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On the prolongation of 2-jet space

of 2 independent and 1 dependent variables
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Abstract. We will formulate the Monster Goursat manifolds for multi independent
variables cases. We will classify the singularities which appears in the prolongation of
2-jet space of 2 independent and 1 dependent variables.
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1. Introduction

In this paper, we will consider the extension of “Monster Goursat man-
ifolds” in [MZ] to multi independent variables case.

Let m,n be positive integers and M a manifold of dimension m+mn. We
denote J¥(M,n) the k-jet space over M with n-independent variables and
by C* the canonical system on it (see Section 2).

We define, for x € J*¥(M,n), the set ¥, of n-dimensional integral ele-
ments of C* through x;

Yy = {n-dim. integral elements of (J*(M,n),C*)},

and the subset

SUPMn) = | .
zeJk(M,n)
of the Grassmannian J(C*,n) = Gr(C*,n) of n-dimensional linear sub-

spaces of the distribution C*;

J(C* )= | Co.  Cp=Gr(CH(x),n).

zeJk
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Here the integral elements of a differential system on a manifold are
generally defined as follows;

Let (R, D) be a differential system, i.e., R is a manifold and D is a
subbundle of TR. We take a system of local defining 1-forms {w1,...,ws}
of D. An n-dimensional integral element of D at z € R is an n-dimensional
subspace v of T, R such that

wily =dw;il, =0 (i=1,...,s).

That is, n-dimensional integral elements are candidates for the tangent
spaces at x of n-dimensional integral manifolds of D.
By definition,

JFY (M, n) ¢ S(JF(M,n)) c J(C*,n).

The set L(J¥(M,n)) of integral elements is the candidate for the ex-
tension of the notion “Monster Goursat manifolds” introduced in [MZ] to
the case of several independent variables. However the subset X(J*(M, n))
of J(C*,n) = Gr(C*,n) may not be a submanifold of J(C*,n). This sit-
uation is quite different from the case of 1 independent variable. One of
main purpose of this paper is to check when the set X(J*¥(M,n)) of inte-
gral elements of C* becomes a submanifold of J(C* ,n) or not in the case
n > 2. If ©(J*(M,n)) is a submanifold of J(C¥,n), then we define the
canonical differential system D on X(J¥(M,n)). In this case, we regard
Y (J*(M,n)) endowed with the canonical differential system as an extension
of procedure to construct “Monster Goursat manifolds” or the procedure of
“prolongation” of the jet space.

When n = 1, %(J¥(M, 1)) are called “rank 1 prolongation” of J*(M,1)
in [SY]. Note that

S(JF(M, 1)) = J(CF1).

We can repeat the procedure of “rank 1 prolongation”, starting from any
differential system. We can define “k-th rank 1 prolongation” inductively.
Moreover, when n = m = 1, “k-th rank 1 prolongation” of (J(M,1),C) are
called “Monster Goursat manifold” in [MZ].

Generally X(J*(M,n)) is a variety and is not a submanifold in J(C*,n).



On the prolongation of 2-jet space 589

Then we have the following result as one of main theorems in this paper;

Theorem 3.1  The set X(J*(M™*" n)) of integral elements of the canon-
ical system C* on the jet space J*(M™*" n) over the m + n-dimensional
manifold M with n-independent variables is a submanifold of the Grass-
mannian J(C¥ n) = Gr(C* ,n) if and only if (k,n,m) = (2,2,1), (k,1,m),
(1,n,1).

It is well known that X(J¥(M™+" n)) is a submanifold in the cases
n=1ork=m=1. Inthe case n = 1, (J*(M™*1,1)) is nothing but
a rank 1 prolongation. As for the case k = m = 1, L(JY( M n)) is a
Lagrange-Grassmann bundle L(.J), by definition. Hence it is known that
S(JL (M n)) is a submanifold of J(C1,n). We call these cases trivial

cases.

Now, we will be concerned with the local equivalence problem of
B(J?(M*F2)2)). (We denote it X(J?) for short.) We distinguish any point
on Y(J?) where the canonical system (3(J?), D) is not locally isomorphic
to the generic model (J3(R3,2),C?) for the 3-jet space. Here, we call ¢ an
isomorphism from a differential system (Ry, D1) to (Rz, D2), if ¢ : Ry — Rs
is a diffeomorphism such that ¢.(D;) = Dy. The equivalence problem of
“Monster Goursat manifolds” of 1 independent variable cases is studied in
[M1] and [M3].

First, the points in X(J?2) are classified in two types according to singu-
larities of the canonical differential system D in the sense of Tanaka theory
(Proposition 5.2):

¥ = {w € (J?) | dim(w N fiber) = 1}
Yy = {w € £(J?) | dim(w N fiber) = 2}
where we mean by the fiber, the fiber of m, : T(J*(M'*2,2)) D C? —

T(JY(M'*2,2)). Then, along %, we have the following normal form by
constructing local isomorphisms, directly:

We define the differential system D on R'? with coordinate (x,y,2,p,q,
r,s,t,a, B, c,e) by

D:{wozwlzwgzwy:wr:ws:O}
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where

wo = dz — pdx — qdy wy = dy — adx — Bdt
wy = dp — rdx — sdy @, = dr — cdz — (a® + eB)dt
wo = dq — sdx — tdy ws = ds — edzr + adt.

Then we have

Theorem 5.7 (normal form) For any w € i, the differential system
(X(J?(M12,2), D) around w is locally isomorphic to the germ at the origin
of (R12 D).

It turns out that the classification along > is more complicated. In
fact the local isomorphism classes of (3(J?), D) along X5 are divided into 3
types by using graded Lie algebras, namely, the hyperbolic type, the elliptic
type, the parabolic type (Remark 5.12).

To describe the classification of (3(J?), D) along 33, we need to intro-
duce another normal form: We define the differential system D on R'2 with
coordinate (z,y, z,p,q,7,s,t, B, D, E, F) by

D ={wy=w =wy =w, =w, =w; =0}

where
wo = dz — pdx — qdy w, =dx — (DE — BF)dr — Bds
w1 =dp — rdx — sdy wy = dy — Bdr — Dds
woe = dq — sdx — tdy w; = dt — Edr — Fds.

Theorem 5.13  There exists a decomposition of Yo

Sy =S, UL UYL,

into disjoint three subsets such that, if w € Xy, then (X(J?(M'*2,2), D)
around w is locally isomorphic to the germ of (R*2, D) at (0,...,0,1,0), if
w € X, then, (0,...,0,-1,0), and if w € ¥, then, (0,...,0,0,0).

In Section 2, we briefly review the geometric construction of jet bun-
dles in general, following [Y1] and [Y2], which is our basis for the later
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considerations. In Section 3, we extend the procedure of “Monster Gour-
sat manifolds” to the case of n > 2. Actually we consider the geometric
construction of jet spaces without the transversality conditions which are
candidates for the generalization of “Monster Goursat manifold”. We will
give a criteria for the generalization of “Monster Goursat manifold” to be a
manifold (Theorem 3.1). In Section 4, we review the Tanaka theory to con-
sider the equivalence problem of the canonical system on %(J?) in Section
5. In Section 5, we give the proofs of Theorem 5.7, 5.13, and, summarizing
the results obtained in this section, we give the complete classification of
the canonical distribution on %(J?) (Corollary 5.15).

2. Geometric construction of Jet Spaces

Let M be a manifold of dimension m + n. Fixing the number n, we
form the space of n-dimensional contact elements to M, i.e., the Grassmann
bundle J(M,n) = Gr(T'M,n) over M consisting of n-dimensional subspaces
of tangent spaces to M. Namely, J(M,n) is defined by

J(Mn)= ) Jo,  Jo=Gr(Tu(M),n),

zeM

where Gr(7T;(M),n) denotes the Grassmann manifold of n-dimensional sub-
spaces in T,(M). Let w : J(M,n) — M be the bundle projection. The
canonical system C on J(M,n) is, by definition, the differential system of
codimension m on J(M,n) defined by

Cu) =n. (u) = {v € Tu(J(M,n)) | m.(v) € u} C To(J(M,n)) == T, (M),

where 7(u) = z for u € J(M,n).

