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Abstract. In this paper, we study the pro-Σ fundamental groups of configuration

spaces, where Σ is either the set of all prime numbers or a set consisting of a single

prime number. In particular, we show, via two somewhat distinct approaches, that, in

many cases, the “fiber subgroups” of such fundamental groups arising from the various

natural projections of a configuration space to lower-dimensional configuration spaces

may be characterized group-theoretically.
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Introduction

Let n ≥ 1 be an integer; X a hyperbolic curve of type (g, r) [where 2g−
2 + r > 0] over an algebraically closed field k of characteristic 0. Denote by

Xn ⊆ Pn

the n-th configuration space associated to X, i.e., the open subscheme of
the direct product Pn of n copies of X obtained by removing the various
diagonals from Pn [cf. Definition 2.1, (i)]. By omitting the factors corre-
sponding to various subsets of the set of n copies of X, we obtain various
natural projection morphisms

Xn → Xm

for nonnegative integers m ≤ n [cf. Definition 2.1, (ii)]. Next, let ΣC be
either the set of all prime numbers or a set consisting of a single prime
number. Write C for the class of all finite groups of order a product of
primes ∈ ΣC . Then by considering the maximal pro-C quotient of the étale
fundamental group, which we denote by “πC

1 (−)”, we obtain various natural
surjections

πC
1 (Xn) ³ πC

1 (Xm)
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arising from the natural projection morphisms considered above. We shall
refer to the kernel of such a surjection πC

1 (Xn) ³ πC
1 (Xm) as a fiber subgroup

of πC
1 (Xn) of length n−m and co-length m [cf. Definition 2.3, (iii)]. Also, we

shall refer to a closed subgroup of πC
1 (Xn) that arises as the inverse image

of a closed subgroup of πC
1 (Pn) via the natural surjection πC

1 (Xn) ³ πC
1 (Pn)

[induced by the inclusion Xn ↪→ Pn] as product-theoretic [cf. Definition 2.3,
(ii)].

The present paper is concerned with the issue of the group-theoretic
characterization of these fiber subgroups. Our main results [cf. Corollaries
4.8, 6.3] may be summarized as follows:
( i ) Suppose that g ≥ 2. Let H ⊆ πC

1 (Xn) be a product-theoretic open
subgroup. Then the subgroups H

⋂
F of H — where F ranges over

the various fiber subgroups of πC
1 (Xn) — may be characterized group-

theoretically [cf. Corollary 4.8].
( ii ) Suppose that (g, r) is not equal to (0, 3) or (1, 1). Then the fiber sub-

groups of πC
1 (Xn) may be characterized group-theoretically [cf. Corol-

lary 6.3].
The proof of (i) is obtained as a consequence of the following result [cf.
Theorem 4.7]:
(iii) In the notation of (i), every normal closed subgroup J ⊆ H such

that the quotient group H/J is abelian and torsion-free is, in fact,
product-theoretic.

The proof of (iii) is based on a slightly complicated computation involving
Chern classes [cf. §4], together with the well-known fact that the action
of the Galois group of a finite Galois covering of a curve of genus ≥ 2 on
the Tate module of the Jacobian of the covering curve contains the regular
representation [cf. Proposition 1.3]. On the other hand, the proof of (ii), due
to the second author, makes essential use to the notion of a “nearly abelian
group”, i.e., a profinite group G which admits a normal closed subgroup
N ⊆ G which is topologically normally generated by a single element ∈ G

such that G/N contains an open abelian subgroup [cf. Definition 6.1]. It is
worth noting that at the time of writing, we are unable to prove either an
analogue of (i) for g < 2 or an analogue of (ii) when (g, r) is equal to (0, 3)
or (1, 1).

The original proof of (i) [due to the first author] given in §4 may be
regarded as a consequence of various explicit group-theoretic manifestations
of certain algebro-geometric properties. This proof of (i) motivated the
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second author to develop a more direct approach to understanding these
essentially purely algebro-geometric properties. This approach, which is
exposed in §5, allows one to prove a stronger version [cf. Theorem 5.6], in
the case of proper hyperbolic curves, of Theorem 4.7 and, moreover, implies
certain interesting consequences concerning the non-existence of units on
finite étale coverings of a sufficiently generic hyperbolic curve [cf. Corollary
5.7].

The contents of the present paper may be summarized as follows: Basic
well-known facts concerning the profinite fundamental groups of hyperbolic
curves and configuration spaces, including a certain mild generalization of
a theorem of Lubotzky-Melnikov-van den Dries, are reviewed in §1, §2, re-
spectively. In §3, we discuss the group-theoreticity of direct product decom-
positions of profinite groups. In §4, §6, we present the proofs, via somewhat
different techniques, of the main results (i), (ii) discussed above. In §5, we
discuss the algebraic geometry of divisors and units on configuration spaces,
a theory which yields an alternate approach to the theory of §4, in the case
of proper hyperbolic curves. Finally, in §7, we observe that these results (i),
(ii) imply a certain discrete analogue [cf. Corollary 7.4] of (i), (ii).

0. Notations and conventions

Numbers The notation Q will be used to denote the field of rational
numbers. The notation Z ⊆ Q will be used to denote the set, group, or ring
of rational integers. The notation N ⊆ Z will be used to denote the set or
[additive] monoid of nonnegative integers. If l is a prime number, then the
notation Ql (respectively, Zl) will be used to denote the l-adic completion
of Q (respectively, Z). The [topological] field of complex numbers will be
denoted C.

Topological Groups Let G be a Hausdorff topological group, and H ⊆ G

a closed subgroup. Let us write

ZG(H) def= {g ∈ G | g · h = h · g, ∀h ∈ H}

for the centralizer of H in G. Also, we shall write Z(G) def= ZG(G) for the
center of G.

We shall say that a profinite group G is slim if for every open subgroup
H ⊆ G, the centralizer ZG(H) is trivial. Note that every finite normal
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closed subgroup N ⊆ G of a slim profinite group G is trivial. [Indeed, this
follows by observing that for any normal open subgroup H ⊆ G such that
N

⋂
H = {1}, consideration of the inclusion N ↪→ G/H reveals that the

conjugation action of H on N is trivial, i.e., that N ⊆ ZG(H) = {1}.]
We shall write Gab for the abelianization of G, i.e., the quotient of

G by the closure of the commutator subgroup of G. We shall denote the
group of automorphisms of G by Aut(G). Conjugation by elements of G

determines a homomorphism G → Aut(G) whose image consists of the inner
automorphisms of G. We shall denote by Out(G) the quotient of Aut(G) by
the [normal] subgroup consisting of the inner automorphisms. In particular,
if G is center-free, then we have an exact sequence 1 → G → Aut(G) →
Out(G) → 1.

Curves Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family
of curves of genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of
schemes X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We
shall denote the moduli stack of r-pointed stable curves of genus g over Z
(where we assume the points to be ordered) by Mg,r [cf. [DM], [Knud] for
an exposition of the theory of such curves]. The open substack Mg,r ⊆
Mg,r of smooth curves will be referred to as the moduli stack of smooth
r-pointed stable curves of genus g or, alternatively, as the moduli stack of
hyperbolic curves of type (g, r). The divisor at infinity Mg,r\Mg,r of Mg,r

is a divisor with normal crossings on the Z-smooth algebraic stack Mg,r,
hence determines a log structure on Mg,r; denote the resulting log stack by
Mlog

g,r . For any integer r′ > r, the operation of “forgetting the last r′ − r

points” determines a [1-]morphism of log algebraic stacks

Mlog
g,r′ → Mlog

g,r

which factors as a composite of structure morphisms of various tautological
log stable curves [cf. [Knud]], hence is log smooth.

A family of hyperbolic curves of type (g, r)

X → S
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is defined to be a morphism which factors X ↪→ Y → S as the composite
of an open immersion X ↪→ Y onto the complement Y \D of a relative
divisor D ⊆ Y which is finite étale over S of relative degree r, and a family
Y → S of curves of genus g. One checks easily that, if S is normal, then
the pair (Y, D) is unique up to canonical isomorphism. We shall refer to Y

(respectively, D) as the compactification (respectively, divisor of cusps) of
X. A family of hyperbolic curves X → S is defined to be a morphism X →
S such that the restriction of this morphism to each connected component
of S is a family of hyperbolic curves of type (g, r) for some integers g, r as
above. A family of hyperbolic curve of type (0, 3) will be referred to as a
tripod.

1. Surface groups

In the present § 1, we discuss various well-known preliminary facts
concerning the sorts of profinite groups that arise from étale fundamental
groups of hyperbolic curves.

Definition 1.1 Let C be a family of finite groups containing the trivial
group; Σ a set of prime numbers.
( i ) We shall refer to a finite group as a Σ-group if every prime dividing
its order belongs to Σ. We shall refer to a finite group belonging to C as a
C-group and to a profinite group every finite quotient of which is a C-group
as a pro-C group. We shall refer to C as a full formation [cf. [FJ], p. 343] if
it is closed under taking quotients, subgroups, and extensions.
( ii ) Suppose that C is a full formation; write ΣC for the set of primes p

such that Z/pZ is a C-group and Ẑ ³ ẐC for the maximal pro-C quotient
of Ẑ. Then we shall say that the formation C is nontrivial if there exists a
nontrivial C-group [or, equivalently, if ΣC is nonempty]. We shall say that
the formation C is primary if ΣC is of cardinality one. We shall say that
the formation C is solvable if every C-group is solvable. We shall say that
the formation C is total if every finite group is a C-group. We shall say that
C is a PT-formation if it is either primary or total. We shall say that C is
invertible on a scheme S if every prime of ΣC is invertible on S.
(iii) Suppose that C is a full formation; let G be a profinite group. If G

admits an open subgroup H which is abelian, then we shall say that G

is almost abelian. If G admits an open subgroup H which is pro-C, then
we shall say that G is almost pro-C. We shall refer to a quotient G ³ Q
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as almost pro-C-maximal if for some open subgroup H ⊆ G with maximal
pro-C quotient [cf. [FJ], p. 344] H ³ P , we have Ker(G ³ Q) = Ker(H ³
P ). [Thus, any almost pro-C-maximal quotient of G is almost pro-C.] If
G is topologically finitely generated, and, moreover, the abelianization Jab

of every open subgroup J ⊆ G is torsion-free, then we shall say that G is
strongly torsion-free.

Remark 1.1.1 The notion of a full formation is a special case of the
notion of a Melnikov formation [cf. [FJ], p. 343]. In the present paper,
[partly for the sake of simplicity] we restrict ourselves to full formations.

Remark 1.1.2 Let C be a full formation. Then [it follows immediately
from the definitions that] a solvable finite group is a ΣC-group [cf. Defini-
tion 1.1, (ii)] if and only if it is a C-group. In particular, if C is solvable,
then it is completely determined by the set of primes ΣC .

Remark 1.1.3 Recall that every finite group whose order is a prime power
is nilpotent, hence, in particular, solvable. Thus, [cf. Remark 1.1.2] a primary
full formation C is completely determined by the unique prime number ∈ ΣC .

