
J3(M1+2, 2).

For w ∈ Uxy, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,
restricting dr, ds, dt to w, we can introduce the inhomogeneous coordinate
pijk in Uxy of J(C2, 2) around w as follows;





dr|w = p111(w)dx|w + p112(w)dy|w
ds|w = p121(w)dx|w + p122(w)dy|w
dt|w = p221(w)dx|w + p222(w)dy|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = −dr ∧ dx|w − ds ∧ dy|w = (p112(w)− p121(w))dx ∧ dy|w
d$2|w = −ds ∧ dx|w − dt ∧ dy|w = (p122(w)− p221(w))dx ∧ dy|w.

In this way, we obtain the defining equations f1 = f2 = 0 of
Σ(J2(M1+2, 2)) in the inhomogeneous coordinate Uxr of J(C2, 2), where
f1 = p112 − p121, f2 = p122 − p221;

{f1 = f2 = 0} ⊂ Uxy.

Then df1, df2 are independent on {f1 = f2 = 0}. Thus, we have





dr|w = p111(w)dx|w + p112(w)dy|w
ds|w = p112(w)dx|w + p122(w)dy|w
dt|w = p122(w)dx|w + p222(w)dy|w.

We see that (x, y, z, p, q, r, s, t, p111, p112, p122, p222) is a coordinate sys-
tem of Σ(J2(M1+2, 2)) in Uxy. This coordinate system is called the canonical
coordinate system of the 3-jet space J3(M1+2, 2) (Section 2, Section 4).

(1) On Uxr;
For w ∈ Uxr, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dy, ds, dt to w, we can introduce the inhomogeneous coordinates
(x, y, z, p, q, r, s, t, a,B, c, D, e, F ) of J(C2, 2) around w as follows;
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dy|w = a(w)dx|w + B(w)dr|w
ds|w = c(w)dx|w + D(w)dr|w
dt|w = e(w)dx|w + F (w)dr|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = −dr ∧ dx|w − ds ∧ dy|w
= (−1− a(w)D(w) + B(w)c(w))dr ∧ dx|w

d$2|w = −ds ∧ dx|w − dt ∧ dy|w
= (−D(w) + B(w)e(w)− a(w)F (w))dr ∧ dx|w.

In this way, we obtain the defining equations f1 = f2 = 0 of
Σ(J2(M1+2, 2)) in the inhomogeneous coordinate Uxr of J(C2, 2), where
f1 = −1− aD + Bc, f2 = −D + Be− aF ;

{f1 = f2 = 0} ⊂ Uxr.

Then df1, df2 are independent on {f1 = f2 = 0}.
(2) On Uxs;

For w ∈ Uxs, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,
restricting dy, dr, dt to w, we have





dy|w = a(w)dx|w + B(w)ds|w
dr|w = c(w)dx|w + D(w)ds|w
dt|w = e(w)dx|w + F (w)ds|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = −dr ∧ dx|w − ds ∧ dy|w = (−D(w)− a(w))ds ∧ dx|w
d$2|w = −ds ∧ dx|w − dt ∧ dy|w

= (−1− a(w)F (w) + e(w)B(w))ds ∧ dx|w.

Then the defining functions of Σ(J2(M1+2, 2)) are independent by the
same reasoning as in (1).
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(3) On Uxt;
For w ∈ Uxt, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dy, dr, ds to w, we have





dy|w = a(w)dx|w + B(w)dt|w
dr|w = c(w)dx|w + D(w)dt|w
ds|w = e(w)dx|w + F (w)dt|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = (−D(w) + e(w)B(w)− a(w)F (w))dt ∧ dx|w
d$2|w = (−F (w)− a(w))dt ∧ dx|w.

Hence, we have




dy|w = a(w)dx|w + B(w)dt|w
dr|w = c(w)dx|w + (a2(w) + e(w)B(w))dt|w
ds|w = e(w)dx|w − a(w)dt|w.

(x, y, z, p, q, r, s, t, a,B, c, e) is a coordinate of Σ(J2(M1+2, 2)) in Uxt.

(4) On Uyr;
For w ∈ Uyr, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dx, ds, dt to w, we have





dx|w = a(w)dy|w + B(w)dr|w
ds|w = c(w)dy|w + D(w)dr|w
dt|w = e(w)dy|w + F (w)dr|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0

d$1|w = (−a(w)−D(w))dr ∧ dy|w
d$2|w = (c(w)B(w)− a(w)D(w)− F (w))dr ∧ dy|w.

(5) On Uys;
For w ∈ Uys, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,



On the prolongation of 2-jet space 599

restricting dx, dr, dt to w, we have





dx|w = a(w)dy|w + B(w)ds|w
dr|w = c(w)dy|w + D(w)ds|w
dt|w = e(w)dy|w + F (w)ds|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = (c(w)B(w)− a(w)D(w)− 1)ds ∧ dy|w
d$2|w = (−a(w)− F (w))ds ∧ dy|w.

(6) On Uyt;
For w ∈ Uyt, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dx, dr, ds to w, we have





dx|w = a(w)dy|w + B(w)dt|w
dr|w = c(w)dy|w + D(w)dt|w
ds|w = e(w)dy|w + F (w)dt|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = (c(w)B(w)− a(w)D(w)− F (w))dt ∧ dy|w
d$2|w = (e(w)B(w)− a(w)F (w)− 1)dt ∧ dy|w.

(7) On Urs;
For w ∈ Urs, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dx, dy, dt to w, we have





dx|w = A(w)dr|w + B(w)ds|w
dy|w = C(w)dr|w + D(w)ds|w
dt|w = E(w)dr|w + F (w)ds|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;
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d$1|w = −dr ∧ dx|w − ds ∧ dy|w = (−B(w) + C(w))dr ∧ ds|w
d$2|w = −ds ∧ dx|w − dt ∧ dy|w

= (−A(w) + D(w)E(w)− C(w)F (w))ds ∧ dr|w.

Hence, we have





dx|w = (D(w)E(w)−B(w)F (w))dr|w + B(w)ds|w
dy|w = B(w)dr|w + D(w)ds|w
dt|w = E(w)dr|w + F (w)ds|w.

(x, y, z, p, q, r, s, t, B, D, E, F ) is a coordinate of Σ(J2(M1+2, 2)) in Urs.

(8) On Urt;
For w ∈ Urt, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dx, dy, ds to w, we have





dx|w = A(w)dr|w + B(w)dt|w
dy|w = C(w)dr|w + D(w)dt|w
ds|w = E(w)dr|w + F (w)dt|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;

d$1|w = (−B(w)−D(w)E(w) + C(w)F (w))dr ∧ dt|w
d$2|w = (−C(w)−A(w)F (w) + B(w)E(w))dt ∧ dr|w.