Let us describe C' in terms of a canonical coordinate system in J(M, n).
Let u, € J(M,n). Let (xq,...,2,,2% ...,2™) be a coordinate system
on a neighborhood U’ of z, = 7(u,) such that dxi,...,dx, are linearly
independent when restricted to u, C T, (M). We put U = { u €
7Y U")|dz1 |y, - - -, d2y|., are linearly independent}. Then U is a neighbor-
hood of u, in J(M,n). Here dz“|, is a linear combination of dz;|,’s, i.e.,
dz*, = >, p?(u)dz;|,. Thus, there exist unique functions p* on U such
that C is defined on U by the following 1-forms;
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w® = dz® prf‘d:pi (a=1,...,m),
i=1

where we identify z® and x; on U’ with their lifts on U. The system of
functions (z;,2%,p$) (o =1,...,m, i=1,...,n) on U is called a canonical
coordinate system of J(M,n) subordinate to (x;, 2%).

The space (J(M,n),C) is called the (geometric) 1-jet space and espe-
cially, in case m = 1, is the so-called contact manifold. Let M, M be
manifolds of dimension m +n and ¢ : M — M be a diffeomorphism. Then
¢ induces the isomorphism ¢, : (J(M,n),C) — (J(M,n),C), i.e., the dif-
ferential map ¢, : J(M,n) — J(M,n) is a diffeomorphism sending C onto
C. The reason why the case m = 1 is special is explained by the following
theorem of Backlund.

Theorem (Bicklund) Let M and M be manifolds of dimension m~+n. As-
sume m > 2. Then, for an isomorphism ® : (J(M,n),C) — (J(M,n),C),
there exists a diffeomorphism ¢ : M — M such that ® = ..

The essential part of this theorem is to show that F' = Kerm, is the
covariant system of (J(M,n),C) for m > 2. Namely an isomorphism &
sends F onto F' = Ker #, for m > 2. (For the proof, see [Y2] Theorem 1.4.)

In case m = 1, it is a well known fact that the group of isomorphisms of
(J(M,n),C), i.e., the group of contact transformations, is larger than the
group of diffeomorphisms of M. Therefore, when we consider the geometric
2-jet spaces, the situation differs according to whether the number m of
dependent variables is 1 or greater.

(1) Case m = 1. We should start from a contact manifold (J,C) of
dimension 2n+ 1, which is locally a space of 1-jet for one dependent variable
by Darboux’s theorem. Then we can construct the geometric second order
jet space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle
L(J) over J consisting of all n-dimensional integral elements of (.J, C);

L(J) = | Lu € J(J,n),

ueJ

where L, is the Grassmann manifolds of all Lagrangian (or Legendrian)
subspaces of the symplectic vector space (C(u),dw). Here w is a local
contact form on J. Namely, v € J(J,n) is an integral element if and only
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if v ¢ C(u) and dw|, = 0, where u = w(v). Let @ : L(J) — J be the
projection. Then the canonical system E on L(J) is defined by

E(v) = n; ' (v) € Ty(L(J)) == T,.(J),

where m(v) = u for v € L(J).

We denote by OF the derived system of E. Moreover we denote by
Ch(C) the Cauchy characteristic system of C.

Then we have 9F = ;7 1(C) and Ch(C) = {0} (cf. [Y1]). Hence we get
Ch(0F) = Kerm,, which implies the Béacklund theorem for (L(J), E) (cf.
Y1),

Now we put

(Jz(M7 n)v C2) = (L(J(M7 n))7E)7

where M is a manifold of dimension n + 1.

Here recall that the derived system and the Cauchy characteristic system
of a differential system (R, D) are generally defined as follows;

The derived system 0D of D is defined, in terms of sections, by

0D =D+ [D, D).

where D = T'(D) denotes the space of sections of D. In general 9D is
obtained as a subsheaf of the tangent sheaf of R (for the precise argument,
see e.g. [Y1], [BCG3]). Moreover higher derived systems 9°D are defined
successively by

9'D = 08" D),

where we put 0D = D by convention. D is called regular, if 3°D is sub-
bundle for all i.

The Cauchy characteristic system Ch(D) of a differential system (R, D)
is defined by

Ch(D)(z) ={X € D(z) | X|dw; =0 (mod wy,...,ws) fori=1,...,s},

where D = {w; = -+ = ws; = 0} is defined locally by defining 1-forms
{wy, ..., ws}.
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(2) Case m > 2. Since F' = Ker 7, is a covariant system of (J(M,n),C),
we define J2(M,n) C J(J(M,n),n) by

J?(M,n) = {n-dim. integral elements of (J(M,n),C), transversal to F},

C? is defined as the restriction to J?(M,n) of the canonical system on
J(J(M,n),n).

Now the higher order (geometric) jet spaces (J**+1(M,n), C**+1) for k >
2 are defined (simultaneously for all m) by induction on k. Namely, for
k > 2, we define J**1(M,n) C J(J*(M,n),n) and C**! inductively as
follows:

JEY (M, n) = {n-dim. integral elements of (J*(M,n),C*),

transversal to Ker (7F_,).},
where 7 | : J¥(M,n) — J*=1(M,n) is the projection. Here we have
Ker (7§_,). = Ch(oC*),

and C**1 is defined as the restriction to J**1(M,n) of the canonical system
on J(JF(M,n),n).

Here we observe that, if we drop the transversality condition in our
definition of J*(M,n) and collect all n-dimensional integral elements, we
may have some singularities in J*(M,n) in general. Namely, a set of all
n-dimensional integral elements of (J*(M,n),C*) may be a variety.

Remark 2.1 In this paper, the notation J2(M,n) is used for the ge-
ometric 2-jet spaces, not for the ordinary 2-jet spaces J?(R",R™). But
J2(M,n) is locally isomorphic to J2(R™,R™), that is, local isomorphisms
act on J2?(M,n) transitively. Therefore the results of this paper are inde-
pendent of the difference.

3. Main theorem

Theorem 3.1  The set X(J*(M™*" n)) of integral elements of the canon-
ical system C* on the jet space J*(M™*™ n) over the m + n-dimensional
manifold M with n-independent variables is a submanifold of the Grass-
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mannian J(C* n) = Gr(C*¥,n) if and only if (k,n,m) = (2,2,1), (k,1,m),
(1,n,1).

Proof. 'We showed the following theorem in [S];

Theorem 3.2 ([S]) X(J¥(M™*" n)) are not manifolds except for
S(J2(MT2)2)) and trivial cases.

Therefore, we only prove the following theorem. U

Theorem 3.3  The set of integral elements X(J2(M'72)2)) of
(JEH(M2.2),C?) is a submanifold of J(C*,2) = Gr(C*,2).

Proof. For wy € B(J?(M'122)), let p(wg) = vo € J*(M**2,2), where
p : N(JE(M'22)) — J*(M'*T22) is the projection. Let (U,(z,v,z,
p,q,7,5,t)) be a canonical coordinate in (J?(M*2 2),C?) around vp.
Namely,

02:{w0:w1:w2:0},

where wy = dz — pdx — qdy, wy = dp — rdx — sdy, wy = dq — sdx — tdy.
Let 7 : J(C?,2) — J?(M'*2 2) be the projection. Then 7~ *(U) is
covered by 10 open sets in J(C?,2):
TN U) = Upy UUpyr UU,s UU U U, U Uy UUy UU g U U U Uy,

where
Upy = {w € 771 (U) | dz A dy|, # 0}
Upr := {w € 771 (U) | dz A dr|y, # 0}

Ust :={w € 7Y U) | ds A dt|,, # 0}.