Remark 1.1.4 One verifies immediately that in the various definitions in
Definition 1.1, (iii), of terms of the form “almost P”, where “P” is some
property, an equivalent definition is obtained if one requires the open sub-
group “H” to be normal.

Remark 1.1.5 If G is a strongly torsion-free profinite group, then one
verifies immediately [by considering abelianizations of open subgroups of
G] that G is torsion-free in the usual sense, i.e., that G has no nontrivial
elements of finite order.

Definition 1.2 Let C be a full formation. We shall say that a profi-
nite group is a [pro-C] surface group (respectively, an almost pro-C-surface
group) if it is isomorphic to the maximal pro-C quotient (respectively, to
some almost pro-C-maximal quotient) of the étale fundamental group of a
hyperbolic curve [cf. § 0] over an algebraically closed field of characteristic
zero [or, equivalently, the profinite completion of the topological fundamen-
tal group of a hyperbolic Riemann surface of finite type]. We shall refer
to an almost pro-C-surface group as open (respectively, closed) if it admits
(respectively, does not admit) a pro-C free [cf. [FJ], p. 345] open subgroup.
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Remark 1.2.1 Thus, in the notation of Definition 1.2, every pro-C surface
group is an almost pro-C-surface group. On the other hand, if C is not
total, then one verifies immediately that there exist almost pro-C-surface
groups which are not pro-C surface groups. Nevertheless, every almost pro-
C-surface group admits a normal open subgroup which is a pro-C surface
group.

Remark 1.2.2 We recall that if Π is a pro-C surface group arising from
a hyperbolic curve [cf. Definition 1.2] of type (g, r), then Π is topologically
generated by 2g + r generators subject to a single [well-known!] relation,
and Πab [cf. § 0] is a free abelian pro-C group of rank 2g−1+r (if r > 0), 2g

(if r = 0). In particular, [since every open subgroup of Π is again a pro-C
surface group, it follows that] Π is strongly torsion-free. Moreover, for any
l ∈ ΣC , the l-cohomological dimension of Π is equal to 1 (if r > 0), 2 (if
r = 0); dimQl

(H2(Π, Ql)) = dimFl
(H2(Π, Fl)) is equal to 0 (if r > 0), 1 (if

r = 0). In particular, the quantity

χ(Π) =
2∑

i=0

(−1)i · dimQl
(H i(Π, Ql))

=
2∑

i=0

(−1)i · dimFl
(H i(Π, Fl)) = 2 − 2g − r

is a group-theoretic invariant of Π which [as is well-known] satisfies the
property that

χ(Π1) = [Π: Π1] · χ(Π)

for any open subgroup Π1 ⊆ Π. Finally, we recall that this formula admits
a representation-theoretic generalization, which will play a crucial role in § 4
below, in the form of the following elementary consequence:

Proposition 1.3 (Inclusion of the Regular Representation) Let Y → X

be a finite [possibly ramified] Galois covering of smooth proper hyperbolic
curves over an algebraically closed field k of characteristic prime to the order
of G

def= Gal(Y/X); l a prime number that is invertible in k. Write V for
the G-module determined by the first étale cohomology module H1

ét(Y, Ql).
Then the G-module V contains the regular representation of G as a direct
summand.
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Proof. Indeed, this follows immediately from the computation of the Ga-
lois module V in [Milne], p. 187, Corollary 2.8 [cf. also [Milne], p. 187,
Remark 2.9], in light of our assumption that X is proper hyperbolic, hence
of genus ≥ 2. ¤

Proposition 1.4 (Slimness) Let C be a nontrivial full formation. Then
every almost pro-C-surface group Π is slim.

Proof. Indeed, this follows immediately by considering the conjugation ac-
tion of Π/N on Nab ⊗ Zl, where l ∈ ΣC , for sufficiently small normal open
subgroups N ⊆ Π [cf. Remark 1.2.1]. That is to say, in light of the inter-
pretation of a certain quotient of Nab ⊗Zl as the Tate module arising from
the l-power torsion points of the Jacobian of the compactification of the
covering determined by N of any hyperbolic curve that gives rise to Π [cf.
the proof of [Mzk3], Lemma 1.3.1], it follows that this conjugation action is
faithful. Another [earlier] approach to the slimness of surface groups may
be found in [Naka], Corollary 1.3.4. ¤

Remark 1.4.1 The property involving the regular representation dis-
cussed in Proposition 1.3 may be regarded as a stronger version [in the
case of coverings of curves of genus ≥ 2] of the faithfulness of the action of
Π/N on [a certain quotient of] Nab ⊗ Zl that was applied in the proof of
Proposition 1.4, hence, in particular, as a stronger version of the slimness
of surface groups.

Next, we give a mild generalization to arbitrary surface groups of a well-
known result for free pro-C groups due to Lubotzky-Melnikov-van den Dries.
In particular, the argument given below in the proof of Theorem 1.5 may be
regarded as a short elementary proof of [a certain portion of] the theorem of
Lubotzky-Melnikov-van den Dries, as exposed in [FJ], Proposition 24.10.3;
[FJ], Proposition 24.10.4, (a).

Theorem 1.5 (Normal Closed Subgroups of Surface Groups) Let C be a
full formation; Π an almost pro-C-surface group; N ⊆ Π a topologically
finitely generated normal closed subgroup. Then N is either trivial or of
finite index.

Proof. First, we observe that we may assume without loss of generality that
C is nontrivial. Since Π is slim, hence does not contain any nontrivial finite
normal closed subgroups [cf. § 0], it follows that we may always replace Π
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by an open subgroup of Π. In particular, [cf. Remark 1.2.1] we may assume,
without loss of generality, that Π is a pro-C surface group. Now suppose
that N is nontrivial and of infinite index. Then there exists an l ∈ ΣC
such that N contains a nontrivial subgroup A ⊆ N which is a quotient of
Zl. In particular, there exists a normal open subgroup Π1 ⊆ Π such that
the image of A in Π/Π1 is nontrivial. Now set ΠA

def= Π1 · A ⊆ Π, NA
def=

N
⋂

ΠA [so ΠA, NA are open subgroups of Π, N , respectively]. Then NA is
a topologically finitely generated normal closed subgroup of infinite index of
ΠA such that A ⊆ NA surjects onto the [nontrivial, abelian!] image of ΠA

in Π/Π1. In particular, by replacing N ⊆ Π by NA ⊆ ΠA, we may assume
without loss of generality that the image of N in Πab is nontrivial.

Since Π is topologically finitely generated, there exists a descending se-
quence of normal open subgroups

. . . ⊆ Hn ⊆ . . . ⊆ Π

[where n ranges over the positive integers] of Π which is, moreover, exhaus-
tive, i.e.,

⋂
n Hn = {1}. Thus, if we set Nn

def= Hn · N [for n ≥ 1], then [one
verifies immediately that] we obtain a descending sequence of normal open
subgroups

. . . ⊆ Nn ⊆ . . . ⊆ Π

[where n ranges over the positive integers] of Π such that
⋂

n Nn = N [cf.
the fact that N is closed !]. Since N is of infinite index in Π, it follows that
[Π: Nn] → ∞ as n → ∞, hence [cf. Remark 1.2.2] that |χ(Nn)| → ∞ as
n → ∞. In particular, there exists an n such that the rank [as a free abelian
pro-C group] of Nab

n is ≥ s + 2, where we write s for any positive integer
such that there exist s elements of N that topologically generate N . Since,
moreover, the image of N in Πab, hence a fortiori in Nab

n is nontrivial,
it follows that there exists, for some l ∈ ΣC , a nontrivial homomorphism
Z log → Nab

n that factors through N . Now write

Nn ³ Π∗

for the maximal pro-l quotient of Nn [so Π∗ is a pro-l surface group], N∗ ⊆
Π∗ for the image of N in Π∗. Thus, N∗ ⊆ Π∗ is a topologically finitely
generated normal closed subgroup whose image in [the free Zl-module of
finite rank] (Π∗)ab is a nontrivial Zl-submodule M ⊆ (Π∗)ab whose rank
is ≤ s, hence ≤ the rank of (Π∗)ab minus 2. In particular, there exists
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an element x ∈ Π∗ such that if we denote by F ∗ ⊆ Π∗ the [necessarily
topologically finitely generated !] closed subgroup topologically generated by
N∗ and x, then we obtain inclusions of closed subgroups

N∗ ⊆ F ∗ ⊆ Π∗

such that N∗ is of infinite index in F ∗, and F ∗ is of infinite index in Π∗ [as
may be seen by considering the ranks of the images of these subgroups in
Πab].

Now observe that for any two open subgroups J2 ⊆ J1 ⊆ Π∗, the
induced morphism H2(J1, Zl) → H2(J2, Zl) maps a generator of H2(J1, Zl)
to [J1 : J2] times a generator H2(J2, Zl) [where we recall that H2(J1, Zl),
H2(J2, Zl) are either both zero or both isomorphic to Zl, depending on
whether Π is an open or a closed surface group]. [Indeed, this follows
immediately by thinking about degrees of coverings of proper hyperbolic
curves! We refer to Remark 4.1.1; Lemma 4.2, (i) [and its proof], below,
for more details on this well-known circle of ideas.] In particular, since F ∗

is a subgroup of infinite index in Π∗, it follows immediately [by considering
open subgroups J ⊆ Π∗ containing F ∗] that F ∗ is a pro-l group whose
[l-]cohomological dimension is ≤ 1. Thus, by [RZ], Theorem 7.7.4, F ∗ is
a topologically finitely generated free pro-l group [i.e., in particular, a pro-
l open surface group], and N∗ ⊆ F ∗ is a nontrivial topologically finitely
generated closed normal subgroup of infinite index. Put another way, it
suffices to prove Theorem 1.5 in the case where Π is a pro-l open surface
group.

Thus, we return to the original notation of the statement of Theo-
rem 1.5, under the further assumption that Π is a pro-l open surface group
[and N is nontrivial of infinite index ]. Since N is of infinite index in Π,
by replacing Π by an open subgroup containing N [cf. the argument above
involving the “Hn” and “Nn”], we may assume that the rank of Π is > the
rank of N . Thus, [cf. e.g., [RZ], the proof of Theorem 7.7.4] dimFl

(Πab ⊗
Fl) > dimFl

(Nab ⊗ Fl). Next, observe that there exists a normal open sub-
group H ⊆ Π such that the natural surjection N ³ Nab⊗Fl factors through
N/(N

⋂
H) ∼→ (N · H)/H. But this implies that the inclusion N ↪→ N · H

induces a homomorphism Nab ⊗Fl → (N ·H)ab ⊗Fl that admits a splitting
(N · H)ab ⊗ Fl ³ ((N · H)/H)ab ⊗ Fl

∼→ (N/(N
⋂

H))ab ⊗ Fl
∼→ Nab ⊗ Fl.