(9) On Ust;
For w ∈ Ust, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,

restricting dx, dy, dr to w, we have





dx|w = A(w)ds|w + B(w)dt|w
dy|w = C(w)ds|w + D(w)dt|w
dr|w = E(w)ds|w + F (w)dt|w.

Moreover 2-dimensional integral element w satisfies d$1|w = d$2|w = 0;
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d$1|w = (−B(w)E(w) + A(w)F (w)−D(w))ds ∧ dt|w
d$2|w = (−B(w) + C(w))ds ∧ dt|w.

From (0), . . . , (9), we conclude Σ(J2(M1+2, 2)) is a submanifold in
J(C2, 2). ¤

Remark 3.4 We have that the projection p : Σ(J2) → J2 is a submersion
with respect to the manifold structure of Σ(J2). This is checked in each
case. For instance, on Uxt,

p : (x, y, z, p, q, r, s, t, a,B, c, e) → (x, y, z, p, q, r, s, t).

4. Regularity and symbol algebra of diferential systems

Next we will consider the local equivalence problem of (Σ(J2(M1+2, 2)),
D), where D is a canonical system on Σ(J2(M1+2, 2)) (see Section 5). To
this purpose, we first recall Tanaka theory of weakly regular differential
systems in this section (see [T], [Y1]).

4.1. Weak derived system
Let D be a differential system on a manifold R. We denote by D the

sheaf of sections to D. Then we define k-th weak higher derived system
∂(k)D by;

∂(1)D = ∂D, ∂(k)D = ∂(k−1)D + [D, ∂(k−1)D]

where D = Γ(D). A differential system D is called weakly regular, if ∂(i)D
is a sheaf of sections for a subbundle ∂(i)D, for any i. If D is not weakly
regular around x ∈ R, then x is called singular point in the sense of Tanaka
theory.

We set D−1 := D, D−k := ∂(k−1)D (k ≥ 2), for a weakly regular
differential system D. Then we have;

(S1) There exists a positive integer µ such that
D−1 ⊂ D−2 ⊂ · · · ⊂ D−k ⊂ · · · ⊂ D−(µ−1) ⊂ D−µ = D−(µ+1) = · · ·

(S2) [Dp,Dq] ⊂ Dp+q, for any negative integers p, q,

i.e. [X, Y ] ∈ Dp+q, X ∈ Dp, Y ∈ Dq.
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4.2. Symbol algebra of weakly regular differential system
Let (R, D) be a weakly regular differential system such that

T (R) = D−µ ⊃ D−(µ−1) ⊃ · · · ⊃ D−1 = D.

For all x ∈ R, we put g−1(x) := D−1(x) = D(x), gp(x) := Dp(x)/Dp+1(x),
and put

m(x) :=
−µ⊕

p=−1

gp(x).

Then dim m(x) = dimR. For X ∈ gp(x), Y ∈ gq(x), we take extensions X̃ ∈
Dp, Ỹ ∈ Dq of representatives for X, Y (X̃x, Ỹx give X, Y in gp(x), gq(x))
respectively. Then [X̃, Ỹ ] ∈ Dp+q and [X̃, Ỹ ]x does not depend on the choice
of extensions up to Dp+q+1

x because of the equation

[fX̃, gỸ ] = fg[X̃, Ỹ ] + f(X̃g)Ỹ − g(Ỹ f)X̃ (f, g ∈ C∞(R)).

Therefore we define [X, Y ] := [X̃, Ỹ ]x ∈ gp+q(x), which makes m(x) a graded
Lie algebra. We call (m(x), [ ]) the symbol algebra of (R, D) at x.

Note that the Symbol Algebra (m(x), [ ]) satisfies the generating con-
ditions

[gp, g−1] = gp−1 (p < 0).

Later, T. Morimoto introduced the notion of a filtered manifold as gen-
eralization of the weakly regular differential system in [M].

We define a filtered manifold (R, F ) by a pair of a manifold R and a
tangential filtration F . Here, a tangential filtration F on R is a sequence
{F p}p<0 of subbundles of the tangent bundle TR such that the following
conditions are satisfied;

(i) TR = F k = · · · = F−µ ⊃ · · · ⊃ F p ⊃ F p+1 ⊃ · · · ⊃ F 0 = 0

(ii) [Fp,Fq] ⊂ Fp+q ∀p, q < 0

where Fp = Γ(F p) is the set of sections of F p.
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Let (R, F ) be a filtered manifold, for x ∈ R, we put

fp(x) := F p(x)/F p+1(x)

and

f(x) :=
⊕
p<0

fp(x).

For X ∈ fp(x), Y ∈ fq(x), Lie bracket [X, Y ] ∈ fp+q(x) is defined by;

Let X̃ ∈ Fp, Ỹ ∈ Fq be extensions (X̃x = X, Ỹx = Y ), then [X̃, Ỹ ] ∈
Fp+q[X, Y ] := [X̃, Ỹ ]x ∈ fp+q(x) does not depend on the extensions.

Then we call (f(x), [ ]) the (associated nilpotent) graded Lie algebra of
(R, F ) at x ∈ R.

In general (f(x), [ ]) does not satisfy the generating conditions.

Remark 4.1 Let D = {$1 = · · · = $s = 0} be a differential system on
a manifold R. We denote by D⊥ the annihilator subbundle of D in T ∗R,
namely,

D⊥(x) = {ω ∈ T ∗x R | ω(X) = 0 for any X ∈ D(x)}
= 〈$1, . . . , $s〉.

Then the annihilator (∂D)⊥ of the first derived system of D is given by

(∂D)⊥ = {$ ∈ D⊥ | d$ ≡ 0 (mod D⊥)}.

Moreover the annihilator (∂(k+1)D)⊥ of the (k + 1)-th weak derived
system of D is given by

(∂(k+1)D)⊥ =
{
$ ∈ (∂(k)D)⊥ | d$ ≡ 0 (mod (∂(k)D)⊥,

(∂(p)D)⊥ ∧ (∂(q)D)⊥, 2 ≤ p, q ≤ k − 1)
}
.

4.3. Example
Example 4.2 Let J3(M1+2, 2); (x1, x2, y, p1, p2, p11, p12, p22, p111, p112,

p122, p222) be a canonical coordinate, then C3 = {$ = $1 = $2 = $11 =
$12 = $22 = 0}, where
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$ = dy − p1dx1 − p2dx2

$i = dpi − pi1dx1 − pi2dx2

$ij = dpij − pij1dx1 − pij2dx2.

The structure equation for C3 is given by




d$ ≡ 0 (mod C3)

d$i ≡ 0 (mod C3)

d$ij = −dpij1 ∧ dx1 − dpij2 ∧ dx2 (mod C3).