In the following, we will explicitly describe the defining equation of
Y(J2(M'T2)2)) in terms of the inhomogeneous Grassmann coordinate of
Uzy, - Ust.

(0) On Uy,y;
In this case, note that dx A dy|,, # 0 is the transversality condition of
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the geometric construction of the jet spaces (Section 2). So the defining
equation of X(J?(M'*2 2)) in Uy, will be that of the third order jet space
J3(M*2.2).

For w € Uyy, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dr, ds, dt to w, we can introduce the inhomogeneous coordinate
pijk in Ugyy of J(C?,2) around w as follows;

dr|w = p111(w)dz|y + priz(w)dy|w
ds|y = pro1(w)dx|y + proe(w)dy|w
dt]yy = p221(w)dz|y + paoz(w)dyly.

Moreover 2-dimensional integral element w satisfies deoy |, = dwal, = 0;
dwi |y = —dr Ndz|y — ds A dyly = (pr112(w) — pr21(w))dz A dy|.,
dws|y = —ds Adx|y — dt A dyly = (pr22(w) — pao1(w))dz A dyly,.

In this way, we obtain the defining equations f; = f» = 0 of
$(J?(M1*2)2)) in the inhomogeneous coordinate U, of J(C?,2), where

J1 =p112 — p121, f2 = pr22 — pa21;
{fl = f2 = 0} - Uacy-
Then df1, df> are independent on {f; = fo = 0}. Thus, we have

drly = pr11(w)de|y + priz(w)dy|w
dslw = pr12(w)dz|y + prae(w)dy|y
dt|w = pr22(w)dx|w + paoa(w)dy|w.

We see that (z,y,2,p,q,7,s,1,p111,p112, P122, P222) s a coordinate sys-
tem of X(J2(M**2,2)) in U,,. This coordinate system is called the canonical
coordinate system of the 3-jet space J3(M!'2 2) (Section 2, Section 4).

(1) On Uy,

For w € Uy, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dy, ds, dt to w, we can introduce the inhomogeneous coordinates
(x,9,2,p,q,7,8,t,a,B,¢c,D,e, F) of J(C?,2) around w as follows;
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dyly = a(w)dz|y, + B(w)dr|y,
ds|y = c(w)dz|y + D(w)dr|y
dt|y = e(w)dx|y + F(w)dr|y,.

Moreover 2-dimensional integral element w satisfies dw |, = dwa|, = 0;

dwi|y = —dr A dzx|y, — ds A dyly

— (—1— a(w)D(w) + Blw)c(w))dr A dal,,
dws |y = —ds A dz|y, — dt A dyly,

= (=D(w) + B(w)e(w) — a(w)F(w))dr A dx|.,.

In this way, we obtain the defining equations f; = fo = 0 of

B(J?(M*2)2)) in the inhomogeneous coordinate U, of J(C?,2), where
fi=—1—aD+ Be, f=—D+ Be — aF:;

{fl = f2 :O} - er-

Then df1, df> are independent on {f; = fo = 0}.
(2) On Uys;

For w € U,s, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dy, dr, dt to w, we have
dyly = a(w)dzx|y, + B(w)ds|y
dr|w = c(w)dz|, + D(w)ds|y,
dt|, = e(w)dx|y + F(w)ds|q.

Moreover 2-dimensional integral element w satisfies dw |, = dwa|, = 0;

dwi|w = —dr A dz|y — ds A dyl, = (—D(w) — a(w))ds A dz|.,
dws|y = —ds A dz|y, — dt A dyly
= (-1 —a(w)F(w) + e(w)B(w))ds A dz|,.

Then the defining functions of 3(J2(M1*2 2)) are independent by the
same reasoning as in (1).
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(3) On Uzt;
For w € Uy, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dy, dr,ds to w, we have

dylw = a(w)dz|y, + B(w)dt|y
dr|y = c(w)dx|y + D(w)dt|y,
ds|w = e(w)dx|, + F(w)dt|,.

Moreover 2-dimensional integral element w satisfies dw1 |, = dwa|, = 0;

dwil|y = (—D(w) + e(w)B(w) — a(w)F(w))dt A dz|y,
dwsly = (—F(w) — a(w))dt A dz|,.

Hence, we have

dyly = a(w)dx|y, + B(w)dt|y,
drly = c(w)dz]y + (a*(w) + e(w) B(w))dt]w
ds|y = e(w)dx|y, — a(w)dt]y,.

(2,9,2,p,q,7,8,t,a, B,c,e) is a coordinate of X(J?(M+2,2)) in Uy.

(4) On Uy,
For w € Uy,, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dz, ds, dt to w, we have

dz|, = a(w)dyl|, + B(w)dr|y,
ds|y = c(w)dyl|y + D(w)dr|qy
dt|w = e(w)dyl|y, + F(w)dr|y.

Moreover 2-dimensional integral element w satisfies dwy |, = dwa|, = 0

dwi |y = (—a(w) — D(w))dr A dy|,
0l = (c(w)B(w) — a(w)D(w) — F(w))dr A dyl.

(5) On Uys;
For w € Uys, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
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restricting dx, dr, dt to w, we have
dz|y = a(w)dyl|, + B(w)ds|y
dr|y = c(w)dyly + D(w)ds|y,
dt|, = e(w)dylyw + F(w)ds|y.
Moreover 2-dimensional integral element w satisfies dw |, = dws|, = 0;

414y = (c(w) B(w) — a(w)D(w) — 1)ds A dyl,
dws|y = (—a(w) — F(w))ds A dy|..
(6) On Uyy;

For w € Uy, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dx, dr, ds to w, we have

dzx|y = a(w)dy|y, + B(w)dt|y,
dr|y = c(w)dyly, + D(w)dt|,,
ds|w = e(w)dyl|y + F(w)dt|q,.
Moreover 2-dimensional integral element w satisfies dwy |, = dwa|y, = 0;

dw|w = (c(w)B(w) — a(w)D(w) — F(w))dt A dy|w
4]y = (e(w) Bw) — a(w)F(w) — 1)dt A dyl,.
(7) On U,s;

For w € U,s, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dzx, dy, dt to w, we have

dz|y = A(w)dr|y + B(w)ds|q,
dylw = C(w)dr|y + D(w)ds|y
dt|w = E(w)dr|y + F(w)ds|.y.

Moreover 2-dimensional integral element w satisfies dw1 |, = dwa|, = 0;
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dwi|w = —dr Ndzx|y — ds N dyly = (=B(w) + C(w))dr A ds|y,
dwws|w = —ds A dx|y, — dt A dy)w,
= (—A(w) + D(w)E(w) — C(w)F(w))ds A dr|.

Hence, we have
dz|y, = (D(w)E(w) — B(w)F(w))dr|, + B(w)ds|y

dy|w = B(w)dr|, + D(w)ds|q,
dt|, = E(w)dr|y + F(w)ds|q,.

(x,y,2,p,q,7,8,t, B, D, E, F) is a coordinate of X(J?(M*'*2,2)) in U,,.
(8) On U,
For w € Uy, w is a 2-dimensional subspace of C?(v), p(w) = v. Hence,
restricting dz, dy, ds to w, we have
dzx|y, = A(w)dr|, + B(w)dt|.,
dyly = C(w)dr|, + D(w)dt|,
ds|w = E(w)dr|y + F(w)dt|q,.

Moreover 2-dimensional integral element w satisfies dw |, = dwal,, = 0;

dwi|y = (—B(w) — D(w)E(w) + C(w)F(w))dr A dt|y,
dwslw = (—C(w) — A(w)F(w) + B(w)E(w))dt A dr|,.
(9) On Usy;

For w € Uy, w is a 2-dimensional subspace of C2(v), p(w) = v. Hence,
restricting dz, dy, dr to w, we have

dz|y = A(w)ds|y + B(w)dt|y
dyly = C(w)ds|y + D(w)dt|y,
dr|y = E(w)ds|y + F(w)dt|q,.