In particular, by replacing Π by the open subgroup N · H [where we note
that dimFl

((N · H)ab ⊗ Fl) ≥ dimFl
(Πab ⊗ Fl)], we may assume, without
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loss of generality, that the natural homomorphism Nab ⊗ Fl → Πab ⊗ Fl

is injective, but not surjective. Thus, it follows [cf. e.g., [RZ], the proof
of Theorem 7.7.4] that there exists a collection of free generators {γi}i∈I

[where I is a finite set] of Π such that for some nonempty proper subset
I ′ ⊆ I, the {γi}i∈I′ form a collection of free generators of N . But, as is
well-known [and easily verified, by applying the universal property of free
pro-l groups, together with the existence of non-normal cyclic subgroups of
finite l-groups!], this contradicts the normality of N . ¤

2. Configuration space groups

In the present § 2, we discuss various well-known preliminary facts
concerning the sorts of profinite groups that arise from étale fundamental
groups of configuration spaces associated to hyperbolic curves.

First, let us suppose that we have been given a log scheme

Z log

which is log regular [cf. [Kato2], Definition 2.1]; write UZ ⊆ Z for the interior
of Z log [i.e., the open subscheme on which the log structure of Z log is trivial ].
By abuse of notation, we shall often use the notation for a scheme to denote
the log scheme with trivial log structure determined by the scheme. If C is
a full formation that is invertible on Z, and Z is connected, then we shall
write

πC
1 (Z log)

for the maximal pro-C quotient of the étale fundamental group [obtained
by considering Kummer log étale coverings, for some choice of basepoint
— cf. [Ill] for more details] of Z log. Thus, by the log purity theorem of
Fujiwara-Kato [cf. [Ill]; [Mzk1], Theorem B], the natural morphism UZ →
Z log induces a [continuous outer] isomorphism πC

1 (UZ) ∼→ πC
1 (Z log).

Next, suppose that S is a regular scheme, and that

X → S

is a family of hyperbolic curves of type (g, r) over S, with compactification
X ↪→ Y → S and divisor of cusps D ⊆ Y [cf. § 0]. For simplicity, we assume
that the finite étale covering D → S is split. Let n ∈ N.
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Definition 2.1 (i) For positive integers i, j ≤ n such that i < j, write

πi,j : Pn
def= X ×S · · · ×S X → X ×S X

for the projection of the product Pn of n copies of X → S to the i-th and
j-th factors. Write E for the set [of cardinality n] of factors of Pn. Then
we shall refer to as the n-th configuration space associated to X → S the
S-scheme

Xn → S

which is the open subscheme determined by the complement in Pn of the
union of the various inverse images via the πi,j [as (i, j) ranges over the
pairs of positive integers ≤ n such that i < j] of the image of the diagonal
embedding X ↪→ X ×S X. We shall refer to as the n-th log configuration
space associated to X → S the [log smooth] log scheme over S

Z log
n → S

obtained by pulling back the [log smooth] [1-]morphism Mlog
g,r+n → Mlog

g,r

given by “forgetting the last n points” [cf. § 0] via the classifying [1-]mor-
phism S → Mlog

g,r determined [up to a permutation of the r remaining points]
by X → S. We shall refer to E as the index set of the configuration space
Xn, or, alternatively, of the log configuration space Z log

n .
(ii) In the notation of (i), let E′ ⊆ E be a subset of cardinality n′; E′′ def=
E\E′; n′′ def= n − n′. Then by “forgetting” the factors of E that belong to
E′, we obtain a natural projection morphism

pE′ = pE′′
: Xn → Xn′′

[and similarly in the logarithmic case], which we shall refer to as the pro-
jection morphism of profile E′, or, alternatively, the projection morphism of
co-profile E′′. Also, in this situation, we shall refer to n′ (respectively, n′′)
as the length (respectively, co-length) of this projection morphism.

Remark 2.1.1 One verifies immediately that in the notation of Defini-
tion 2.1, (i), Xn may be naturally identified with the interior of Z log

n .

Remark 2.1.2 One verifies immediately that in the notation of Defini-
tion 2.1, (ii), each projection morphism pE′ = pE′′

: Xn → Xn′′ is itself the
n′-th configuration space associated to a family of hyperbolic curves of type
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(g, r+n′′) over Xn′′ that embeds as a dense open subscheme of the pull-back
via Xn′′ → S of the original family of hyperbolic curves X → S.

Proposition 2.2 (Fundamental Groups of Configuration Spaces) In the
notation of the above discussion, suppose further that the following condi-
tions hold:
(a) S is connected;
(b) C is a PT-formation which is invertible on S;
(c) for each l ∈ ΣC, the images of the cyclotomic character π1(S) → F×

l

and the natural Galois action

π1(S) → Aut(π1(Ys)ab ⊗ Fl)

arising from the family of curves Y → S are C-groups [a condition
which is vacuous if C is total].

Let n ≥ 1 be an integer, s a geometric point of S, and x a geometric
point of Xn−1 [where we write X0

def= S]; we shall denote the fibers over
geometric points by means of subscripts. Then:
( i ) Any projection morphism Xn → Xn−1 of length one determines a

natural exact sequence

1 → πC
1 ((Xn)x) → πC

1 (Xn) → πC
1 (Xn−1) → 1

of pro-C groups.
( ii ) The profinite group πC

1 ((Xn)s) is slim and topologically finitely gener-
ated.

(iii) The natural sequence

1 → πC
1 ((Xn)s) → πC

1 (Xn) → πC
1 (S) → 1

is exact.
(iv) Suppose that k, k′ are separably closed fields; k ⊆ k′; S = Spec(k);

S′ def= Spec(k′); s (respectively, s′) is the geometric point of S (re-
spectively, S′) determined by the identity morphism of S (respectively,
S′). Then the natural morphism πC

1 ((Xn ×S S′)s′) → πC
1 ((Xn)s) is an

isomorphism.
( v ) Suppose that S = Spec(R), where R is a complete discrete valuation

ring; that s arises from an algebraic closure of the residue field of R;
and that η is a geometric point of S that arises from an algebraic clo-
sure of the quotient field K of R. Then the operation of specialization
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of the normalization of Xn in a covering of Xn ×R K determines an
isomorphism πC

1 ((Xn)η)
∼→ πC

1 ((Xn)s).

Proof. First, let us observe that since the kernel of the natural surjection
πC

1 (Xs) ³ πC
1 (Ys) is topologically normally generated by the inertia groups

of the cusps [which are isomorphic to ẐC(1), where the “(1)” denotes a “Tate
twist”, and “ẐC” is as in Definition 1.1, (ii)], condition (c) [together with
our assumption that the divisor of cusps of X → S is split ] implies that for
each l ∈ ΣC , the image of the natural Galois action

π1(S) → Aut(π1(Xs)ab ⊗ Fl)

arising from the family of hyperbolic curves X → S is a C-group.
Now we claim that to complete the proof of Proposition 2.2, it suffices

to verify assertion (v). Indeed, let us assume that assertion (v) holds and
reason by induction on n ≥ 1. [That is to say, if n ≥ 2, then we assume
that assertions (i), (ii), and (iii) have already been verified for “n − 1”.]
Then let us first observe that assertion (iv) follows from assertion (v) by
a standard argument in elementary algebraic geometry [cf. e.g., [Mzk4],
Proposition 2.3, (ii), in the case where k is of characteristic zero, n = 1;
since C is invertible on UZ , and we are free to apply assertion (v), the case of
positive characteristic k and arbitrary n is entirely similar]. Next, observe
that [in light of Remark 2.1.2; the easily verified fact that the family Xn →
Xn−1 also satisfies conditions (a), (b), (c)] assertion (i) is a special case of
assertion (iii) for “n = 1”; thus, [by applying the induction hypothesis] we
may assume that assertion (i) holds if n ≥ 2. Since, moreover, the property
of being a slim topologically finitely generated profinite group holds for a
profinite group which is an extension of a profinite group G1 by a profinite
group G2 whenever it holds for G1 and G2, assertion (ii) [for “n”] follows
immediately, by applying the induction hypothesis, from assertion (i) (when
n ≥ 2) and Proposition 1.4. As for assertion (iii), let us first observe that by
assertions (iv), (v) [and various standard arguments in elementary algebraic
geometry], we may assume without loss of generality that s arises from an
algebraic closure of the function field K of S. Thus, by considering the
natural action of GK

def= π1(Spec(K), s) on s, we obtain a natural outer
action

GK → Out(πC
1 ((Xn)s))
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which is compatible with the natural outer action of GK on πC
1 ((Pn)s) [which

may be identified with the product of n copies of πC
1 (Xs)], relative to the

natural inclusion Xn ↪→ Pn [cf. Definition 2.1, (i)]. In particular, since
[by Zariski-Nagata purity — i.e., the classical non-logarithmic version of
the “log purity theorem” quoted above] the kernel of the natural surjection
πC

1 ((Xn)s) ³ πC
1 ((Pn)s) is topologically normally generated by the inertia

groups of the divisors of (Pn)s lying in the complement (Pn\Xn)s [which are
isomorphic to quotients of ẐC(1)], condition (c) [together with the observa-
tion at the beginning of the present proof] implies that for each l ∈ ΣC , the
image of the natural Galois action

GK → Aut(π1((Xn)s)ab ⊗ Fl)

is a C-group, hence [cf. Remark 1.1.3 when C is primary ] that the homomor-
phism GK → Out(πC

1 ((Xn)s)) factors through the maximal pro-C quotient
GC

K of GK . Note, moreover, that [again] by Zariski-Nagata purity [i.e., the
classical non-logarithmic version of the “log purity theorem” quoted above],
the kernel of the natural surjection GC

K ³ πC
1 (S) is topologically normally

generated by the various inertia groups determined by the prime divisors of
S. On the other hand, by assertion (v), the images of these inertia groups
in Out(πC

1 ((Xn)s)) are trivial. Thus, we obtain a homomorphism πC
1 (S) →

Out(πC
1 ((Xn)s)), hence — by pulling back the natural exact sequence

1 → πC
1 ((Xn)s) → Aut(πC

1 ((Xn)s)) → Out(πC
1 ((Xn)s)) → 1

[cf. assertion (ii); § 0] via this homomorphism — an exact sequence as in
assertion (iii). This completes the proof of the claim.