Therefore ∂(1)C3 = ∂C3 = {$ = $1 = $2 = 0}. The structure
equations for ∂C3 and ∂(1)C3 are

{
d$ ≡ 0 (mod ∂C3)

d$i ≡ −dpi1 ∧ dx1 − dpi2 ∧ dx2 (mod ∂C3)
{

d$ ≡ 0 (mod ∂(1)C3, $ij ∧$kl)

d$i ≡ −dpi1 ∧ dx1 − dpi2 ∧ dx2 (mod ∂(1)C3, $ij ∧$kl).

Thus ∂(2)C3 = ∂2C3 = {$ = 0}. The structure equations for ∂2C3, ∂(2)C3

are




d$ ≡ −dp1 ∧ dx1 − dp2 ∧ dx2 (mod ∂2C3)

d$ ≡ −dp1 ∧ dx1 − dp2 ∧ dx2

(mod ∂(2)C3, $ij ∧$kl, $i ∧$jk, $i ∧$j).

Therefore ∂(3)C3 = ∂3C3 = T (J3). Especially, (J3(M, 1), C3) is regular
and weakly regular.

Symbol algebra of J3(M1+2, 2);
We take a coframe: {$, $1, $2, $11, $12, $22, dp111, dp112, dp122, dp222,

dx1, dx2} and its dual frame {Xy, X1, X2, X11, X12, X22, X111, X112, X122,

X222, Xx1 , Xx2}, where

Xy =
∂

∂y
, Xi =

∂

∂pi
, Xij =

∂

∂pij
, Xijk =

∂

∂pijk
,
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Xxi
=

d

dxi
=

∂

∂xi
+ pi

∂

∂y
+ p1i

∂

∂p1
+ p2i

∂

∂p2
+ p11i

∂

∂p11

+p12i
∂

∂p12
+ p22i

∂

∂p22
.

Then, at x ∈ J3,

g−1(x) := C3 = 〈X111, X112, X122, X222, Xx1 , Xx2〉,
g−2(x) := 〈X11, X12, X22〉, g−3(x) := 〈X1, X2〉, g−4(x) := 〈Xy〉,

mjet(x) =
−4⊕

p=−1

gp(x) = g−1 ⊕ g−2 ⊕ g−3 ⊕ g−4.

The bracket relations are;
[Xjkl, Xxi

] = δilXjk, [Xjk, Xxi
] = δikXj , [Xj , Xxi

] = δijXy, the other rela-
tions are given by 0. (see the proof of Proposition 5.5 for how to calculate.)

5. Equivalence problem of (Σ(J2(M1+2,2)),D)

Since Σ(J2) is a manifold from Theorem 3.1, we can define the canonical
system D on Σ(J2) as follows;

For any u ∈ Σ(J2) with p(u) = x ∈ J2, we put

D(u) = p−1
∗ (u) ⊂ Tu(Σ(J2))

p∗−→ Tx(J2)

where p : Σ(J2) → J2(M1+2, 2) is the projection.
In this section, we will consider the equivalence problem of (Σ(J2), D).

Namely we will give the orbit decomposition under the action of the
Aut(Σ(J2), D), where

Aut(Σ(J2), D) = {ϕ : Σ(J2) → Σ(J2) | ϕ :

local diffeomorpfhism such that ϕ∗(D) = D}.

Remark 5.1 Let ϕ : J2(M, 2) → J2(M, 2) be an isomorphism, i.e., ϕ is
a diffeomorphism such that ϕ∗(C2) = C2. Then ϕ induces the isomorphism
ϕ∗ : (Σ(J2), D) → (Σ(J2), D), namely, the differential map ϕ∗ : Σ(J2) →
Σ(J2) is a diffeomorphism sending D onto D.
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First, we explain geometric meaning of the open covering Uxy ∪· · ·∪Ust

in the proof of Theorem 3.3. The set Σ(J2) has a geometric decomposition;

Σ(J2) = Σ0 ∪ Σ1 ∪ Σ2 (disjoint union),

where Σi = {w ∈ Σ(J2) | dim(w ∩ fiber) = i} (i = 0, 1, 2), and the fiber
means that of T (J2) ⊃ C2 → T (J1). Then, locally,

Σ0 = Uxy|Σ(J2)

Σ1 = {(Uxr ∪ Uxs ∪ Uxt ∪ Uyr ∪ Uys ∪ Uyt)\Uxy}|Σ(J2)

Σ2 = {(Urs ∪ Urt ∪ Ust)\(Uxy ∪ Uxr ∪ Uxs ∪ Uxt ∪ Uyr ∪ Uys ∪ Uyt)}|Σ(J2).

The set Σ0 = J3 is an open set in Σ(J2). The set Σ1 is a codimension 1
submanifold in Σ(J2). The set Σ2 is a codimension 2 submanifold in Σ(J2)
and is a P2-bundle over J2.

Proposition 5.2 The differential system D on Σ(J2) = Σ(J2(M1+2, 2))
is regular, but is not weakly regular. Precisely we obtain that

D ⊂ ∂D ⊂ ∂2D ⊂ ∂3D = TΣ(J2).

Moreover ∂2D = ∂(2)D and
{

∂(3)D = TΣ(J2) on Σ0 ∪ Σ1

∂(3)D = ∂(2)D on Σ2

Remark 5.3 Note that Σ0 = J3 by definition. So the derived system,
weak derived system around w ∈ Σ0 and the symbol algebra at w ∈ Σ0 are
given as in Example 4.2.

Proof. We take canonical coordinates on J2 and consider the covering of
Σ(J2): Uxy ∪Uxr ∪Uxs ∪Uxt ∪Uyr ∪Uys ∪Uyt ∪Urs ∪Urt ∪Ust (see proof of
Theorem 3.3). First of all, we show that it is enough to work on three open
sets Uxr, Urs, Urt.

Lemma 5.4 p−1(U) = Uxy ∪ Uxr ∪ Uxs ∪ Uxt ∪ Uyr ∪ Uys ∪ Uyt ∪ Urs ∪
Urt∪Ust = Uxy ∪Uxt∪Uyr ∪Urs∪Urt∪Ust, under the notation of the proof
of Theorem 3.3.
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Proof. First, we prove Uxr ⊂ Uxt ∪ Uxy.
For w ∈ Uxr,





dy|w = a(w)dx|w + B(w)dr|w
ds|w = c(w)dx|w + D(w)dr|w
dt|w = e(w)dx|w + F (w)dr|w,

and the relations are f1 = −1−aD+Bc = 0, f2 = −D+Be−aF = 0. Note
that w ∈ Uxy if and only if dx and dy are independent at w, i.e., B(w) 6= 0.
Assume that B(w) = 0, then F (w) 6= 0 from f1 = 0. So

dx ∧ dt|w = dx ∧ (e(w)dx + F (w)dr)|w = F (w)dx ∧ dr|w 6= 0.