Moreover 2-dimensional integral element w satisfies dew |, = dwal,, = 0;
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dwi|y = (—B(w)E(w) + A(w)F(w) — D(w))ds A dt|,
dws|y = (—B(w) + C(w))ds A dt|,.

From (0),...,(9), we conclude X(J2(M'*2)2)) is a submanifold in
J(C?,2). O

Remark 3.4 We have that the projection p : X(J?) — J? is a submersion
with respect to the manifold structure of (J?2). This is checked in each
case. For instance, on Uy,

p: (x7y7z7p7Q77n7S7t7a7B7c7e) - (:U7y7z7p7q77q787t)'

4. Regularity and symbol algebra of diferential systems

Next we will consider the local equivalence problem of ($(J?(M122)),
D), where D is a canonical system on X(J?(M'*2,2)) (see Section 5). To
this purpose, we first recall Tanaka theory of weakly regular differential
systems in this section (see [T], [Y1]).

4.1. Weak derived system

Let D be a differential system on a manifold R. We denote by D the
sheaf of sections to D. Then we define k-th weak higher derived system
9D by:

oWp = oD, 9D = ok=1p 4 [Dﬁ(k—np]

where D = I'(D). A differential system D is called weakly regular, if 9D
is a sheaf of sections for a subbundle ) D, for any i. If D is not weakly
regular around x € R, then z is called singular point in the sense of Tanaka
theory.

We set D' := D, D7F := 9~V D (k > 2), for a weakly regular
differential system D. Then we have;

(S1) There exists a positive integer p such that
DlcD2c...cD*c...c D=1 cp—#r=p-k+t) —...

(S2) [DP,D7] C DP9, for any negative integers p, q,
ie. [X,Y]€DPte, X eDP, Y € DO
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4.2. Symbol algebra of weakly regular differential system
Let (R, D) be a weakly regular differential system such that

T(R)=D *>D W Y>5...5 D =D,

For all z € R, we put g_1(x) := D~(z) = D(z), gp(z) := DP(z)/DP*(x),
and put

Then dimm(z) = dim R. For X € g,(z), Y € g,(z), we take extensions X €
DP, Y € D9 of representatives for X,Y (X,,Y, give X,Y in 9p(2),94(2))
respectively. Then [X,Y] € DP*? and [X, Y], does not depend on the choice
of extensions up to D2T9H1 because of the equation

[fX,gY] = fglX.Y]+ f(Xg)Y —g(Y )X (f.g€ CZ(R)).

Therefore we define [X, Y] := [X, Y], € gpsq(x), which makes m(z) a graded
Lie algebra. We call (m(z),[ ]) the symbol algebra of (R, D) at x.

Note that the Symbol Algebra (m(x),[ ]) satisfies the generating con-
ditions

07,7 =¢""" (p<0).

Later, T. Morimoto introduced the notion of a filtered manifold as gen-
eralization of the weakly regular differential system in [M].

We define a filtered manifold (R, F') by a pair of a manifold R and a
tangential filtration F. Here, a tangential filtration F on R is a sequence
{FP?},<o of subbundles of the tangent bundle TR such that the following
conditions are satisfied;

(Z) TR=FF—=...=FH>...OFP >y FPtl 5. ... 5 F0 -0
(i) [FP,FI C FPHe Vp,g<0

where FP = I'(FP) is the set of sections of FP.
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Let (R, F) be a filtered manifold, for x € R, we put
j(2) = FP(z)/FP* (z)
and

f(z) == P ().

p<0

For X € f,(z), Y € f4(x), Lie bracket [X,Y] € f,14(x) is defined by;

Let X € FP, Y € F9 be extensions (X, = X, Y, = Y), then [X,Y] €
FPH[X Y] :=[X,Y], € fpiq(x) does not depend on the extensions.

Then we call (f(z),[ ]) the (associated nilpotent) graded Lie algebra of
(R,F) at « € R.

In general (f(z),[ ]) does not satisfy the generating conditions.

Remark 4.1 Let D = {w; = -+ = ws = 0} be a differential system on
a manifold R. We denote by D+ the annihilator subbundle of D in T*R,
namely,

DY (z) ={w e TR |w(X)=0for any X € D(z)}

= <’Zﬂ1,. . 'aws>‘
Then the annihilator (0D)" of the first derived system of D is given by
(0D)*+ = {w € D* | dw = 0 (mod D*)}.

Moreover the annihilator (9%**+1 D)+ of the (k + 1)-th weak derived
system of D is given by

(@* VD)t = {w e (0¥ D)t | dw = 0 (mod (8™ D)*,
(OP DY A (B DYDY, 2<p, g <k—1)}.

4.3. Example

Example 4.2 Let J*(M'*?2); (x1,22,y,p1,P2, P11, P12, P22, D111, P112;
P122, Pa22) be a canonical coordinate, then €% = {w = @ = wy = w1 =
W12 — Wy — 0}, where
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w = dy — p1dr1 — p2dzs
w; = dp; — pindry — piadrs
w;j = dpi; — pij1dr1 — pijadas.

The structure equation for C? is given by

dw =0 (mod C?)
dw; =0 (mod C3)
dw;j = —dp;j1 Adxy — dpija Adza  (mod C?).

Therefore 9NC? = 9C% = {w = w; = wy = 0}. The structure
equations for 9C® and M C? are

mod 9C3)

dw =0
dw; = —dp;1 Adxy — dpio Adze  (mod OC3)

mod M3 ,Wij N\ ki)

(
(
(
(

dw =0
dw; = —dpy A dxy — dpig Adxs  (mod 0 C3 , Wij N\ Tkt

Thus 0P C3 = §2C? = {w = 0}. The structure equations for 9>C*, 9 C3
are

dw = —dp; A dxy — dps Adxs  (mod 92C3)
dw = —dpy ANdx1 — dps N dxo

(mod 8(2)03,wij N @i, @5 N\ Wik, @i A\ wj).

Therefore 93 C% = 93C3 = T(J?). Especially, (J3(M, 1), C?) is regular
and weakly regular.

Symbol algebra of J3(M1*2, 2);

We take a coframe: {w, w1, ws, w11, @12, W22, dP111, dp112, dP122, dP222,
dzi,drs} and its dual frame {X,, X1, X2, X11, X12, X22, X111, X112, X122,
Xo99, Xzy, Xy }, where

0 0 0 0
X, = —, X;=—, Xi;= . Xk = :
Y ‘T opi Y Opij ak ODijk
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x4 _0o 0 0 0 D
T; — de - 83}1 Di ay plza D1 D2i 8p2 P11i 8}911
N 0 . 0
P12i5— Op1a P22i 55— s .

Then, at = € J3,

g-1(z) = C?® = <X1117X1127X1227X2227X:1:17Xz2>>
g-o(z) = (X11, X12, X22), g-3(z) := (X1, X2), g_a(x) = (X,),

Mjet (2 @ gp(2) =g 199 299 309 4
p=—1

The bracket relations are;
(Xik, Xa,| = 0aXjn, [Xjn, Xa,] = 0 X, [Xj, Xa,] = 6;;X,, the other rela-
tions are given by 0. (see the proof of Proposition 5.5 for how to calculate.)

5. Equivalence problem of (X(J2(M12,2)), D)

Since 3(J?) is a manifold from Theorem 3.1, we can define the canonical
system D on X(J?) as follows;
For any u € Y(J?) with p(u) = x € J?, we put

D(u) = p; *(u) C Tu(2(J%)) 7 To(J?)

where p : (J?) — J2(M1122) is the projection.