Finally, we consider assertion (v). First, we remark that assertion (v)
is a special case of the more general result of [Vid], Théorème 2.2; since,
however, [Vid] has yet to be published at the time of writing, we give a
self-contained [modulo published results] proof of assertion (v), as follows.
We begin by observing that by the log purity theorem, we have natural
isomorphisms

πC
1 ((Xn)s)

∼→ πC
1 ((Z log

n )s); πC
1 ((Xn)η)

∼→ πC
1 ((Z log

n )η)

[cf. Definition 2.1, (i); Remark 2.1.1]. Now suppose that W log
0 → (Z log

n )s is
a connected Kummer log étale covering. Since (Z log

n )s is log regular, it thus
follows that W log

0 is also log regular, hence, in particular, normal. By the
definition of “log étale”, one may deform this covering to a formal Kummer



90 S. Mochizuki and A. Tamagawa

log étale covering over the mR-completion [where mR is the maximal ideal
of R] of Z log

n . Moreover, the underlying scheme of this formal covering may
be algebrized [cf. [EGA III], Théorème 5.4.5; the easily verified fact that
Zn is projective], hence determines a finite morphism W → Zn. Now it
follows from the well-known local structure of Kummer log étale coverings
that the formal covering that gave rise to W is S-flat, hence that W itself
is S-flat, with normal special fiber Ws

∼= W0. Since S is, of course, normal,
we thus conclude [cf. [EGA IV], Corollaire 6.5.4, (ii)] that W is normal
and connected, hence irreducible. By considering the formal covering that
gave rise to W at completions of closed points of Zn lying in the interior
Xn ⊆ Zn, it follows, moreover, that W → Zn is generically étale. Thus,
it makes sense to speak of the ramification divisor in Zn of W → Zn. On
the other hand, again by considering the formal covering that gave rise
to W , it follows immediately that this ramification divisor is contained
in the complement of Xn in Zn, hence [by the log purity theorem!] that
W → Zn determines a Kummer log étale covering W log → Z log

n whose
special fiber W log

s → (Z log
n )s may be naturally identified with the given

covering W log
0 → (Z log

n )s. Thus, by algebrizing morphisms between formal
Kummer log étale coverings [cf. [EGA III], Théorème 5.4.1], we conclude
that the deformation and algebrization procedure just described determines
an equivalence of categories between the categories of Kummer log étale
coverings of (Z log

n )s, Z log
n . In particular, we obtain a natural isomorphism

πC
1 ((Z log

n )s)
∼→ πC

1 ((Z log
n )).

On the other hand, again by the log purity theorem, it follows immedi-
ately that we obtain an isomorphism

πC
1 ((Z log

n )η)
∼→ lim←−

S′
πC

1 (Z log
n ×S S′)

[where S′ ranges over the normalizations of S in the various finite extensions
of K in the function field of η], hence, by applying the isomorphisms

πC
1 (Z log

n ×S S′) ∼→ πC
1 ((Z log

n )s)

[where we regard s as a geometric point of the various S′] obtained above,
we obtain an isomorphism πC

1 ((Z log
n )η)

∼→ πC
1 ((Z log

n )s), as desired. ¤

Remark 2.2.1 Another proof of Proposition 2.2, (iii), in the case n = 1
may be found in [Stix], Proposition 2.3.
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Definition 2.3 Let C be a PT-formation.
( i ) We shall say that a profinite group is a [pro-C] configuration space
group if it is isomorphic to the maximal pro-C quotient of the étale funda-
mental group

πC
1 (Xn)

of the n-th configuration space Xn for some n ≥ 1 [cf. Definition 2.1, (i)] of
a hyperbolic curve X over an algebraically closed field of characteristic 6∈ ΣC
[where we note that in this situation, if we take S to be the spectrum of this
algebraically closed field, then the conditions (a), (b), (c) of Proposition 2.2
are satisfied].
( ii ) Let X be a hyperbolic curve over an algebraically closed field of char-
acteristic 6∈ ΣC ; Xn the n-th configuration space [for some n ≥ 1] associated
to X. Then we shall refer to a closed subgroup H ⊆ πC

1 (Xn) as being
product-theoretic if H arises as the inverse image via the natural surjection

πC
1 (Xn) ³ πC

1 (Pn)

[cf. Definition 2.1, (i)] of a closed subgroup of πC
1 (Pn).

(iii) Let X, Xn be as in (ii); write E for the index set of Xn. Let E′ ⊆ E be
a subset of cardinality n′; E′′ def= E\E′; n′′ def= n−n′; pE′ = pE′′

: Xn → Xn′′

the projection morphism of profile E′. Then we shall refer to the kernel

F ⊆ πC
1 (Xn)

of the induced surjection πC
1 (Xn) ³ πC

1 (Xn′′) [cf. Remark 2.1.2; Proposi-
tion 2.2, (iii)] as the fiber subgroup of πC

1 (Xn) of profile E′, or, alternatively,
as the fiber subgroup of πC

1 (Xn) of co-profile E′′. Also, we shall refer to n′

(respectively, n′′) as the length (respectively, co-length) of F .

Proposition 2.4 (Fiber Subgroups of Configuration Spaces) Let C be a
PT-formation; X a hyperbolic curve over an algebraically closed field of
characteristic 6∈ ΣC ; Xn the n-th configuration space [for some n ≥ 1]
associated to X; E the index set of Xn; Π def= πC

1 (Xn); E′
1, E′

2 ⊆ E subsets
whose respective complements we denote by E′′

1 , E′′
2 ⊆ E; F1, F2 ⊆ Π the

fiber subgroups with respective profiles E′
1, E′

2 ⊆ E. Then:
( i ) The description of Remark 2.1.2 determines on F2 (respectively, Π/F2)

a structure of configuration space group with index set E′
2 (respectively,

E′′
2 ).
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( ii ) F1 ⊆ F2 if and only if E′
1 ⊆ E′

2. Moreover, in this situation, F1 ⊆
F2 is the fiber subgroup of F2 with profile E′

1 ⊆ E′
2 [i.e., relative to

the structure of F2 as the “πC
1 (−)” of a configuration space that arises

from the description given in Remark 2.1.2].
(iii) The image of F1 in Π/F2 is the fiber subgroup of Π/F2 with profile

E′
1

⋂
E′′

2 ⊆ E′′
2 [i.e., relative to the structure of Π/F2 as the “πC

1 (−)”
of a configuration space that arises from the description given in Re-
mark 2.1.2].

(iv) The subgroup of Π topologically generated by F1, F2 is the fiber sub-
group F3 with profile E′

3
def= E′

1

⋃
E′

2. In particular, if E′′
1 , E′′

2 are
disjoint and of cardinality one, then F1, F2 topologically generate Π.

( v ) In the situation of (iv), suppose that the length of F1, F2 is equal
to 1. Then there exists a normal closed subgroup K ⊆ Π satisfying
the following properties: (a) K ⊆ F3; (b) K is topologically normally
generated in F3 by a single element; (c) the images of F1, F2 in F3/K

commute.
(vi) F2 is topologically generated by the fiber subgroups [of Π] of length 1

whose profiles are contained in E′
2. In particular, Π is topologically

generated by its fiber subgroups of length 1.

Proof. Assertions (i), (ii) are immediate from the definitions [and Re-
mark 2.1.2]. Next, let us consider assertion (vi). In light of assertions
(i), (ii), it suffices to verify assertion (vi) in the case where F2 = Π; also,
we may assume without loss of generality that F1 is of length 1. Then, by
induction on n [cf. also assertion (i)], Π/F1 is topologically generated by its
fiber subgroups of length 1. Since the inverse image in Π of any fiber sub-
group of length 1 of Π/F1 is clearly a fiber subgroup of length 2, it follows
[cf. assertions (i), (ii)] that we may assume without loss of generality that
n = 2. But then it suffices to observe that if Fα, Fβ ⊆ Π are fiber subgroups
whose profiles E′

α, E′
β ⊆ E are disjoint subsets of length 1, then the natu-

ral morphism Fα ⊆ Π ³ Π/Fβ [which is simply the morphism induced on
“πC

1 (−)’s” by an open immersion of hyperbolic curves] is a surjection. This
completes the proof of assertion (vi). Now assertion (iv) follows formally
from assertion (vi); also, in light of assertion (vi), assertion (iii) follows
immediately from the definitions.

Finally, we consider assertion (v). First, let us observe that when n = 2,
assertion (v) follows by observing that the kernel of the natural surjection
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πC
1 (X2) ³ πC

1 (P2) [cf. Definition 2.3, (ii)] is topologically normally generated
by the inertia group of the diagonal divisor of X2, which is isomorphic to
ẐC(1) [hence topologically generated by a single element ]. Now assertion
(v) follows immediately for arbitrary n, by applying assertions (i), (ii), (iv).

¤

Remark 2.4.1 Note that it follows immediately from Proposition 2.2,
(ii); Proposition 2.4, (i) [or, alternatively, (vi)], that the fiber subgroups of
πC

1 (Xn) are topologically finitely generated normal closed subgroups.

3. Direct products of profinite groups

In the present § 3, we study quotients of products of profinite groups.
In particular, we show that, in certain cases, the product decomposition of
a direct product of profinite groups is “group-theoretic”.

Definition 3.1 Let G be a profinite group. Then we shall say that G

is indecomposable if, for any isomorphism of profinite groups G
∼→ H ×

J , where H, J are profinite groups, it follows that either H or J is the
trivial group. We shall say that G is strongly indecomposable if every open
subgroup of G is indecomposable.

Proposition 3.2 (The Indecomposability of Surface Groups) Let C be
a nontrivial full formation. Then every almost pro-C-surface group Π is
strongly indecomposable.

Proof. Since every open subgroup of an almost pro-C-surface group is again
an almost pro-C-surface group, it suffices to show that Π is indecomposable.
Suppose that we have an isomorphism of profinite groups Π ∼= H×J , where
H, J are nonabelian [since Π is slim — cf. Proposition 1.4!] infinite [again
since Π is slim, hence does not contain any nontrivial finite normal closed
subgroups — cf. § 0] profinite groups. Note that since H, J , are infinite, it
follows that for any open subgroup Π1, we may always replace Π by an open
subgroup of Π1. In particular, [cf. Remark 1.2.1] we may assume, without
loss of generality, that Π is a pro-C surface group arising from a curve of
genus ≥ 2. Now we claim that for every prime number l ∈ ΣC , there exist
finite quotients H ³ QH , J ³ QJ such that l divides the order of QH , QJ .
Indeed, suppose that l does not divide the order of any finite quotient of
H. Then there exists a proper normal open subgroup NH ⊆ H such that if
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we set N
def= NH × J ⊆ Π, then the conjugation action of Π/N ∼= H/NH on

Nab ⊗Zl
∼= (Nab

H ⊗Zl)× (Jab ⊗Zl) ∼= Jab ⊗Zl is trivial, which, as was seen
in the proof of Proposition 1.4, leads to a contradiction. This completes the
proof of the claim.

Thus, by replacing Π by the maximal pro-l quotient of a suitable open
subgroup of Π for some l ∈ ΣC [and replacing C by the primary formation
determined by l], we may assume without loss of generality that Π, H, J

are pro-l groups. Note, moreover, that since H, J are nonabelian pro-l
groups, it follows that dimFl

(Hab ⊗ Fl) ≥ 2, dimFl
(Jab ⊗ Fl) ≥ 2 [cf. e.g.,

[RZ], Proposition 7.7.2]. On the other hand, observe that the cup product
morphism

H1(H, Fl) ⊗ H1(J, Fl) → H2(Π, Fl)

is an injection. [Indeed, this follows immediately by considering the spectral
sequences associated to the surjections Π ∼= H × J ³ J , H ³ {1}, where
we note that the latter surjection may be regarded as a quotient of the
former surjection.] But this implies that dimFl

(H2(Π, Fl)) ≥ 2, which [cf.
Remark 1.2.2] is absurd. This completes the proof of Proposition 3.2. ¤

Remark 3.2.1 Note that the strong indecomposability of Proposition 3.2
may also be derived as an immediate consequence of Theorem 1.5, in light
of the slimness of Proposition 1.4.