Therefore w ∈ Uxt ∪ Uxy.
The same argument yeilds Uxs ⊂ Uxt ∪ Uxy, Uys ⊂ Uyr ∪ Uxy and

Uyt ⊂ Uyr ∪ Uxy. ¤

From above remark, lemma and natural symmetry, where natural sym-
metry means the isomorphism induced by x̄ = y, ȳ = x, p̄ = q, q̄ = p, r̄ = t,
t̄ = r, it is enough to work on Uxt, Urs, Urt, because every germ in Uyr

appears in Uxt and that of Ust appears in Urs.

On Uxt;
We take a coordinate (x, y, z, p, q, r, s, t, a,B, c, e) on Uxt (see proof of

Theorem 3.3), then D = {$0 = $1 = $2 = $y = $r = $s = 0}, where





$0 = dz − pdx− qdy $y = dy − adx−Bdt

$1 = dp− rdx− sdy $r = dr − cdx− (a2 + eB)dt

$2 = dq − sdx− tdy $s = ds− edx + adt.

Recall that, for w = (x, y, z, p, q, r, s, t, a,B, c, e), B 6= 0 if and only if
w ∈ Σ0, therefore it is enough to consider at w in the hypersurface {B =
0} ⊂ Σ(J2). The structure equation at a point in {B = 0} is
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d$i ≡ 0 (i = 0, 1, 2)

d$y = −da ∧ dx− dB ∧ dt 6≡ 0

d$r = −dc ∧ dx− (edB + 2ada) ∧ dt 6≡ 0

d$s = −de ∧ dx + da ∧ dt 6≡ 0 (mod D).

Hence ∂D = {$0 = $1 = $2 = 0}. The structure equation of ∂D at a
point in {B = 0} is





d$0 ≡ 0

d$1 ≡ (−$r − a$s + e$y) ∧ dx− a$y ∧ dt 6≡ 0

d$2 = −$s ∧ dx− dt ∧$y 6≡ 0 (mod ∂D,$α ∧$β (α, β = y, r, s)).

Hence ∂(2)D = ∂2D = {$0 = 0}. The structure equation of ∂2D at a
point in {B = 0} is

{
d$0 ≡ −($1 + a$2) ∧ dx 6≡ 0

(mod ∂2D, $α ∧$β (α, β ∈ {y, r, s, 1, 2})).

Hence ∂(3)D = ∂3D = T (Σ(J2)). We conclude

∂(3)D = TΣ(J2) on Σ0 ∪ Σ1.

On Urs;
Let (x, y, z, p, q, r, s, t, B, D, E, F ) be a coordinate on Urs. Then D =

{$0 = $1 = $2 = $x = $y = $t = 0}, where





$0 = dz − pdx− qdy $x = dx− (DE −BF )dr −Bds

$1 = dp− rdx− sdy $y = dy −Bdr −Dds

$2 = dq − sdx− tdy $t = dt− Edr − Fds.

w ∈ Σ2 if and only if dx|w = dy|w = 0. So, in this coordinate, Σ2 is a
{B = D = 0}: codimension 2 submanifold in Σ(J2).

The structure equation at a point in {B = D = 0} is
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d$i ≡ 0 (i = 0, 1, 2)

d$x = −(EdD − FdB) ∧ dr − dB ∧ ds 6≡ 0

d$y = −dB ∧ dr − dD ∧ ds 6≡ 0

d$t = −dE ∧ dr − dF ∧ ds 6≡ 0 (mod D).

Hence ∂D = {$0 = $1 = $2 = 0}. The structure equation of ∂D at a
point in {B = D = 0} is





d$0 ≡ 0

d$1 ≡ −dr ∧$x − ds ∧$y 6≡ 0

d$2 ≡ −ds ∧$x − (Edr + Fds) ∧$y 6≡ 0

(mod ∂D,$α ∧$β (α, β = x, y, t)).

Hence ∂(2)D = ∂2D = {$0 = 0}. The structure equation of ∂2D at a
point in {B = D = 0} is

{
d$0 ≡ −$1 ∧$x −$2 ∧$y 6≡ 0 (mod ∂2D)

d$0 ≡ 0 (mod ∂2D, $α ∧$β (α, β ∈ {x, y, t, 1, 2})).

Therefore ∂3D = T (Σ(J2)) on Urs and ∂(3)D = {$0 = 0} on Σ2 ∩ Urs.

On Urt;





dx|w = A(w)dr|w + B(w)dt|w
dy|w = C(w)dr|w + D(w)dt|w
ds|w = E(w)dr|w + F (w)dt|w,

where defining equations are −B − DE + CF = 0, −C − AF + BE = 0.
w ∈ Σ2 if and only if A = B = C = D = 0. Moreover, if (E, F ) 6= (0, 0)
then the point is in Urs or Ust. So we consider a point (E, F ) = (0, 0)
and take a coordinate (x, y, z, p, q, r, s, t, A,D, E, F ) around (E, F ) = (0, 0).
Then D = {$0 = $1 = $2 = $x = $y = $s = 0} where
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$0 = dz − pdx− qdy $x = dx−Adr − DE+AF 2

EF−1 dt

$1 = dp− rdx− sdy $y = dy − DE2+AF
EF−1 dr −Ddt

$2 = dq − sdx− tdy $s = ds− Edr − Fdt.

The structure equation at a point (A,D, E, F ) = 0 is





d$i ≡ 0 (i = 0, 1, 2)

d$x = −dA ∧ dr 6≡ 0

d$y = −dD ∧ dt 6≡ 0

d$s = −dE ∧ dr − dF ∧ dt 6≡ 0 (mod D).

Hence ∂D = {$0 = $1 = $2 = 0}. The structure equation of ∂D at a
point in (A,D, E, F ) = 0 is





d$0 ≡ 0

d$1 ≡ −dr ∧$x 6≡ 0

d$2 ≡ −dt ∧$y 6≡ 0 (mod ∂D, $α ∧$β (α, β = x, y, s)).

Hence ∂(2)D = ∂2D = {$0 = 0}. The structure equation of ∂2D at a
point in (A,D, E, F ) = 0 is

{
d$0 ≡ −$1 ∧$x −$2 ∧$y 6≡ 0 (mod ∂2D)

d$0 ≡ 0 (mod ∂2D, $α ∧$β (α, β ∈ {x, y, s, 1, 2})).