In this section, we will consider the equivalence problem of (3(J?), D).
Namely we will give the orbit decomposition under the action of the
Aut(X(J?), D), where

Aut(2(J2), D) = {p: B(J*) = B(J?) | ¢ :
local diffeomorpfhism such that ¢.(D) = D}.
Remark 5.1 Let ¢ : J%(M,2) — J?(M,2) be an isomorphism, i.e., ¢ is
a diffeomorphism such that ¢, (C?) = C2. Then ¢ induces the isomorphism

o« (2(J?),D) — (%(J?), D), namely, the differential map ¢, : 3(J?) —
¥(J?) is a diffeomorphism sending D onto D.
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First, we explain geometric meaning of the open covering U, U---UUy
in the proof of Theorem 3.3. The set ¥(J?) has a geometric decomposition;

»(J?) = By U X1 U Xy (disjoint union),

where %; = {w € X(J?) | dim(w N fiber) = i} (i = 0,1,2), and the fiber
means that of T(J?) D C? — T(J'). Then, locally,

Yo = Usyls (2
21 — {(Uzr U Ums U Uzt U Uyr U Uys U Uyt)\Ury}‘Z(Jg)
22 — {(Urs U Urt U Ust)\(Uwy U Uw»,- U Uzs U Ua:t U Uyr U Uys U Uyt)}‘E(JQ)-

The set X9 = J3 is an open set in X(J?). The set ¥; is a codimension 1
submanifold in $(J?). The set ¥ is a codimension 2 submanifold in ¥(.J?)
and is a P2-bundle over J2.

Proposition 5.2  The differential system D on X(J?) = S(J?(M+2,2))
s reqular, but is not weakly reqular. Precisely we obtain that

D C oD C 0D C 0°D =T%(J?).

Moreover 32D = 0@ D and

0D =T%(J?) on ZyU¥,;
9B D =03 D on Yo

Remark 5.3 Note that ¥y = J3 by definition. So the derived system,

weak derived system around w € g and the symbol algebra at w € ¥ are

given as in Example 4.2.

Proof. We take canonical coordinates on J? and consider the covering of
B(J?): Upy UUyr UUys UUL Uy, UUs WU UU,s UU U Ut (see proof of
Theorem 3.3). First of all, we show that it is enough to work on three open
sets Uyp, Ups, Ups.

Lemma 5.4 p ' (U) = Upy UUy, UUyzs UUy UUy, UUys UUy UUs U
Ut UUst = Upy U WUy, WU, UU UUg, under the notation of the proof
of Theorem 3.3.
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Proof.  First, we prove Uy, C Uy U Uyy.
For w € Uy,

dylw = a(w)dz|y, + B(w)dr|y
ds|y = c(w)dz|y + D(w)dr|y,
dt|y = e(w)dx|y + F(w)dr|y,
and the relations are fi = —1—aD+ Bc =0, fo = —D+ Be—aF = 0. Note

that w € Uy, if and only if dz and dy are independent at w, i.e., B(w) # 0.
Assume that B(w) = 0, then F(w) # 0 from f; = 0. So

dz A dt|, = dz A (e(w)dz + F(w)dr)|, = F(w)dx A dr|, # 0.

Therefore w € Uy U Uyy,.
The same argument yeilds Uys C Uy U Ugy, Uys C Uy, U Uyy and
Uyt C Uy UUpgy. O
From above remark, lemma and natural symmetry, where natural sym-
metry means the isomorphism induced by z =y, y =2, p=¢q, ¢ =p, 7 = t,
t = r, it is enough to work on Uy, U,s, U, because every germ in Uyr

appears in U,; and that of U appears in U,..

On U:pt;
We take a coordinate (z,vy,z,p,q,r,s,t,a,B,c,e) on Uy (see proof of
Theorem 3.3), then D = {w) = w1 = ws = wy = w, = w, = 0}, where

wo = dz — pdr — qdy wy = dy — adr — Bdt
w1 = dp — rdx — sdy @, = dr — cdx — (a® + eB)dt
wo = dq — sdx — tdy ws = ds — edx + adt.
Recall that, for w = (z,y, z,p,q,7,,t,a,B,c,e), B # 0 if and only if

w € Xy, therefore it is enough to consider at w in the hypersurface {B =
0} C £(J?). The structure equation at a point in {B = 0} is
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dw; = 0 (i=0,1,2)
dwy = —da Ndx —dB Ndt #0

dw, = —dc AN dx — (edB + 2ada) AN dt #0

dws = —de Ndx +da Ndt £ 0 (mod D).

Hence 0D = {wy = w1 = wy = 0}. The structure equation of 9D at a
point in {B = 0} is

dWQEO

dwy = (—w, — aws + ewy) ANdx — awy Adt 0

dwy = —ws Nde —dt Nwy #0 (mod 0D, w, ANwg (o, B =y,7,5)).

Hence 0D = 02D = {wy = 0}. The structure equation of 9°D at a
point in {B = 0} is

dwy = — (w1 + awy) ANdz 0
(mod 8?D, @y Awp (o, B € {y,r,5,1,2})).

Hence 0®)D = 33D = T(2(J?)). We conclude
9D =T%(J?) on Ly UX,.

On U,
Let (z,y,2,p,q,7,5,t,B,D,E,F) be a coordinate on U,s. Then D =
{wo = w1 = wy = w, = wy = w; =0}, where
wy = dz — pdx — qdy w,; = dx — (DE — BF)dr — Bds
w1 = dp — rdx — sdy wy = dy — Bdr — Dds
wo = dq — sdx — tdy wy = dt — Edr — Fds.
w € Yo if and only if dz|, = dy|w, = 0. So, in this coordinate, ¥s is a

{B = D = 0}: codimension 2 submanifold in ¥(.J?).
The structure equation at a point in {B = D = 0} is
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doo; = 0 (i=0,1,2)
dw, = —(EdD — FdB) Ndr —dB Nds # 0
dwy = —dBANdr —dD Nds #0
dwy = —dENdr —dF Nds #0 (mod D).
Hence 0D = {wy = w1 = wy = 0}. The structure equation of 9D at a
point in {B =D =0} is
dwo =0
dw) = —dr Nw, —ds Nwy #0
dwy = —ds Nw, — (Edr + Fds) Nwy, 0
(mod 9D, wy AN wg (o, 5 =x,y,t)).
Hence 9D = 0°D = {wy = 0}. The structure equation of 92D at a
point in {B =D =0} is
dwo = —w1 Awy —wa Awy Z0  (mod §2D)
dwo =0 (mod 8?°D,w, Awp (o, € {z,y,t,1,2})).

Therefore 33D = T(X(J?)) on U,.s and @)D = {wy = 0} on Xy N U,,.
OII Urt;

dz|y = A(w)dr|y + B(w)dt|y

dylw = C(w)dr|y + D(w)dt|y,

ds|y = E(w)dr|, + F(w)dt|y,
where defining equations are —B — DE+ CF =0, —-C — AF + BE = 0.
w € g if and only if A = B =C = D = 0. Moreover, if (E,F) # (0,0)
then the point is in U,.s; or Ug. So we consider a point (E,F) = (0,0)

and take a coordinate (x,v, z,p,q, 7, s,t, A, D, E, F) around (E, F) = (0,0).
Then D = {wy = w1 = wp = wy = wy = ws = 0} where
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wo = dz — pdx — qdy wz:diﬁ—Adr—%ﬁﬁdt

wy = dp — rdx — sdy wy:dy—%dr—Ddt

wo = dq — sdx — tdy ws = ds — Edr — Fdt.
The structure equation at a point (4, D, E, F) =0 is
deo; = 0 (i=0,1,2)
dw, = —dANdr #Z0

dwy = —dD Ndt #0
dws = —dENdr —dF Ndt #0 (mod D).