Proposition 3.3 (Quotients of Direct Products) Let G1, . . . , Gn be profi-
nite groups, where n ≥ 1 is an integer;

φ : Π def=
n∏

i=1

Gi ³ Q

a surjection of profinite groups. Then there exist normal closed subgroups
Hi ⊆ Gi [for i = 1, . . . , n], N ⊆ Q such that N ⊆ Z(Q) [cf. § 0], and
the composite Π ³ Q/N of φ with the surjection Q ³ Q/N induces an
isomorphism

Π def=
n∏

i=1

Gi
∼→ Q/N

— where we write Gi
def= Gi/Hi. In particular, if Q is center-free, then

we obtain an isomorphism Π ∼→ Q; if Q is center-free and indecomposable,
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then we obtain an isomorphism Gi
∼→ Q for some i ∈ {1, . . . , n}.

Proof. Indeed, write I
def= Ker(φ) ⊆ Π; Ii ⊆ Gi for the inverse image of

I via the natural injection ιi : Gi ↪→ Π into the i-th factor; Hi ⊆ Gi for
the image of I under the natural projection πi : Π ³ Gi to the i-th factor
[where i ∈ {1, . . . , n}]. Thus, we have inclusions

ΠI
def=

n∏
i=1

Ii ⊆ I ⊆ ΠH
def=

n∏
i=1

Hi ⊆ Π

inside Π. Now observe that the commutator of any element

(1, . . . , 1, gi, 1, . . . , 1) ∈ Π

[i.e., all of whose components, except possibly the i-th component gi ∈ Gi,
are equal to 1] with an element h ∈ I yields an element of I [since I is
normal in Π] which lies in the image of ιi, hence determines an element of
Ii ⊆ Gi, which is in fact equal to the commutator [gi, πi(h)] ∈ Gi [where
we observe that πi(h) ∈ Hi] computed in Gi. In particular, since gi ∈ Gi is
arbitrary, and any element of Hi arises as such a “πi(h)”, it follows that the
commutator subgroup [Gi, Hi] is contained in Ii. But this implies that the
commutator subgroup [Π, ΠH ] is normally generated in Π by elements of
ΠI ⊆ I, hence [since I is normal in Π] is contained in I. Put another way,
if we set N ⊆ Q equal to the image in Π/I

∼→ Q of ΠH , then it follows that
N ⊆ Z(Q). On the other hand, it is immediate from the definitions that φ

determines an isomorphism
∏n

i=1 (Gi/Hi)
∼→ Q/N , as desired. ¤

Remark 3.3.1 Proposition 3.3 may be regarded as being motivated by
the following elementary fact concerning products of rings: If R1, . . . , Rn

[where n ≥ 1 is an integer] are [not necessarily commutative] rings with
unity and

φ : R
def=

n∏
i=1

Ri ³ Q

is a surjection of rings with unity, then there exist two-sided ideals Ii ⊆ Ri

[for i = 1, . . . , n] such that φ induces an isomorphism

R
def=

n∏
i=1

Ri
∼→ Q
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— where we write Ri
def= Ri/Ii. [Indeed, this follows immediately by ob-

serving that if, for i = 1, . . . , n, we write ei ∈ R for the element whose
i-th component is 1 and whose other components are 0, then any element
f ∈ Ker(φ) may be written in the form f = f · e1 + . . . + f · en, where each
f · ei ∈ Ker(φ) [since Ker(φ) is a two-sided ideal !].]

Remark 3.3.2 Proposition 3.3 is due to the second author. We observe
in passing that when, in the notation of Proposition 3.3, Q is an almost
pro-C-surface group for some nontrivial full formation C [hence slim and
strongly indecomposable — cf. Propositions 1.4, 3.2], and the Gi are topo-
logically finitely generated, one may give a different proof of Proposition 3.3
by applying Theorem 1.5 to the images Ji of the various composites of φ

with the natural inclusions ιi : Gi ↪→ Π — which allows one to conclude [in
light of the slimness of Q!] that only one of the Ji [as i ranges over the
integers 1, . . . , n] can be nontrivial. In fact, this argument was the approach
originally taken by the first author to proving Proposition 3.3 and, more-
over, underlies the proof of the main result of this paper via the approach
of the second author given in § 6 below. On the other hand, this argument
[unlike the very elementary proof of Proposition 3.3 given above!] has the
drawback that it depends on the generalization of the result of Lubotzky-
Melnikov-van den Dries given in Theorem 1.5. This drawback was pointed
out by the second author to the first author when the first author first in-
formed the second author of this restricted version of Proposition 3.3 and,
indeed, served to motivate the second author to obtain the more elementary
proof of Proposition 3.3 given above.

Corollary 3.4 (Group-theoreticity of Product Decompositions) Let n,m

≥ 1 be integers;

G1, . . . , Gn; H1, . . . , Hm

nontrivial profinite groups which are slim and strongly indecomposable [e.g.,
almost pro-C-surface groups for some nontrivial full formation C — cf.
Propositions 1.4, 3.2];

G ⊆ ΠG
def=

n∏
i=1

Gi; H ⊆ ΠH
def=

m∏
j=1

Hj

open subgroups;



The profinite fundamental groups of configuration spaces 97

α : G
∼→ H

an isomorphism of profinite groups. For i = 1, . . . , n; j = 1, . . . , m, write
G³

i ⊆ Gi, H³
j ⊆ Hj for the respective images of G, H via the natural

projections ΠG ³ Gi, ΠH ³ Hj. Then n = m; there exist a unique
permutation σ of the set {1, . . . , n} and unique isomorphisms of profinite
groups αi : G³

i
∼→ H³

σ(i) [for i = 1, . . . , n] such that the restriction of [the
composite with the inclusion into ΠH of ] the isomorphism

(α1, . . . , αn) :
(
ΠG ⊇

) n∏
i=1

(G³
i ) ∼→

n∏
i=1

(H³
σ(i))

(
⊆ ΠH

)
to G coincides with [the composite with the inclusion into ΠH of ] α.

Proof. First, we observe that the uniqueness assertions follow immediately
from the nontriviality and slimness of the profinite groups G1, . . . , Gn, H1,
. . . , Hm. Thus, it suffices to verify the existence of σ and the αi. For i =
1, . . . , n; j = 1, . . . , m, write

G=
i ⊆ ΠG; H=

j ⊆ ΠH

for the respective intersections of G, H with the images of the natural
injections Gi ↪→ ΠG, Hj ↪→ ΠH ;

G6=
i ⊆ ΠG; H 6=

j ⊆ ΠH

for the respective intersections of G, H with the kernels of the natural
projections ΠG ³ Gi, ΠH ³ Hj . Now we claim that for each j = 1, . . . , m,
the kernel of the composite

ψj : G → Hj

of α with the natural projection (H ⊆)ΠH ³ Hj contains G6=
i , for a unique

i ∈ {1, . . . , n}. Indeed, since the image of ψj is open, hence slim, it follows
[cf. § 0] that this image has no nontrivial finite normal closed subgroups;
since the G 6=

i are normal closed subgroups of G, it thus suffices to prove
that the kernel of the restriction of ψj to the open subgroup of G ⊆ ΠG

determined by the direct product of the G=
i′ [for i′ = 1, . . . , n] contains the

intersection of this open subgroup with G6=
i , for a unique i. But [since Hj is

slim and strongly indecomposable] this follows formally from Proposition 3.3.
This completes the proof of the claim.
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Note, moreover, that [in the notation of the claim] the assignment j 7→ i

determines a map {1, . . . , m} → {1, . . . , n}, which, in light of the injectivity
of α, is easily verified to be surjective. But this implies that m ≥ n; thus,
by applying this argument to α−1, we obtain that m = n. In particular,
the map {1, . . . , m} → {1, . . . , n} considered above is a bijection, whose
inverse we denote by σ. By rearranging the indices, we may assume without
loss of generality that σ is the identity.

Now it follows from the definition of [the map that gave rise to] σ that
we obtain a surjection

αi : G³
i ³ H³

i

for each i = 1, . . . , n, such that the restriction of [the composite with the
inclusion into ΠH of] the surjection

(α1, . . . , αn) :
(
ΠG ⊇

) n∏
i=1

(G³
i ) ³

n∏
i=1

(H³
i )

(
⊆ ΠH

)
to G coincides with [the composite with the inclusion into ΠH of] α. In
particular, since α is injective, it follows that the kernel of each αi is a finite
closed normal subgroup of an open subgroup of Gi. Thus, by the slimness
of Gi, we conclude [cf. § 0] that the αi are injective, as desired. ¤

4. Product-theoretic quotients

In the present § 4, we show that in the case of genus ≥ 2, the [clo-
sure of the] commutator subgroup of a product-theoretic open subgroup of a
configuration space group is, up to torsion, again product-theoretic [cf. The-
orem 4.7]. This result, combined with the theory of § 3, implies a rather
strong result, in the case of genus ≥ 2, concerning the group-theoreticity
of the various fiber subgroups associated to a configuration space group [cf.
Corollary 4.8].

Let Y be a connected smooth variety over an algebraically closed field k

which [for simplicity] we assume to be of characteristic zero.

Definition 4.1 Let j ≥ 1 be an integer. Then we shall refer to Y as
j-good if for every positive integer j′ ≤ j and every class

η ∈ Hj′

ét(Y, Z/NZ)
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[where “Hj′

ét(−)” denotes étale cohomology, and N ≥ 1 is an integer], there
exists a finite étale covering Y ′ → Y such that η|Y ′ = 0.

Remark 4.1.1 As is well-known, it follows immediately from the
Hochschild-Serre spectral sequence in étale cohomology [cf. e.g., [Milne],
p. 105, Theorem 2.20] that one has a natural isomorphism

Hj′(π1(Y ), Ẑ) ∼→ Hj′

ét(Y, Ẑ)

for all nonnegative integers j′ ≤ j whenever Y is j-good. Also, we observe
that it is immediate from the definitions that the condition “1-good” is
vacuous.