We conclude that (Σ(J2), D) is regular and not weakly regular;

∂(3)D = ∂(2)D on Σ2. ¤

5.1. Classification of Σ1

From above proposition, (Σ(J2), D) is locally weak regular around w ∈
Σ1. So we can define symbol algebra at w ∈ Σ1 and the following holds;

Proposition 5.5 For w ∈ Σ1, the symbol algebra m(w) is isomorphic to
m, m = g−1 ⊕ g−2 ⊕ g−3 ⊕ g−4 and [, ] is given by ;



On the prolongation of 2-jet space 611

Xy = [Xa, Xx] = [XB , Xt], Xr = [Xc, Xx], Xs = [Xe, Xx] = −[Xa, Xt]

Xp = [Xr, Xx], Xq = [Xs, Xx] = −[Xy, Xt]

Xz = [Xp, Xx], the other is trivial,

where {Xz, Xp, Xq, Xy, Xr, Xs, Xx, Xt, Xa, XB , Xc, Xe} are basis, and

g−1 = 〈{Xx, Xt, Xa, XB , Xc, Xe}〉
g−2 = 〈{Xy, Xr, Xs}〉
g−3 = 〈{Xp, Xq}〉
g−4 = 〈{Xz}〉

Especially, for w ∈ Σ1, the symbol algebra (m(w), [, ]) is not isomorphic
to the jet type symbol algebra mjet given as in Example 4.2.

Remark 5.6 If the canonical systems (Σ(J2), D) at w, w′ ∈ Σ(J2) are
locally isomorphic, then the symbol algebras m(w) and m(w′) are isomorphic
as a graded Lie algebra. The symbol algebra m(w) for w ∈ Σ0 is isomorphic
to mjet as a graded Lie algebra. Hence, by Proposition 5.5, we have that
the canonical system D around w ∈ Σ1 is not locally isomorphic to the
canonical system D around w ∈ Σ0.

Proof. “On Uxt” in the proof of Proposition 5.2, we put $̂1 := $1 + a$2,
$̂r := $r + 2a$s − e$y, $c = dc + 2ade− eda and take a coframe:

{$0, $̂1, $2, $y, $̂r, $s, dx, dt, da, dB, $c, de},

then the structure equations are





d$i ≡ 0 (i = 0, 1, 2)

d$y = −da ∧ dx− dB ∧ dt

d$̂r = −$c ∧ dx

d$s = −de ∧ dx + da ∧ dt (mod D)
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d$0 ≡ 0

d$1 ≡ −$̂r ∧ dx

d$2 = −$s ∧ dx− dt ∧$y 6≡ 0 (mod ∂D, $α ∧$β (α, β = y, r, s))
{

d$0 ≡ −$̂1 ∧ dx 6≡ 0

(mod ∂2D, $α ∧$i, $i ∧$j (α ∈ {y, r, s}, i, j ∈ {1, 2})).

We take its dual frame {Xz, Xp, Xq, Xy, Xr, Xs, Xx, Xt, Xa, XB , Xc, Xe}
and put

[Xc, Xx] = AyXy + ArXr + AsXs ∈ g−2 (Ay, Ar, As ∈ R).

Then

d$̂r(Xc, Xx) = Xc($̂r(Xx))−Xx($̂r(Xc))− $̂r([Xc, Xx])

= −$̂r([Xc, Xx])

= −Ar.

On the other hand

d$̂r(Xc, Xx) = −$c(Xc)dx(Xx) + dx(Xc)$c(Xx)

= −1.

Therefore, Ar = 1. From the same argument, we get Ay = As = 0.
Hence

[Xc, Xx] = Xr.

The others are left to the reader. Hence its dual frame satisfies the
relation of this proposition.

Finally, we will prove that the graded Lie algebra m is not isomorphic
to the jet type symbol algebra mjet (see Example 4.2).

From the above Lie bracket relations of m, we have a special direction
in g−3,

{〈X〉 | X ∈ g−3, X 6= 0, [X, g−1] = 0
}

= 〈Xq〉.
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But mjet does not have such direction. This completes the proof of
proposition. ¤

Theorem 5.7 (normal form) For any w ∈ Σ1, the differential system
(Σ(J2(M1+2, 2), D) around w is locally isomorphic to the germ at the origin
of (R12, D̂) given as in the introduction.

Proof. We construct the paths from any points to the origin, directly. For
w0 ∈ Σ1, we may assume w0 is expressed by a germ at w0 = (0, . . . , 0,

a0, 0, c0, e0),





$0 = dz − pdx− qdy $y = dy − adx−Bdt

$1 = dp− rdx− sdy $r = dr − cdx− (a2 + eB)dt

$2 = dq − sdx− tdy $s = ds− edx + adt,

because of normal form of J2 and w0 ∈ Σ1 if and only if B = 0. Hence
what we have to do is to construct ϕ ∈ Aut(Σ(J2), D)) sending (0, . . . , 0,

a0, 0, c0, e0) to (0, . . . , 0). Let ϕe be a

ϕe : (x, y, z, p, q, r, s, t, a,B, c, e) 7→
(

x, y, z − e0

2
x2y, p− e0xy, q − e0

2
x2,

r − e0y, s− e0x, t, a, B, c− e0a, e− e0

)

Then




ϕ∗e$0 = $0 ϕ∗e$y = $y

ϕ∗e$1 = $1 ϕ∗e$r = $r − e0$y

ϕ∗e$2 = $2 ϕ∗e$s = $s.

Therefore, ϕe leaves D invariant and sends a germ (0, . . . , 0, a0, 0, c0, e0) to
a germ (0, . . . , 0, a0, 0, c′0, 0) where c′0 = c0 − e0a0.

Similarly, Let ϕa, ϕc be

ϕa : (x, y, z, p, q, r, s, t, a,B, c, e) 7→
(
x, y, z, p + a0q, q, r + 2a0s + a2

0t, s + a0t, t, a− a0, B, c + 2ea0, e
)
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ϕc : (x, y, z, p, q, r, s, t, a,B, c, e) 7→
(

x, y, z − c′0
6

x3, p− c′0
2

x2, q, r − c′0x, s, t, a, B, c− c′0, e
)

Then these maps preserve D and the composition ϕc ◦ ϕa sends a germ
(0, . . . , 0, a0, 0, c′0, 0) to a germ (0, . . . , 0, 0, 0, 0, 0), where above isomorphisms
are obtained by focussing on the form $c = dc + 2ade− eda in the proof of
Proposition 5.5 and leaving the form invariant to keep the symbol algebras.

¤

5.2. Classification of Σ2

Finally, we will classify points in Σ2. From the Proposition 5.2, w ∈
Σ2, we can not define the symbol algebra at w. But ∂(1)D and ∂(2)D are
subbundle, so we can define graded Lie algebra at w as follows;

For w ∈ Σ2, we put g−1(w) := D−1(w) = D(w), g−2(w) := D−2(w)/
D−1(w), g−3(w) := D−3(w)/D−2(w), g−4(w) := Tw(Σ(J2))/D−3(w).

m(w) = g−1(w)⊕ g−2(w)⊕ g−3(w)⊕ g−4(w).

We define Lie bracket by the same way of the usual symbol algebra except
for [g−1, g−3]. For [g−1, g−3], we define [g−1, g−3] = 0.