Hence 0D = {wy = w1 = we = 0}. The structure equation of D at a
point in (A, D, E,F)=0is

dwoz()
dw; = —dr Nw, £0

dwy = —dt Nwy #0 (mod 0D, w, Awg (a, 5 =,y,s)).

Hence 0D = 82D = {wy = 0}. The structure equation of 9°D at a
point in (A,D,E,F)=01is
dwo = —w1 Awy —wa Awy, Z0  (mod §2D)
dwo =0 (mod 8?°D,w, Awp (o, € {z,y,s,1,2})).

We conclude that (X(J?), D) is regular and not weakly regular;

0D =03 D on ¥, O

5.1. Classification of X
From above proposition, (X(J?), D) is locally weak regular around w €
>1. So we can define symbol algebra at w € ¥; and the following holds;

Proposition 5.5 For w € X1, the symbol algebra m(w) is isomorphic to
mm=g_1Pg 2Dg_3Dg_ys and [,] is given by;
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Xy = [X‘“XCE] - [XB?Xt]7 X?" = [Xer]a Xs = [Xme] = _[Xaaxt]
X, =X, Xo], Xq=[Xs, Xg] = —[Xy, X¢]
X, = [X,, X, the other is trivial,

where { X, X,,, Xq, Xy, X, Xs, Xp, X, Xo, X, X, X} are basis, and

g-1 = ({Xa, X, Xo, X5, Xe, Xe})
g-2 = ({Xy, X, Xi})

g-3 = ({Xp, X¢})

g-a = ({X:})

Especially, for w € X1, the symbol algebra (m(w),[,]) is not isomorphic
to the jet type symbol algebra mj.; given as in Example 4.2.

Remark 5.6 If the canonical systems (X(J?),D) at w,w’ € X(J?) are
locally isomorphic, then the symbol algebras m(w) and m(w’) are isomorphic
as a graded Lie algebra. The symbol algebra m(w) for w € ¥y is isomorphic
to mje¢ as a graded Lie algebra. Hence, by Proposition 5.5, we have that
the canonical system D around w € ¥; is not locally isomorphic to the
canonical system D around w € ¥.

Proof. “On U,;” in the proof of Proposition 5.2, we put @i := w; + awas,
W, 1= W, + 20w, — ewy, W, = dc + 2ade — eda and take a coframe:

{'W[], @tha 'Wy, @7‘7 Ws, dxv dta daa dB7 We, de}7

then the structure equations are
dw; =0 (1=0,1,2)
dwy = —da Ndx — dB N dt
dt, = —w. N\ dx

dws = —de Ndx +da Ndt  (mod D)
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dwo =0
dwi = —w, \Ndx
dwy = —ws Nde —dt Nwy #0 (mod 0D, wy Nwg (o, f=1y,T1,5))
dwOE—@l/\dlL‘iO
(mod 92D, w, Aw;, w; Aw; (a € {y,rs},4,7 € {1,2})).

We take its dual frame { X, X,,, X4, Xy, X;, X5, Xo, X4, Xo, X, X, Xe}
and put

(Xe, Xa] =4, X, + A X, + A X, €90 (A4,,A,As €R).

Then
dﬁr(XaXx) = Xc(@r(Xx)) - Xx(ﬁr<Xc)) - ZAU?"([)(C; Xx])
= _@r([XcaXm])
— A,

On the other hand

d@r(Xca X:z:) = _wc(Xc)dx(Xw) + dm(Xc)wc(Xa:)
= -1

Therefore, A, = 1. From the same argument, we get A, = A; = 0.
Hence

[Xe, Xz] = X,

The others are left to the reader. Hence its dual frame satisfies the
relation of this proposition.

Finally, we will prove that the graded Lie algebra m is not isomorphic
to the jet type symbol algebra mj.; (see Example 4.2).

From the above Lie bracket relations of m, we have a special direction

ing s,

{(X) | X €93, X #0,[X,g-1] =0} = (X).
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But mj.; does not have such direction. This completes the proof of
proposition. O

Theorem 5.7 (normal form) For any w € X4, the differential system
((J3(M**2,2), D) around w is locally isomorphic to the germ at the origin
of (R12, D) given as in the introduction.

Proof. We construct the paths from any points to the origin, directly. For
wo € X1, we may assume wy is expressed by a germ at wy = (0,...,0,
ap, 07 Co, 60)7

wo = dz — pdx — qdy wy = dy — adxr — Bdt

wy, = dp — rdx — sdy @, = dr — cdx — (a® + eB)dt

wo = dq — sdx — tdy ws = ds — edx + adt,
because of normal form of J? and wg € ¥; if and only if B = 0. Hence

what we have to do is to construct ¢ € Aut(X(J?), D)) sending (0, ...,0,
ag, 0, co,e0) to (0,...,0). Let ¢, be a

Pe - (x7y727p7Q7T7Sat7a7B7C7e) =

z,Y,z — Ex Y,p —€oxY,q — Ex )

r—eqy,s —epx,t,a, B,c— epa, e — eo>

Then
* _ * _
Yo = Wo ‘Pewy = Wy
(P:YD1 = w1 (P:wr = Wy — €Wy
iy = wa Yrws = ws.
Therefore, ¢, leaves D invariant and sends a germ (0, ...,0,aq, 0, cy, e9) to
a germ (0,...,0,a0,0,c),0) where ¢ = co — epap.

Similarly, Let ¢,, . be

Pa - (ﬂv,y,z,p,q,r,s,t,a,B,c, 6) =
(l'ayazap_F aopq,q,r + 2a0s + a(%tas + aot, t,a — ao, B,c + 26610,6)
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QOC : (:U,y,z,p,q,r,s,t,a,B,c,e) =

b3 b 2 / /
<x,y,z 2 P52 ,q,rcox,s,t,a,B,cco,e)
Then these maps preserve D and the composition ¢, o ¢, sends a germ
(0,...,0,a0,0,cp,0) toagerm (0,...,0,0,0,0,0), where above isomorphisms
are obtained by focussing on the form w. = dc + 2ade — eda in the proof of
Proposition 5.5 and leaving the form invariant to keep the symbol algebras.
0

5.2. Classification of X5

Finally, we will classify points in 3. From the Proposition 5.2, w €
Yo, we can not define the symbol algebra at w. But VD and @D are
subbundle, so we can define graded Lie algebra at w as follows;

For w € ¥y, we put g_;(w) := D71 (w) = D(w), g_o(w) := D~2(w)/
D1 (w), g_s(w) i= D~3(w)/D~2(w), g_4(w) i= Ty (S(J2))/D~3(w).

m(w) = g-1(w) ® g-2(w) S g-s(w) & g-a(w).
We define Lie bracket by the same way of the usual symbol algebra except

for [g_1,9-3]. For [g_1,9_3], we define [g_1,9_3] = 0.

Note that this graded Lie algebra does not satisfy the generating con-
dition [g_l,g_g] =9g-4.

Remark 5.8 Note that the above graded Lie algebra at w € X5 is an
example of the associated Lie algebra of filtered manifold (X(J?), F) by
setting;

F~4(w) = T,,(J?), F3(w) = 0% D(w),
F~3(w) =W D(w), F~Y(w)= D(w).

Lemma 5.9 For wg € Yo, there exists w € U,s such that w is locally
isomorphic to wy.

Proof. Note that ¥ is coverd by U,; UU,; U Ug. From the symmetry x
and y, Ug is isomorphic to U,s. So it is enough to consider the points in
Urt\(Uyps UUgt). Upt\(Ups UUs;) is a set consisting of a point wg. wy is the
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origin in the coordinate U,, i.e., wy is the integral element given by;

0o 0
wo:{dl‘:dy:dz:dp:dq:dSZO}:<8r’at>
Then we consider the isomorphism ¢ : (J2, C?) — (J2, C?);

= (= 4,y,2,0,q +pr, s+ 1t +25+7).