Let

f : Z → Y

be a family of hyperbolic curves over Y ; y ∈ Y (k). We shall denote fibers
over y by means of a subscript “y”. Suppose that we have also been given
a section

s : Y → Z

of f , whose image we denote by Ds ⊆ Z. Write UZ ⊆ Z for the open
subscheme given by the complement of Ds; L

def= OZ(Ds); L× → Z for the
complement of the zero section of the geometric line bundle determined by
L;

UZ → L×

for the morphism determined by the natural inclusion OZ ↪→ OZ(Ds) =
L. Thus, UZ → Y is also a family of hyperbolic curves. Now if we de-
note by “π1(−)” the étale fundamental group [for an appropriate choice of
basepoint], then we have a natural commutative diagram

1 −→ π1((UZ)y) −→ π1(UZ) −→ π1(Y ) −→ 1y y y
1 −→ π1(L×

y ) −→ π1(L×) −→ π1(Y ) −→ 1y y y
1 −→ π1(Zy) −→ π1(Z) −→ π1(Y ) −→ 1

in which the first and third horizontal sequences are exact [cf. Proposi-
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tion 2.2, (iii)]. Write Is ⊆ π1(UZ) for the inertia group [well-defined up to
conjugation in π1(UZ)] associated to the divisor Ds. Thus, Is

∼= Ẑ(1) [where
the “(1)” denotes a “Tate twist”].

Lemma 4.2 (The Line Bundle Associated to a Cusp) In the notation of
the above discussion, suppose further that Y is j-good, for some integer
j ≥ 2. Then:
( i ) Z is j-good.
( ii ) π1(L×) fits into a short exact sequence:

1 → Ẑ(1) → π1(L×) → π1(Z) → 1

Moreover, the resulting extension class ∈ H2(π1(Z), Ẑ(1))
∼= H2

ét(Z, Ẑ(1)) [cf. (i); Remark 4.1.1] is the first Chern class of the
line bundle L.

(iii) The sequence 1 → π1(L×
y ) → π1(L×) → π1(Y ) → 1 of the above

commutative diagram is exact.
(iv) The morphism of fundmental groups π1(UZ) → π1(L×) induces an

isomorphism Is
∼→ Ker(π1(L×) → π1(Z)). In particular, the vertical

arrows of the commutative diagram of the above discussion are surjec-
tions.

( v ) Write π1(UZ/Z) def= Ker(π1(UZ) ³ π1(Z)) ⊆ π1((UZ)y). Then the
quotient of π1(UZ/Z) by

π1(UZ/L×) def= Ker(π1(UZ) → π1(L×)) ⊆ π1(UZ/Z) (⊆ π1(UZ))

is the maximal quotient of π1(UZ/Z) on which the conjugation action
by π1((UZ)y) is trivial.

Proof. First, we consider assertion (i). In light of the exact sequence 1 →
π1(Zy) → π1(Z) → π1(Y ) → 1 [together with the Leray-Serre spectral se-
quence for Z → Y ], it follows immediately that to show that Z is j-good,
it suffices to show that Zy is j-good. But this follows immediately from
the fact that the cohomological dimension of Zy is equal to 1 when Zy is
affine [cf. e.g., [Milne], p. 253, Theorem 7.2] and from the well-known iso-
morphism H2

ét(Zy, Z/NZ) ∼= (Z/NZ)(−1) determined by considering fun-
damental classes of points [together with the fact that the cohomological
dimension of Zy is equal to 2 — cf. e.g., [Milne], p. 276, Theorem 11.1],
when Zy is proper. This completes the proof of assertion (i).

In light of assertion (i), assertion (ii) follows from [Mzk2], Lemmas 4.4,
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4.5. Assertion (iii) follows immediately by considering the natural commu-
tative diagram

1 −→ Ẑ(1) −→ π1(L×
y ) −→ π1(Zy) −→ 1y y y

1 −→ Ẑ(1) −→ π1(L×) −→ π1(Z) −→ 1

[in which the rows are exact, by assertion (ii); the vertical arrow on the
left is an isomorphism], together with the exact sequence 1 → π1(Zy) →
π1(Z) → π1(Y ) → 1. Assertion (iv) (respectively, (v)) follows immediately
from the argument of the proof of [Mzk5], Lemma 4.2, (ii) (respectively,
[Mzk5], Lemma 4.2, (iii)). ¤

Now let l be a prime number ; suppose that Y is 2-good. Also, let us
suppose that, for i = 1, . . . , m [where m ≥ 1 is an integer], we have been
given a section

si : Y → Z

of f , whose image we denote by Dsi ⊆ Z. Write Ui ⊆ Z for the open

subscheme given by the complement of Dsi ; WZ
def=

⋂m
i=1 Ui ⊆ Z; Li

def=
OZ(Dsi); L×

i → Z for the complement of the zero section of the geometric
line bundle determined by Li;

WZ → L×
i

for the morphism determined by the natural inclusion OZ ↪→ OZ(Dsi) =
Li. Also, let us suppose that WZ → Y is a family of hyperbolic curves [i.e.,
that the images of the si do not intersect]. By forming the quotient of the
exact sequence of Lemma 4.2, (ii), by the pro-prime-to-l portion of Ẑ(1),
we obtain extensions

1 −→ Zl(1) −→ Ei,y −→ π1(Zy) −→ 1y y y
1 −→ Zl(1) −→ Ei −→ π1(Z) −→ 1

for i = 1, . . . , m. Also, let us write

κi ∈ H2
ét(Z, Zl(1))

for the fundamental class associated to Dsi [i.e., the first Chern class of the
line bundle Li — cf. Lemma 4.2, (ii)].
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Lemma 4.3 (Multi-section Splittings) In the notation of the above dis-
cussion:
( i ) The natural homomorphism

π1(WZ) →
m∏

i=1

Ei

[where the product is a fiber product over π1(Z)] is surjective.
( ii ) The natural quotient π1(WZ) ³ π1(WZ)ab ⊗ Zl factors through the

quotient determined by the surjection of (i).
(iii) For i = 1, . . . , m, let λi ∈ Zl. Then there exists a surjection π1(WZ)³

Zl(1) — which, by (ii), necessarily factors through the surjection of (i),
hence determines a surjection

m∏
i=1

Ei ³ Zl(1)

— that restricts to multiplication by λi on the copy of Zl(1) in Ei if
and only if the class

m∑
i=1

λi · κi ∈ H2
ét(Z, Zl(1))

vanishes.

Proof. First, we consider assertion (i). In light of the exact sequences of
Proposition 2.2, (iii), and Lemma 4.2, (iii), it suffices to show the surjec-
tivity of π1((WZ)y) →

∏m
i=1 Ei,y. But this follows immediately, in light of

Lemma 4.2, (iv), by considering the various inertia groups ⊆ π1((WZ)y) of
the cusps of (WZ)y. This completes the proof of assertion (i). Assertion
(ii) follows immediately, in light of Lemma 4.2, (iv) [and induction on n],
from the fact that the kernel of the natural surjection π1(WZ) ³ π1(Z) is
topologically normally generated by the inertia groups of cusps. Finally, we
observe that assertion (iii) follows immediately from the definitions. ¤

Lemma 4.4 (The Section Arising from the Graph of a Morphism) In the
notation of the above discussion, suppose further that Z → Y is given by
the projection to the second factor C ×k C → C, where we write C

def= Zy,
that C is proper, and that s : Y → Z is given by the graph of a k-morphism
σ : C → C. Then the component of the first Chern class of L in the middle
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direct summand of

H2
ét(Z, Zl(1)) ∼= H2

ét(C, Zl(1)) ⊕ (H1
ét(C, Zl)

⊗ H1
ét(C, Zl(1))) ⊕ H2

ét(C, Zl(1))

[cf. the Künneth isomorphism in étale cohomology, discussed, e.g., in [Milne],
p. 258, Theorem 8.5] is given by applying the endomorphism σ∗ ⊗ id of the
module H1

ét(C, Zl)⊗H1
ét(C, Zl(1)) to the element of this module determined

by the morphism HomZl
(H1

ét(C, Zl(1)), Zl) → H1
ét(C, Zl) given by the in-

verse of the morphism H1
ét(C, Zl) → HomZl

(H1
ét(C, Zl(1)), Zl) arising from

the cup product H1
ét(C, Zl) ⊗ H1

ét(C, Zl(1)) → H2
ét(C, Zl(1)) ∼= Zl in étale

cohomology.

Proof. Indeed, this follows immediately from [Milne], p. 287, Lemma 12.2.
¤

Lemma 4.5 (Linear Independence for Vector Spaces) Let G be a finite
group, whose order we denote by |G|; K a field; V a finite-dimensional K-
vector space equipped with a linear action by G such that the G-module V

contains the regular representation of G as a direct summand; N ≥ 1 an
integer. Write

W
def= V ⊕ · · · ⊕ V

for the direct sum of N copies of V ; ιi ∈ HomK(V, W ) [where i = 1, . . . , N ]
for the inclusion V ↪→ W into the i-th factor. Then the N · |G| elements

ιi ◦ g

[where i = 1, . . . , N ; g ∈ G] of HomK(V, W ) are linearly independent.

Proof. Indeed, any nontrivial linear relation between these elements im-
plies — by applying the various linear morphisms HomK(V,W ) → HomK(V,

V ) obtained by projecting onto the various factors of V in W — a nontrivial
linear relation between the endomorphisms ∈ HomK(V, V ) determined by
the elements of G, in contradiction to the assumption that the G-module
V contains the regular representation of G as a direct summand. ¤

Lemma 4.6 (Linear Independence for Configuration Spaces) In the no-
tation of the above discussion, suppose further that:
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(a) there exists a commutative diagram

Z −→ Yy y
X ×k Xn −→ Xn

where the upper horizontal arrow is the given morphism Z → Y ; the
lower horizontal arrow is the projection to the second factor; n ≥ 1
is an integer; Xn is the n-th configuration space associated to some
hyperbolic curve X over k; the vertical arrows are finite étale Galois
coverings arising from the coverings of X ×k Xn, Xn determined by
taking the direct product of copies of a finite étale Galois covering
Z0 → X [so Zy may be identified with Z0];

(b) the genus of the compactification B of X is ≥ 2;
(c) if we write C → B for the normalization of B in Z0, then we have

m = n · deg(C/B), and the si : Y → Z are the various liftings of the n

tautological sections Xn → X ×k Xn arising from the definition of the
configuration space Xn.

[Thus, the fact that WZ → Y is a family of hyperbolic curves follows im-
mediately from Remark 2.1.2; the fact that Xn, hence also Y , is 2-good
follows, by induction on n, from Lemma 4.2, (i). Moreover, WZ forms
a finite étale covering of Xn+1 that arises from a product-theoretic open
subgroup of π1(Xn+1).] Then:
( i ) The morphisms of the commutative diagram of (a) determine an iso-

morphism of k-schemes Z
∼→ Z0 ×k Y .

( ii ) The isomorphism of (i) determines an isomorphism of first cohomology
groups H1

ét(Z, Zl)
∼→ H1

ét(Z0, Zl) × H1
ét(Y, Zl).

(iii) The images of the κi in H2
ét(Z, Ql(1)) are linearly independent [over

Ql].