Note that this graded Lie algebra does not satisfy the generating con-
dition [g−1, g−3] = g−4.

Remark 5.8 Note that the above graded Lie algebra at w ∈ Σ2 is an
example of the associated Lie algebra of filtered manifold (Σ(J2), F ) by
setting;

F−4(w) = Tw(J2), F−3(w) = ∂(2)D(w),

F−2(w) = ∂(1)D(w), F−1(w) = D(w).

Lemma 5.9 For w0 ∈ Σ2, there exists w ∈ Urs such that w is locally
isomorphic to w0.

Proof. Note that Σ2 is coverd by Urs ∪ Urt ∪ Ust. From the symmetry x

and y, Ust is isomorphic to Urs. So it is enough to consider the points in
Urt\(Urs ∪ Ust). Urt\(Urs ∪ Ust) is a set consisting of a point w0. w0 is the
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origin in the coordinate Urt, i.e., w0 is the integral element given by;

w0 = {dx = dy = dz = dp = dq = ds = 0} =
〈

∂

∂r
,

∂

∂t

〉
.

Then we consider the isomorphism ϕ : (J2, C2) → (J2, C2);

ϕ : (x, y, z, p, q, r, s, t) 7→ (x̄, ȳ, z̄, p̄, q̄, r̄, s̄, t̄)

= (x− y, y, z, p, q + p, r, s + r, t + 2s + r).

This isomorphism ϕ sends the integral element w0 to w̄0 where the w̄0

is expressed by

w̄0 = {dx̄ = dȳ = dz̄ = dp̄ = dq̄ = d(s̄− r̄) = 0} =
〈

∂

∂t̄
,

∂

∂r̄
+

∂

∂s̄

〉
,

in the new coordinate system. Thus w̄0 ∈ Ur̄s̄ in this new coordinate system.
¤

From above lemma, it is enough to classify the points in Urs.

Proposition 5.10 For w ∈ Σ2, graded Lie algebra m(w) is isomorphic to
m(E, F ), m(E, F ) = g−1 ⊕ g−2 ⊕ g−3 ⊕ g−4 and [, ] is given by ;

[XB , Xr] = Xy − FXx, [XD, Xs] = Xy, [XB , Xs] = Xx, [XD, Xr] = EXx

[XE , Xr] = Xt, [XF , Xs] = Xt

[Xr, Xx] = Xp, [Xs, Xy] = Xp + FXq, [Xs, Xx] = Xq, [Xr, Xy] = EXq

the other is trivial,

where {Xz, Xp, Xq, Xx, Xy, Xt, Xr, Xs, XB , XD, XE , XF } are basis which
satisfy

g−1 = 〈{Xr, Xs, XB , XD, XE , XF }〉
g−2 = 〈{Xx, Xy, Xt}〉
g−3 = 〈{Xp, Xq}〉
g−4 = 〈{Xz}〉,
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and E, F ∈ R are parameters.

Proof. We may assume w ∈ Urs by the above lemma. From the proof of
Theorem 3.3, in Urs, D is expressed by D = {$0 = $1 = $2 = $x = $y =
$t = 0} where (x, y, z, p, q, r, s, t, B, D, E, F ) is the coordinate and





$0 = dz − pdx− qdy $x = dx− (DE −BF )dr −Bds

$1 = dp− rdx− sdy $y = dy −Bdr −Dds

$2 = dq − sdx− tdy $t = dt− Edr − Fds.

Recall that w ∈ Σ2 if and only if B = D = 0 in this coordinate. Let
{Xz, Xp, Xq, Xx, Xy, Xt, Xr, Xs, XB , XD, XE , XF } be the dual frame of the
coframe {$0, $1, $2, $x, $y, $t, dr, ds, dB, dD, dE, dF}. From the proof of
Proposition 5.2, the structure equations are;





d$i ≡ 0 (i = 0, 1, 2)

d$x = −(EdD − FdB) ∧ dr − dB ∧ ds 6≡ 0

d$y = −dB ∧ dr − dD ∧ ds 6≡ 0

d$t = −dE ∧ dr − dF ∧ ds 6≡ 0 (mod D).




d$0 ≡ 0

d$1 ≡ −dr ∧$x − ds ∧$y 6≡ 0

d$2 ≡ −ds ∧$x − (Edr + Fds) ∧$y 6≡ 0

(mod ∂D,$α ∧$β (α, β = x, y, t)).
{

d$0 ≡ −$1 ∧$x −$2 ∧$y 6≡ 0 (mod ∂2D)

d$0 ≡ 0 (mod ∂2D, $α ∧$β (α, β ∈ {x, y, t, 1, 2})).

Thus we obtain the result from the argument of the proof of the Proposition
5.5. ¤

For the graded Lie algebra m(E, F ), the followings are intrinsic;

gV
−1 = {X ∈ g−1 | ad(X)|g−2 = 0} = 〈XB , XD, XE , XF 〉

gV
−2 = {X ∈ g−2 | ad(X)|g−1 = 0} = 〈Xt〉
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g̃−1 = {X ∈ g−1 | Im ad(X)|g−1 ∈ gV
−2} = 〈XE , XF 〉,

i.e. the above subalgebras are preserved by Lie algebra isomorphisms in-
duced by isomorphisms of differential systems.

Lemma 5.11 For the graded Lie algebra m(E, F ), let Ch(m(E, F )) be a
set of the characteristic directions, that is,

Ch(m(E, F )) =
{
V ⊂ g−1 : 1-dimensional subspace |

X ∈ V, X 6= 0, rank ad(X)|g−2 = 1}.

Then

#Ch(m(E, F )) =





2 (F 2 + 4E > 0)

1 (F 2 + 4E = 0)

0 (F 2 + 4E < 0).

Remark 5.12 For w ∈ Σ2, w is said to be hyperbolic, elliptic or parabolic
according to whether F 2 + 4E is positive, negative or zero, respectively.

Proof. For X ∈ g−1,

X = ξXr + ηXs + XV (ξ, η ∈ R, XV ∈ gV
−1)

Then





ad(X)(Xx) = ξXp + ηXq

ad(X)(Xy) = ξ(EXq) + η(Xp + FXq) = ηXp + (ξE + ηF )Xq

ad(X)(Xt) = 0.

Hence X is a characteristic direction if and only if X is a null direction
for the quadratic form

ξ(ξE + ηF )− η2 = Eξ2 + Fξη − η2.

Therefore the determinant of this quadratic form classifies the number of
the characteristic directions. ¤
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From above lemma, Σ2 has at least 3 components. We put

Σh = {w ∈ Σ2 | w is a hyperbolic point}
Σe = {w ∈ Σ2 | w is a elliptic point}
Σp = {w ∈ Σ2 | w is a parabolic point}.