This isomorphism ¢ sends the integral element wqy to wy where the wq
is expressed by

g o0 0
wo:{dx:dy:dz:dp:dq:d(s—r):O}:<8E,8T+8S>,

in the new coordinate system. Thus wy € Ur;z in this new coordinate system.
O

From above lemma, it is enough to classify the points in U,..
Proposition 5.10 For w € Yo, graded Lie algebra m(w) is isomorphic to
m(E,F), m(E,F)=g_1®g_2®g_3Dg_4 and [,] is given by;

(XB, Xy =Xy — FX,, [Xp,X]|=X,, X, Xs] =X,, [Xp,X,] =FEX,
(Xe, Xo] = Xy, [Xp, Xs] =X,
[Xr, Xa] = Xp, [XSaXy] = Xp + FXy, [Xs, Xa] = Xq, [XTaXy] =EX,
the other is trivial,

where {X., Xp, Xq, Xz, Xy, Xt, X0, X5, Xp, Xp, Xg, Xr} are basis which
satisfy

g-1={X:, X5, XB, XD, X5, Xr})
g2 = ({ X, Xy, Xi})
g-3 = ({Xp, X¢})
g1 = ({X.}),
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and E, F € R are parameters.

Proof. We may assume w € U, by the above lemma. From the proof of
Theorem 3.3, in U,,, D is expressed by D = {wy = w1 = wy = w, = wy =
w; = 0} where (z,y,2,p,q,7,,t, B, D, E, F) is the coordinate and

wo = dz — pdx — qdy wy; = dx — (DE — BF)dr — Bds

w1 =dp — rdz — sdy wy = dy — Bdr — Dds

wo = dq — sdx — tdy wy = dt — Edr — Fds.

Recall that w € 35 if and only if B = D = 0 in this coordinate. Let
{X., X,, Xg, Xo, Xy, X, X, X5, XB, XD, XE, Xp} be the dual frame of the
coframe {@’, @', w?, w,, @y, @y, dr,ds,dB,dD,dE, dF}. From the proof of
Proposition 5.2, the structure equations are;

(dw; =0 (i=0,1,2)
dw, = —(EdD — FdB) Ndr —dB Nds #0
dw, = —dB Ndr —dD Nds # 0
(dwy = —dENdr —dF ANds #0 (mod D).
dwog =0
dw) = —dr Nw, —ds Nwy, #0
dwy = —ds Nwy — (Edr + Fds) Nwy, #0
(mod 0D, wy Nwg (a, = x,y,t)).

dwy = —w1 ANwy — w2 Awy 0  (mod §2D)
dwo =0 (mod 8?D,w, Awg (o, B € {z,y,t,1,2})).

Thus we obtain the result from the argument of the proof of the Proposition
5.5. O

For the graded Lie algebra m(E, F'), the followings are intrinsic;
g‘—/l = {X €g-1 | ad(X)‘G—z = 0} = <XBvXD7XEaXF>
oly ={X €g-2|ad(X)|g_, =0} = (X¢)
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§l—1 = {X € g1 ’ Im ad(X)\g_l S g‘,/g} = <XE7XF>7

i.e. the above subalgebras are preserved by Lie algebra isomorphisms in-
duced by isomorphisms of differential systems.

Lemma 5.11  For the graded Lie algebra m(E, F), let Ch(m(E, F)) be a
set of the characteristic directions, that is,

Ch(m(E, F)) = {V C g_1 : 1-dimensional subspace |
X eV, X #0,rankad(X)|g_, = 1}.
Then

2 (F?+4E >0)
#Ch(m(E,F)) =<1 (F?+4E =0)
0 (F%2+4F <0).
Remark 5.12 For w € ¥, w is said to be hyperbolic, elliptic or parabolic

according to whether F?2 4 4F is positive, negative or zero, respectively.

Proof. For X € g_q,

X=X, +nX,+ XV (6neR, XV eg”)

Then
ad(X)(X,) = £X, + nX,
ad(X)(Xy) = §(EXy) +n(Xp + FXq) =X, + (EE +nF)X,
ad(X)(X;) = 0.

Hence X is a characteristic direction if and only if X is a null direction
for the quadratic form

E(EE+nF) —n* = E& + Fén — .

Therefore the determinant of this quadratic form classifies the number of
the characteristic directions. O
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From above lemma, 5 has at least 3 components. We put

Yy = {w € X9 | w is a hyperbolic point}
Y. ={w € Xy | wis a elliptic point}

Y, ={w € X3 | w is a parabolic point}.

Then this classification is sufficient by the following theorem.

Theorem 5.13  There exists a decomposition of Yo

S =SpUS. U,

into disjoint three subsets such that, if w € Xy, then (S(J?(M1T2)2), D)
around w is locally isomorphic to the germ of (R'2, D) at (0,...,0,1,0), if
w € X, then, (0,...,0,—1,0), and if w € X, then, (0,...,0,0,0). Here
(R'2, D) is given as in the introduction.

Proof.  First, we introduce the isomorphisms ¢,(a € R) : U5 — U,s and
Y : Ups — U,s. these isomorphisms will preserve the determinant of the
quadratic form;

F?2 +4E = F? + 4F.

For nonzero a € R, we define ¢, by;

L Da?ai

s t B EF F
a’ a?’ a’ a )

= | T z r,s S
272% »Dy q 27 ) 27 | )

B-Lpr_L_Lpiq)
2 2 4
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Then
w*@o = Wy ¢*’@z =W, — %wy
T,Z)*@l = w1 w*ﬁy = Wy
Y@y = wa + 3w1 Y@ = Wy
(1) For w € ¥p, we may assume w = (0,0,0,0,0,0,0,0,0,0, Ey, Fy) € Uys.
Then FZ + 4Ey > 0. If Fy # 0, p_pg, sends w to w' = (O,...,O,%,—l).
The isomorphism 1) sends w’ to w” = (O, ...,0, %ﬁ + % — %, 0). Furthermore
N3 sends w” to (0,...,0,1,0), where E} = % + % — i.
0 0
If Fo =0, ¢ /g sends w to (0,...,0,1,0).

(2) For w € X, we may assume w = (0,0,0,0,0,0,0,0,0,0, Ey, Fy) € Uys.
Then F§ + 4Ey < 0. If Fy # 0, ¢_p, sends w to w’ = (0,...,0 £ —1).

) FT)27
The isomorphism 4 sends w’ to w" = (0’ -0, 1%2) - % - i, 0)- Furthermore
N sends w” to (0,...,0,—1,0), where By = £3 + 1 — 1.
0 0

If Fo =0, ¢ —p, sends w to (0,...,0,-1,0).

(3) For w € ¥, we may assume w = (0,0,0,0,0,0,0,0,0,0, Ey, Fy) € Uys.
Then Fg + 4Ey = 0. If Fy = 0, then Ey = 0.

If Fo #0, ¢_p, sends w to w' = (0, ..., 0, —i, —1). The isomorphism

¥ sends w’ to (0,...,0,0,0). O

Remark 5.14 Note that the normal forms of the graded Lie algebras are
obtained by the above local normal forms. Namely, for w € 3o, m(w) is iso-
morphic to m(1,0), m(—1,0),m(0,0) (given as in Proposition 5.10) according
to whether w € Xp,, w € ¥, or w € ¥,, respectively.

We summarize
Corollary 5.15

N(J?) =T U U (SR UZ. U,

where
Yo = {w € (J?) | dim(w N fiber) = 0} = J>
¥ = {w e B(J?) | dim(w N fiber) = 1}
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Yy = {w € B(J?) | dim(w N fiber) = 2}
S =5, U%, U,
Yn = Yo N {w : hyperbolic point}
Ye = XaN{w : elliptic point}
Y, = Yo N{w : parabolic point}
Yo is an open set in B(J?). X is an codimemsion 1 submanifold in
$(J?) Xy is an codimemsion 2 submanifold in X(J?) and P?-bundle over J?.