Proof. Note that the projection to the first factor X×kXn → X determines
a morphism Z → Z0 (⊆ C). Thus, we obtain an isomorphism as in assertion
(i); assertion (ii) follows immediately from assertion (i). Now it remains to
verify assertion (iii). Suppose that the section s : Y → Z arises from a point
∈ Z0(k). Write κ ∈ H2

ét(Z, Zl(1)) for the fundamental class associated to

Ds. For i = 1, . . . , m, set κ′
i

def= κi − κ. Next, let us observe that κ and
the κi all map [cf. the Leray-Serre spectral sequence for Z → Y ] to the
same element of H2

ét(Zy, Ql(1)) — a Ql-vector space of dimension 0 [cf.
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e.g., [Milne], p. 253, Theorem 7.2] if Zy is affine and dimension 1 [cf. e.g.,
[Milne], p. 276, Theorem 11.1, (a)] if Zy is proper. In particular, it follows
that κ′

i maps to 0 in H2
ét(Zy, Ql(1)). Note, moreover, that [since κ = 0

whenever Zy is affine] this observation also implies that to verify the linear
independence of the images of the κi in H2

ét(Z, Ql(1)), it suffices to verify
the linear independence of the images of the κ′

i in H2
ét(Z, Ql(1)). Thus, we

conclude that the κ′
i determine classes

ηi ∈ H1
ét(Y, H1

ét(Zy, Ql(1))) ∼= H1
ét(Y, Ql) ⊗ H1

ét(Z0, Ql(1))

[cf. the Leray-Serre spectral sequence for Z → Y ], and that to verify the
linear independence of the images of the κi in H2

ét(Z, Ql(1)), it suffices to
verify that the ηi are linearly independent.

On the other hand, it follows immediately from the definitions that the
κi arise as pull-backs via the various projections Y → Z0 ↪→ C, Z → Z0 ↪→
C of the classes [cf. Lemma 4.4] determined by the graphs ⊆ C ×k C of
the various σ : C → C, for σ ∈ Gal(C/B). In particular, the ηi arise as
pull-backs via these various projections of the classes in

H1
ét(C, Ql) ⊗ H1

ét(C, Ql(1)) (↪→ H1
ét(Y, Ql) ⊗ H1

ét(Z0, Ql(1)))

determined [cf. Lemma 4.4] by the graphs of the various σ∈G
def= Gal(C/B).

On the other hand, by Proposition 1.3 [cf. our assumption that the genus
of B is ≥ 2!], it follows that the G-module V

def= H1
ét(C, Ql) contains the

regular representation of G as a direct summand. Note, moreover, that the
n inclusions V = H1

ét(C, Ql) ↪→ H1
ét(Y, Ql) [determined up to composition

with the action of G on V ] arising from the n projections Xn → X determine
a map of Ql-vector spaces(⊕

H1
ét(C, Ql)

)
→ H1

ét(Y, Ql)

[where the direct sum is over n copies of H1
ét(C, Ql)] which is injective. Thus,

we are, in effect, in the situation of Lemma 4.5, so the linear independence
of the ηi follows from the linear independence asserted in Lemma 4.5. ¤

Theorem 4.7 (Strongly Torsion-free Pro-solvable Product-theoreticity)
Let X be a hyperbolic curve of genus ≥ 2 over an algebraically closed field
k of characteristic zero; n ≥ 1 an integer; Xn the n-th configuration space
associated to X; H ⊆ π1(Xn) a product-theoretic open subgroup; G a
strongly torsion-free pro-solvable profinite group. Then the kernel of any
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continuous homomorphism

H → G

is product-theoretic.

Proof. First, we claim that it suffices to verify Theorem 4.7 in the case
where G = Zl [for some prime number l]. Indeed, since G is topologically
finitely generated [cf. Definition 1.1, (iii)], and arbitrary intersections of
product-theoretic closed subgroups of π1(Xn) are clearly product-theoretic,
Theorem 4.7 for arbitrary [torsion-free] abelian G follows immediately from
the case “G = Zl”. Thus, by replacing H, G successively by appropriate
open subgroups of H, G, Theorem 4.7 for arbitrary [strongly torsion-free]
pro-solvable G follows immediately from the [torsion-free] abelian case. This
completes the proof of the claim. Thus, in the following, we assume that
G = Zl.

Now observe that Theorem 4.7 is vacuous for n = 1. Thus, by induction
on n, it suffices to verify Theorem 4.7 for “n+1” under the assumption that
it holds for “n”. Next, let us observe that it follows immediately from the
definition of “product-theoretic” that any covering of Xn+1 that arises from
a product-theoretic open subgroup J ⊆ π1(Xn+1) is dominated by a covering
of the form “WZ → Xn+1” for WZ as in Lemma 4.6. Thus, to complete
the proof of Theorem 4.7, it suffices to show that the kernel of any quotient
J ³ Jab ⊗ Zl ³ Zl is product-theoretic, for J corresponding to a covering
“WZ → Xn+1” as in Lemma 4.6. In particular, by applying Lemma 4.3,
(iii), in light of the linear independence asserted in Lemma 4.6, (iii), and the
induction hypothesis [which may be applied to “Y ”, via Lemma 4.6, (ii)],
we conclude that the kernel of such a quotient J ³ Zl is product-theoretic,
as desired. ¤

Remark 4.7.1 Note that Theorem 4.7 is false if the genus of X is < 2 and
n ≥ 2. Indeed, to construct a counter-example for arbitrary n ≥ 2, it suffices
to construct a counter-example for n = 2. If, moreover, U is the hyperbolic
curve determined by an open subscheme of X, then consideration of the
natural morphism U2 ↪→ X2 shows that the existence of a counter-example
for X2 implies the existence of a counter-example for U2. Thus, we may
assume, without loss of generality, that n = 2, and X is either of type (0, 3)
or of type (1, 1). But, in either of these cases, it is well-known that there
exists a dominant map X2 → X that extends to a map X×k X → B [where
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B is a compactification of X] that maps the open subscheme X2 ⊆ X ×k X

into X ⊆ B. Thus, by pulling back an appropriate infinite cyclic covering
of some finite étale covering of X, one obtain an infinite cyclic covering of
some finite étale covering of X ×k X that is [infinitely] ramified over the
diagonal of X ×k X.

Corollary 4.8 (Group-theoreticity of Projections of Configuration Spaces
I) Let C be a PT-formation. For ξ = α, β, let Xξ be a hyperbolic curve of
genus ≥ 2 over an algebraically closed field kξ of characteristic zero; nξ ≥ 1
an integer; Xξ

nξ the nξ-th configuration space associated to Xξ; Eξ the index

set of Xξ
nξ ; Hξ ⊆ Πξ def= πC

1 (Xξ
nξ) a product-theoretic open subgroup. Let

γ : Hα
∼→ Hβ

be an isomorphism of profinite groups. Then γ induces a bijection σ : Eα
∼→

Eβ [so nα = nβ ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆

Eα, E′
β ⊆ Eβ correspond via σ.

Proof. First, let us observe that to complete the proof of Corollary 4.8, it
suffices to construct a bijection σ : Eα

∼→ Eβ [so nα = nβ ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ of co-length one whose respective
profiles correspond via σ. Indeed, this follows immediately by applying
induction on n

def= nα = nβ [cf. also Proposition 2.4, (i), (ii)].
Next, for j = 1, . . . , nξ, let us write

Kξ
j ⊆ Hξ

for the intersection with Hξ of the fiber subgroup ⊆ Πξ of co-length one
with co-profile given by the element of Eξ labeled by j. Thus, [cf. Propo-
sition 2.4, (iv); the fact that fiber subgroups of co-length one are normal
closed subgroups of infinite index ] for distinct j, j′ ∈ {1, . . . , nξ}, Kξ

j , Kξ
j′

topologically generate an open subgroup of Πξ; in particular, Kξ
j is not con-

tained in Kξ
j′ .
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Now we claim that to complete the proof of Corollary 4.8, it suffices to
prove that the following statement holds [in general]:

For each i ∈ Eα, there exists a j ∈ Eβ such that Kβ
j ⊆ γ(Kα

i ).
Indeed, by applying this statement to γ, γ−1, we conclude that for each

i ∈ Eα, there exist j ∈ Eβ , i′ ∈ Eα such that γ(Kα
i′ ) ⊆ Kβ

j ⊆ γ(Kα
i ), hence

that Kα
i′ ⊆ Kα

i . But, as observed above, this implies that i′ = i, hence
that Kβ

j = γ(Kα
i ). Moreover, this relation “Kβ

j = γ(Kα
i )” determines an

assignment i 7→ j, hence a mapping σ : Eα → Eβ , which is a bijection,
relative to which intersections with Hα, Hβ of fiber subgroups of co-length
one with corresponding profiles correspond via γ. This completes the proof
of the claim.

To verify the “statement” of the above claim, we reason as follows: Let
l ∈ ΣC . Write Hα/Kα

i ³ G for the maximal pro-l quotient of Hα/Kα
i ;

φ : Hβ
∼→ Hα ³ Hα/Kα

i ³ G

for the surjection determined by γ−1. Then observe that since Hα/Kα
i is a

pro-C surface group, it follows that G is a pro-l surface group, hence strongly
torsion-free [cf. Remark 1.2.2] and pro-solvable [cf. Remark 1.1.3]. Thus,
it follows from Theorem 4.7 that φ factors through the quotient Hβ ³
Qβ determined by the quotient “πC

1 (Xβ
nβ ) ³ πC

1 (P β
nβ )” [i.e., the image of

Hβ ⊆ πC
1 (Xβ

nβ ) in πC
1 (P β

nβ )] corresponding to the quotient that was denoted
“πC

1 (Xn) ³ πC
1 (Pn)” in Definition 2.3, (ii). In particular, since Qβ admits an

open subgroup with a direct product decomposition induced by the natural
direct product decomposition of πC

1 (P β
nβ ), it thus follows [since G is slim and

strongly indecomposable — cf. Propositions 1.4, 3.2] from Proposition 3.3
that there exists a j ∈ Eβ such that the image of Kβ

j in G is a finite
normal closed subgroup, hence trivial [since G is slim — cf. Proposition 1.4,
§ 0]. But this implies that the image of Kβ

j in the pro-C-surface group
Hα/Kα

i is a topologically finitely generated [cf. Proposition 2.2, (ii)] normal
closed subgroup, which [since G is infinite] is of infinite index, hence — by
Theorem 1.5 — trivial. This completes the proof of Corollary 4.8. ¤

Remark 4.8.1 It is interesting to note that in [NT], Theorem 3.1 [cf.
especially, [NT], Lemmas 3.3 – 3.6], a certain analogue of Theorem 4.8 is
shown for graded Lie algebras. More generally, the idea of studying con-
figuration spaces from an anabelian point of view dates back at least to
[Naka].
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Remark 4.8.2 The original motivation, for the first author, for develop-
ing the theory applied to prove Corollary 4.8 was the idea that by combining
Corollary 4.8 with the techniques of [Mzk6], [Mzk7], one could obtain results
in the absolute anabelian geometry of configuration spaces over p-adic local
fields. It is the intention of the first author to carry out this application of
Corollary 4.8 in a subsequent paper.