Then this classification is sufficient by the following theorem.

Theorem 5.13 There exists a decomposition of Σ2

Σ2 = Σh ∪ Σe ∪ Σp

into disjoint three subsets such that, if w ∈ Σh, then (Σ(J2(M1+2, 2), D)
around w is locally isomorphic to the germ of (R12, D̄) at (0, . . . , 0, 1, 0), if
w ∈ Σe, then, (0, . . . , 0,−1, 0), and if w ∈ Σp, then, (0, . . . , 0, 0, 0). Here
(R12, D̄) is given as in the introduction.

Proof. First, we introduce the isomorphisms ϕa(a ∈ R) : Urs → Urs and
ψ : Urs → Urs. these isomorphisms will preserve the determinant of the
quadratic form;

F 2 + 4E = F̄ 2 + 4Ē.

For nonzero a ∈ R, we define ϕa by;

ϕa : (x, y, z, p, q, r, s, t, B, D, E, F ) 7→ (x̄, ȳ, z̄, p̄, q̄, r̄, s̄, t̄, B̄, D̄, Ē, F̄ )

=
(

x

a2
,
y

a
,

z

a4
,

p

a2
,

q

a3
, r,

s

a
,

t

a2
,
B

a
,D,

E

a2
,
F

a

)
.

ψ is defined by;

ψ : (x, y, z, p, q, r, s, t, B, D, E, F ) 7→ (x̄, ȳ, z̄, p̄, q̄, r̄, s̄, t̄, B̄, D̄, Ē, F̄ )

=
(

x− y

2
, y, z, p, q +

p

2
, r, s +

r

2
, t +

r

4
+ s,

B − D

2
, D, E − F

2
− 1

4
, F + 1

)
.
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Then




ψ∗$̄0 = $0 ψ∗$̄x = $x − 1
2$y

ψ∗$̄1 = $1 ψ∗$̄y = $y

ψ∗$̄2 = $2 + 1
2$1 ψ∗$̄t = $t.

(1) For w ∈ Σh, we may assume w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E0, F0) ∈ Urs.
Then F 2

0 + 4E0 > 0. If F0 6= 0, ϕ−F0 sends w to w′ =
(
0, . . . , 0, E0

F 2
0
,−1

)
.

The isomorphism ψ sends w′ to w′′ =
(
0, . . . , 0, E0

F 2
0

+ 1
2 − 1

4 , 0
)
. Furthermore

ϕ√
E′0

sends w′′ to (0, . . . , 0, 1, 0), where E′
0 = E0

F 2
0

+ 1
2 − 1

4 .

If F0 = 0, ϕ√E0
sends w to (0, . . . , 0, 1, 0).

(2) For w ∈ Σe, we may assume w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E0, F0) ∈ Urs.
Then F 2

0 + 4E0 < 0. If F0 6= 0, ϕ−F0 sends w to w′ =
(
0, . . . , 0, E0

F 2
0
,−1

)
.

The isomorphism ψ sends w′ to w′′ =
(
0, . . . , 0, E0

F 2
0

+ 1
2 − 1

4 , 0
)
. Furthermore

ϕ√−E′0
sends w′′ to (0, . . . , 0,−1, 0), where E′

0 = E0
F 2

0
+ 1

2 − 1
4 .

If F0 = 0, ϕ√−E0
sends w to (0, . . . , 0,−1, 0).

(3) For w ∈ Σp, we may assume w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E0, F0) ∈ Urs.
Then F 2

0 + 4E0 = 0. If F0 = 0, then E0 = 0.
If F0 6= 0, ϕ−F0 sends w to w′ =

(
0, . . . , 0,− 1

4 ,−1
)
. The isomorphism

ψ sends w′ to (0, . . . , 0, 0, 0). ¤

Remark 5.14 Note that the normal forms of the graded Lie algebras are
obtained by the above local normal forms. Namely, for w ∈ Σ2, m(w) is iso-
morphic to m(1, 0),m(−1, 0),m(0, 0) (given as in Proposition 5.10) according
to whether w ∈ Σh, w ∈ Σe or w ∈ Σp, respectively.

We summarize

Corollary 5.15

Σ(J2) = Σ0 ∪ Σ1 ∪ (Σh ∪ Σe ∪ Σp)

where

Σ0 = {w ∈ Σ(J2) | dim(w ∩ fiber) = 0} = J3

Σ1 = {w ∈ Σ(J2) | dim(w ∩ fiber) = 1}
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Σ2 = {w ∈ Σ(J2) | dim(w ∩ fiber) = 2}
Σ2 = Σh ∪ Σp ∪ Σe

Σh = Σ2 ∩ {w : hyperbolic point}
Σe = Σ2 ∩ {w : elliptic point}
Σp = Σ2 ∩ {w : parabolic point}

Σ0 is an open set in Σ(J2). Σ1 is an codimemsion 1 submanifold in
Σ(J2) Σ2 is an codimemsion 2 submanifold in Σ(J2) and P 2-bundle over J2.
Σh, Σe are also codimemsion 2 submanifolds in Σ(J2). Σp is an codimem-
sion 3 submanifold in Σ(J2).

Moreover, the each component have the following normal forms;

(0) Σ0 has jet type normal form.

(1) w ∈ Σ1 is locally isomorphic to a germ at the origin in (R12, D̂) where
(R12;x, y, z, p, q, r, s, t, a,B, c, e) is coordinate and D̂ is expressed by D̂ =
{$0 = $1 = $2 = $y = $r = $s = 0}, where





$0 = dz − pdx− qdy $y = dy − adx−Bdt

$1 = dp− rdx− sdy $r = dr − cdx− (a2 + eB)dt

$2 = dq − sdx− tdy $s = ds− edx + adt.

(2) w ∈ Σh is locally isomorphic to a germ at (0, . . . , 0, 1, 0) in (R12, D̄).
w ∈ Σe is locally isomorphic to a germ at (0, . . . , 0,−1, 0) in (R12, D̄),
w ∈ Σp is locally isomorphic to a germ at (0, . . . , 0, 0, 0) in (R12, D̄).

where (R12;x, y, z, p, q, r, s, t, B, D, E, F ) is coordinate and D̄ is expressed by
D̄ = {$0 = $1 = $2 = $x = $y = $t = 0} where





$0 = dz − pdx− qdy $x = dx− (DE −BF )dr −Bds

$1 = dp− rdx− sdy $y = dy −Bdr −Dds

$2 = dq − sdx− tdy $t = dt− Edr − Fds.
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Appendix

A description of integral manifolds of (Σ(J2), D)

In this appendix, we will consider integral manifolds of (Σ(J2), D). If
S is a 2-dimensional submanifold of Σ(J2) and satisfies TS ⊂ D, then
S is called a 2-dimensional integral manifold of (Σ(J2), D). If S is a 2-
dimensional integral manifold of (Σ(J2), D) with Ω|S 6= 0, then S is called
an integral manifold of (Σ(J2), D) with independence condition Ω, where Ω
is a 2-form on (Σ(J2), D) independent modulo D.