Y, Xe are also codimemsion 2 submanifolds in X(J?). ¥, is an codimem-
sion 3 submanifold in X(J?).

Moreover, the each component have the following normal forms;
0) Xo has jet type normal form.

w € X s locally isomorphic to a germ at the origin in , D) where
1 31 is locally i hic t t th igin in (R'2, D) wh
(R'%;2,y,2,p,q,7,5,t,a, B, c,e) is coordinate and D is expressed by D =
wy =Wy = wy = Wy, = wy = ws = 0}, where

y 0 h

wo = dz — pdx — qdy wy = dy — adr — Bdt

w1 = dp — rdx — sdy @, = dr — cdz — (a® + eB)dt
wo = dq — sdx — tdy ws = ds — edx + adt.

(2) w € By, is locally isomorphic to a germ at (0,...,0,1,0) in (R'2, D).
w € B, is locally isomorphic to a germ at (0,...,0,—1,0) in (R'2, D),
w € %, is locally isomorphic to a germ at (0,...,0,0,0) in (R'2, D).

where (R*2;2,y, 2, p, q,r,8,t, B, D, E, F) is coordinate and D is expressed by

D={c"=w!'=w?=w, =w, =w =0} where

wo = dz — pdx — qdy w,; = dx — (DE — BF)dr — Bds
w1 =dp — rdz — sdy wy = dy — Bdr — Dds
wo = dq — sdx — tdy wy = dt — Edr — Fds.
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Appendix
A description of integral manifolds of (3(J?), D)

In this appendix, we will consider integral manifolds of (3(J?), D). If
S is a 2-dimensional submanifold of ¥(J?) and satisfies T'S C D, then
S is called a 2-dimensional integral manifold of (3(J2),D). If S is a 2-
dimensional integral manifold of (3(J?), D) with Qs # 0, then S is called
an integral manifold of (X(.J?), D) with independence condition €, where Q
is a 2-form on (X(J?), D) independent modulo D.

We describe the relation between the integral manifolds of (X(J?), D)
and singular solutions of partial differential equations of second order.

Here 2-dimensional integral manifold S of (X(J?), D) is a singular solu-
tion, if the projection of S to (J!,C') has singularity,

(£(J%), D)

|

ST (JL,CY).

For (JK(M™*" n),C¥), the integral manifolds S with independence
condition dzq A - - - Adz, correspond to the graphs of the k-jet extensions of
m functions of n variables. Hence, the integral manifolds with independence
condition dxq A - -+ A dx, depend on m functions of n variables.

Example 5.16 Let (7,y, 2,p,q,7,5,t,p111, P112, P122, P222) be the canoni-
cal coordinate on J3(M1*2,2). The solution S with independence condition
dx A dy is expressed by;

S = (:E’ Y, Z(IL’, y)7 ZI(1:7 y)a Zy(l‘a y)v ZII(‘/L‘a y)a Zwy(x’ y)’ Zyy(xv y)?
Zrzx (-Ta y)7 Zxay (fE’ y)a Zryy (x, y) )y Ryyy (:C, y)) .
Therefore the integral manifolds depend on 1 function of 2 variables
z(z,y).

Now, we consider the integral manifolds of (X(J?), D) passing through
¥y = {dim(w N fiber) = 1} with some independence condition. Note that
the integral manifolds S C {dim(w N fiber) = 0} are treated in the above



622 K. Shibuya

example.

Proposition 5.17  Let (z,y,2,p,q,7,5,t,a,B,c,e) be the canonical coor-
dinate around X1 on (%(J?), D) (Theorem 5.7).

If S is an integral manifold of (X(J?), D) passing through X1 with inde-
pendence condition dx A dt, then S is written by;

S = <$7y(x7t)7/qytdt+ZO(x)azw_qyxa/tytdt+q0(x)7

Pz — Y, Qo — Yz, T, yx,yt,m,sx) (1)

In other wards, the integral manifolds depend on 1 function of 2 variables
y(x,t) such that y.(0,0) and 2 functions of 1 variable qo(x), zo(z).

Conwversely, for any y(z,t) with y.(0,0) = 0 and qo(z), 20(x). We can
construct the integral manifold by (1).

Proof. Let S be an integral manifold, then S = (z,y(z,t),2(x,t),...,

t,...,e(z,t)) from independence condition. Moreover S satisfies S*w; = 0
(i=0,1,2,y,7,5);

= (22 = @ — p)da + (21 — qy)dt = 0 (2)

= (P — 7 — syz)dx + (pr — sy )dt =0 (3)

= (@2 — 5 — tyz)dz + (g — ty)dt = 0 (4)

= (y» — a)dz + (yy — B)dt =0 (5)

= (ry — c)dz + (r¢ — (a* +eB))dt = 0 (6)

S*ws = (s —e)dr + (s¢ + a)dt = 0. (7)

a =y, and B = y; is determined by (5), and note that the condition
passing through ¥ is B =y = 0. From (4), ¢ = [ ty.dt+ qo(z) where go(x)
is a function on S depending only on z, and s = ¢, — ty,. From (7), e = s,.
From (2), z = [ qyidt + zo(z) where zo(z) is a function on S depending only
on x, and p = z; — qy,. From (3), r = p, — sy,. From (6) ¢ = r,. Therefore
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- <x,y<x,t>, / aedt + 20(2), 72 — qua, / tyrdt + q0(2),

p:r_sy:taq:n_tymatvymaytarz>3z>- (8)

Conversely, for any y(z,t) with y,(0,0) = 0 and qo(z), z0(z). We de-
fine the 2-dim submanifold S by (1), then y;(0,0) = 0 ensure that passing
through ¥; and the rest 3 conditions in (2),...,(7) are satisfied by defini-
tion, automatically. O

Corollary 5.18 The projection of the integral manifolds passing through
31 with independence condition dx A dt have singularities at the origin.

Corollary 5.19 Let S be an integral manifolds with independence condi-
tion dx N dt. Assume S C X1, then the projection of S is a regular curve.

Proof.  The condition is B = y; = 0. Hence y(x,t) = y(z) depends only on
x. From the above theorem, we have

r=2x
y=y(z)

z = zp(x)

P =2y~ 4y
q=qo(z)

r=(qy + 3)t* — 3q{xt + z{

s=qy—ty

t=t
a=1y
B=0

/v 1,1 1,1 11 /

c=z—(a'y +a0y") — (@y" +a0y") — (a5 — ty")y — (a6 — ty')y"
e=qy —ty". O

Example 5.20 (cuspidal edge) Let y(z,t) = t3 — 3xt,29(x) and go(z).
Then the integral manifold S(x,t) is
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T=ux

y=t3—3at
9 27 3

z= %ﬂ — %xtg’ + (qo + 21:2)753 — 3qoxt + 2o
9 3

p= 1—Ot5 + (q(’) — 2x> t3 — 3qpat + 2,
3 3

q= Zt4 - §$t2 +qo

r=(q) +3)t° — 3q)xt + 2}
3

S = §t2 + q6

t=t

a=—3t

B =3t -3z

c=qq't* — 3(qq +zq0')t + 25’

1
e:qo

from direct calculation.

Example 5.21 (Cartan’s overdeteremined system) We consider the
Cartan’s overdeteremined system

The Lie algebra of infinitesimal contact transformations of the system is
isomorphic to the 14-dim exceptional simple Lie algebra Gs.

Let y(x,t) = —xt, zo(x) = 0 and go(x) = 0. Then the integral manifold
S(z,t) is
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1
226562153 a = —t
1
p:—éxtg B=—x
1
q:—ith c=0
1
ngtg e=0.

Therefore the projection of the integral manifold S(z,t) is a singular
solution of the Cartan’s overdeteremined system, where the projection is

B(J?) — J2
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