We describe the relation between the integral manifolds of (Σ(J2), D)
and singular solutions of partial differential equations of second order.

Here 2-dimensional integral manifold S of (Σ(J2), D) is a singular solu-
tion, if the projection of S to (J1, C1) has singularity,

(Σ(J2), D)

²²
S

::vvvvvvvvvv // (J1, C1).

For (Jk(Mm+n, n), Ck), the integral manifolds S with independence
condition dx1 ∧ · · · ∧ dxn correspond to the graphs of the k-jet extensions of
m functions of n variables. Hence, the integral manifolds with independence
condition dx1 ∧ · · · ∧ dxn depend on m functions of n variables.

Example 5.16 Let (x, y, z, p, q, r, s, t, p111, p112, p122, p222) be the canoni-
cal coordinate on J3(M1+2, 2). The solution S with independence condition
dx ∧ dy is expressed by;

S =
(
x, y, z(x, y), zx(x, y), zy(x, y), zxx(x, y), zxy(x, y), zyy(x, y),

zxxx(x, y), zxxy(x, y), zxyy(x, y), zyyy(x, y)
)
.

Therefore the integral manifolds depend on 1 function of 2 variables
z(x, y).

Now, we consider the integral manifolds of (Σ(J2), D) passing through
Σ1 = {dim(w ∩ fiber) = 1} with some independence condition. Note that
the integral manifolds S ⊂ {dim(w ∩ fiber) = 0} are treated in the above
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example.

Proposition 5.17 Let (x, y, z, p, q, r, s, t, a,B, c, e) be the canonical coor-
dinate around Σ1 on (Σ(J2), D) (Theorem 5.7).

If S is an integral manifold of (Σ(J2), D) passing through Σ1 with inde-
pendence condition dx ∧ dt, then S is written by ;

S =
(

x, y(x, t),
∫

qytdt + z0(x), zx − qyx,

∫
tytdt + q0(x),

px − syx, qx − tyx, t, yx, yt, rx, sx

)
. (1)

In other wards, the integral manifolds depend on 1 function of 2 variables
y(x, t) such that yt(0, 0) and 2 functions of 1 variable q0(x), z0(x).

Conversely, for any y(x, t) with yt(0, 0) = 0 and q0(x), z0(x). We can
construct the integral manifold by (1).

Proof. Let S be an integral manifold, then S = (x, y(x, t), z(x, t), . . . ,
t, . . . , e(x, t)) from independence condition. Moreover S satisfies S∗$i = 0
(i = 0, 1, 2, y, r, s);

S∗$0 = (zx − qyx − p)dx + (zt − qyt)dt = 0 (2)

S∗$1 = (px − r − syx)dx + (pt − syt)dt = 0 (3)

S∗$2 = (qx − s− tyx)dx + (qt − tyt)dt = 0 (4)

S∗$y = (yx − a)dx + (yt −B)dt = 0 (5)

S∗$r = (rx − c)dx + (rt − (a2 + eB))dt = 0 (6)

S∗$s = (sx − e)dx + (st + a)dt = 0. (7)

a = yx and B = yt is determined by (5), and note that the condition
passing through Σ1 is B = yt = 0. From (4), q =

∫
tytdt+q0(x) where q0(x)

is a function on S depending only on x, and s = qx− tyx. From (7), e = sx.
From (2), z =

∫
qytdt+z0(x) where z0(x) is a function on S depending only

on x, and p = zx− qyx. From (3), r = px− syx. From (6) c = rx. Therefore
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S =
(

x, y(x, t),
∫

qytdt + z0(x), zx − qyx,

∫
tytdt + q0(x),

px − syx, qx − tyx, t, yx, yt, rx, sx

)
. (8)

Conversely, for any y(x, t) with yt(0, 0) = 0 and q0(x), z0(x). We de-
fine the 2-dim submanifold S by (1), then yt(0, 0) = 0 ensure that passing
through Σ1 and the rest 3 conditions in (2), . . . , (7) are satisfied by defini-
tion, automatically. ¤

Corollary 5.18 The projection of the integral manifolds passing through
Σ1 with independence condition dx ∧ dt have singularities at the origin.

Corollary 5.19 Let S be an integral manifolds with independence condi-
tion dx ∧ dt. Assume S ⊂ Σ1, then the projection of S is a regular curve.

Proof. The condition is B = yt ≡ 0. Hence y(x, t) = y(x) depends only on
x. From the above theorem, we have

x = x

y = y(x)

z = z0(x)

p = z′0 − q′0y
′

q = q0(x)

r = (q′′0 + 3)t3 − 3q′′0xt + z′′0

s = q′0 − ty′

t = t

a = y′

B = 0

c = z′′′0 − (q′′′0 y′ + q′′0 y′′)− (q′′0 y′′ + q′0y
′′′)− (q′′0 − ty′′)y′ − (q′0 − ty′)y′′

e = q′′0 − ty′′. ¤

Example 5.20 (cuspidal edge) Let y(x, t) = t3 − 3xt, z0(x) and q0(x).
Then the integral manifold S(x, t) is
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x = x

y = t3 − 3xt

z =
9
28

t7 − 27
20

xt5 +
(

q0 +
3
2
x2

)
t3 − 3q0xt + z0

p =
9
10

t5 +
(

q′0 −
3
2
x

)
t3 − 3q′0xt + z′0

q =
3
4
t4 − 3

2
xt2 + q0

r = (q′′0 + 3)t3 − 3q′′0xt + z′′0

s =
3
2
t2 + q′0

t = t

a = −3t

B = 3t2 − 3x

c = q′′′0 t3 − 3(q′′0 + xq′′′0 )t + z′′′0

e = q′′0

from direct calculation.

Example 5.21 (Cartan’s overdeteremined system) We consider the
Cartan’s overdeteremined system

r =
1
3
t3, s =

1
2
t2.

The Lie algebra of infinitesimal contact transformations of the system is
isomorphic to the 14-dim exceptional simple Lie algebra G2.

Let y(x, t) = −xt, z0(x) = 0 and q0(x) = 0. Then the integral manifold
S(x, t) is

x = x s =
1
2
t2

y = −xt t = t
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z =
1
6
x2t3 a = −t

p = −1
6
xt3 B = −x

q = −1
2
xt2 c = 0

r =
1
3
t3 e = 0.

Therefore the projection of the integral manifold S(x, t) is a singular
solution of the Cartan’s overdeteremined system, where the projection is
Σ(J2) → J2.
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dérivées partielles du second ordre. Ann. École Normale 27 (1910), 109–
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