5. Divisors and units on coverings of configuration spaces

In the present § 5, we discuss a certain generalization [cf. Theorem 5.6;
Remark 5.6.1], in the case of proper hyperbolic curves, of Theorem 4.7 [due to
the second author]. Unlike the proof of Theorem 4.7 given in § 4, the proof of
this generalization does not rely on the notion of “goodness” or properties
involving the “regular representation”. In this sense, the approach given
in the present § 5 is more efficient and relies on direct algebro-geometric
properties — such as the disjointness of divisors — of which the properties
involving the “regular representation” applied in § 4 may be thought of as
a sort of “étale-topological translation”. On the other hand, the approach
of § 4 [which was discovered first, by the first author], though less efficient,
is applicable to both affine and proper hyperbolic curves, and, moreover,
has the virtue of relying on explicit group-theoretic manifestations of these
algebro-geometric properties; it was this explicitness that served to render
the approach of § 4 more readily accessible to the intuition of the first
author. Finally, we discuss certain consequences [cf. Corollary 5.7] of the
theory of the present § 5 concerning the “non-existence of units” on finite
étale coverings of a sufficiently generic hyperbolic curve.

We begin by reviewing some essentially well-known generalities con-
cerning log schemes.

Definition 5.1 Let X log be a fine log scheme [cf. [Kato1]].
(i) Denote by MX the étale sheaf of monoids on X that defines the log
structure on X log. Thus, we have a natural injection O×

X ↪→ MX , which we
shall use to regard O×

X as a subsheaf of MX . We shall refer to the quotient
sheaf of monoids

M char
X

def= MX/O×
X

as the characteristic of X log and to the associated sheaf of groupifications
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M char−gp
X

as the group-characteristic of X log. Thus, [since X log is fine] the fibers
of M char

X (respectively, M char−gp
X ) are finitely generated torsion-free abelian

monoids (respectively, abelian groups). For n ∈ N, we shall denote by

U
[n]
X ⊆ X

and refer to as the n-interior of X log the subset [cf. Proposition 5.2, (i),
(ii) below] of points [of the scheme X lying under geometric points of the
scheme X] at which the fiber of M char−gp

X is of rank ≤ n. Thus, U
[0]
X is the

interior UX ⊆ X of X log [i.e., the open subscheme of points at which the
log structure of X log is trivial ].
(ii) Let M be a finitely generated [abstract] abelian monoid; N ≥ 1 an
integer. We shall say that M is Q-regular [with exponent N ] if for some
n ∈ N, the map

Nn → Nn

[where Nn is the monoid determined by the product of n copies of N] given
by multiplication by N factors as a composite of injections of monoids
Nn ↪→ M ↪→ Nn. We shall say that X log is weakly Q-regular (respectively,
strongly Q-regular) if, for every geometric point x of X, the fiber of M char

x

at x is a Q-regular monoid (respectively, Q-regular monoid with exponent
invertible in the residue field of x).

Proposition 5.2 (Generalities on Log Schemes) Let X log be a fine log
scheme; n ∈ N; l a prime number invertible on X. Then:
( i ) The n-interior U

[n]
X ⊆ X is open.

( ii ) Suppose that X log is log regular. Then the complement of the n-
interior U

[n]
X is a closed subset of X of codimension > n; the comple-

ment DX
def= X\UX [equipped with the reduced induced scheme struc-

ture] is a divisor on X.
(iii) Suppose that X log is log regular and weakly Q-regular. Then X is

locally Q-factorial [i.e., every Weil divisor on X admits a positive
multiple which is Cartier]. Moreover, if X is connected, and G is
any torsion-free profinite group, then any homomorphism of profinite
groups

φ : π1(U
[1]
X ) → G
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factors through the natural surjection of étale fundamental groups
π1(U

[1]
X ) ³ π1(X).

(iv) Suppose that X log is log smooth over a field k [equipped with the trivial
log structure] and strongly Q-regular; let F ⊆ X be a closed subset of
codimension ≥ n. Then the natural map on étale cohomology

Hj
ét(X, Ql) → Hj

ét(X\F, Ql)

is an isomorphism for j ≤ 2n − 2 and an injection for j = 2n − 1.
( v ) Under the assumptions of (iv), suppose further that X is connected;

write

DX =
⋃
i∈I

DX,i

— where I is a finite set; the DX,i ⊆ X are irreducible divisors. [Thus,
since X log is log regular, hence normal [cf. [Kato2], Theorem 4.1], we
have a natural surjection of étale fundamental groups

π1(UX) ³ π1(X)

whose kernel contains the inertia groups of the DX,i; the maximal pro-
l quotient of each of these inertia groups is naturally isomorphic to
some quotient of Zl(1).] Then we have a natural exact sequence

0 → Hom(π1(X), Ql(1)) → Hom(π1(UX), Ql(1))

→
⊕
i∈I

Ql → H2
ét(X, Ql(1)) → H2

ét(UX , Ql(1))

— where the “hom’s” denote the modules of continuous homomor-
phisms of topological groups; the second arrow is the arrow determined
by the natural surjection π1(UX) ³ π1(X); the third arrow is the ar-
row determined by the [copies of Zl(1) that naturally surject onto the]
inertia groups of the DX,i [and the natural identification of Ql with
Hom(Zl(1), Ql(1))]; the fourth arrow is the arrow that sends the 1 ∈
Ql in the direct summand labeled “i” to the fundamental class c(DXi)
of the Weil divisor DX,i [which is well-defined, by (iii)].

Proof. Indeed, assertion (i) follows immediately from the definition of a
fine log scheme [cf. [Kato1], § 2.1–3]. In light of assertion (i), the portion
of assertion (ii) concerning U

[n]
X follows immediately from the inequality



112 S. Mochizuki and A. Tamagawa

dim(OX,x) ≥ rankZ((M char−gp
X )x) [where x is a geometric point of X; OX,x

is the corresponding strict henselization of a local ring of X] — cf. the
definition of “log regular” in [Kato2], Definition 2.1. Since X is normal [cf.
[Kato2], Theorem 4.1], the portion of assertion (ii) concerning DX follows
immediately from the description given in [Kato2], Theorem 11.6, of the
monoid MX in terms of rational functions on X.

To verify assertion (iii) (respectively, (iv)), let us first observe that
it follows immediately from our assumptions that X log is log regular (re-
spectively, log smooth over k) and weakly Q-regular (respectively, strongly
Q-regular) that every point of X admits an étale neighborhood V → X such
that there exists a finite (respectively, [finite] Kummer log étale) dominant
morphism W log → V log [where we equip V with the log structure pulled
back from X] such that the scheme W is regular (respectively, smooth over
k) and connected, and the log structure of W log arises from a divisor with
normal crossings on W . Now the local Q-factoriality portion of assertion
(iii) follows immediately by pulling back a given Weil divisor on X to the
regular scheme W [which yields a Cartier divisor on W ] and then push-
ing forward via W → V [which multiplies the original divisor on V by the
degree of the morphism W → V ]. To verify the portion of assertion (iii)
concerning étale fundamental groups, we may assume without loss of gen-
erality that X, V , and W are strictly henselian, and that the morphism
V → X is an isomorphism. Now by Zariski-Nagata purity [i.e., the classical
non-logarithmic version of the “log purity theorem” quoted in § 2], it fol-
lows that π1(U

[1]
W ) ∼→ π1(W ) = {1}. On the other hand, since the morphism

W → X is finite, it follows that the natural morphism {1} = π1(U
[1]
W ) →

π1(U
[1]
X ) has open image, hence that π1(U

[1]
X ) is finite. Thus, our assumption

that G is torsion-free implies that φ is trivial. This completes the proof of
assertion (iii).

To verify assertion (iv), let us first observe that assertion (iv) holds
when X is smooth over k. Indeed, in this case, by applying noetherian
induction to F and possibly base-changing to a finite inseparable extension
of k, we may assume without loss of generality that F is smooth over k;
but then the content of assertion (iv) is well-known [cf. e.g., [Milne], p.
244, Remark 5.4, (b)]. In the case of arbitrary X log, we argue as follows:
Write ι : XF

def= X\F ↪→ X for the natural inclusion. Then [by applying
a well-known exact sequence in étale cohomology] it suffices to verify that
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Rjιét,∗(Ql) = 0 for 0 < j ≤ 2n − 1. Since we have already verified assertion
(iv) for k-smooth X, we may assume that F

⋂
UX = ∅. In particular, it

suffices [cf. [Milne], p. 88, Theorem 1.15] to verify, for an arbitrary strictly
henselization V of V at a closed point of V , that Hj(V F , Ql) = 0 for 0 <

j ≤ 2n − 1 [where we write V F
def= XF ×X V ]. On the other hand, let us

observe that since ζ log : W log
F

def= V F ×V W log → V log
F

def= V F ×V V log is
Kummer log étale, it follows that one may define a “trace morphism”

ζét,∗((Ql)W F
) → (Ql)V F

[where we use the subscripts “WF ”, “V F ” to denote the constant sheaf on
WF , V F ] that restricts, relative to ζ∗ét, to multiplication by the degree deg(ζ)
of ζ on (Ql)V F

. [Indeed, this is immediate for the restriction ζU : UW F
→

UV F
to the respective interiors, since this restriction is finite étale. On the

other hand, since V F is normal, we have a natural isomorphism (Ql)V F

∼→
θ∗θ

∗((Ql)V F
), where we write θ : UV F

↪→ V F for the natural inclusion of the
interior. Thus, we obtain a trace morphism as desired by restricting to the
interiors, applying the trace morphism on the interiors, and then applying
this natural isomorphism.] Thus, by taking étale cohomology, one obtains a
trace morphism τ : Hj(WF , Ql) → Hj(V F , Ql) such that the composite τ ◦
ρ with the restriction morphism ρ : Hj(V F , Ql) → Hj(WF , Ql) is equal to
multiplication by deg(ζ) on Hj(V F , Ql). Since, moreover, we have already
verified assertion (iv) for k-smooth X, it follows that Hj(WF , Ql) = 0 for
0 < j ≤ 2n − 1, hence that Hj(V F , Ql) = 0 for 0 < j ≤ 2n − 1, as desired.

Finally, we consider assertion (v). When X = U
[1]
X [so X, DX are smooth

over k], assertion (v) follows immediately by applying the well-known Gysin
sequence in étale cohomology [cf. e.g., [Milne], p. 244, Remark 5.4, (b)]

0 → H1
ét(X, Ql(1)) → H1

ét(UX , Ql(1))

→
⊕
i∈I

Ql → H2
ét(X, Ql(1)) → H2

ét(UX , Ql(1))

and the natural isomorphisms H1
ét((−), Ql(1)) ∼= Hom(π1((−)), Ql(1)), for

“(−)” equal to X, UX . For arbitrary X log, we reduce immediately to the
case where X = U

[1]
X by applying assertions (ii), (iv). ¤

Remark 5.2.1 We recall in passing that the local Q-factoriality portion
of Proposition 5.2, (iii), is false for arbitrary [not necessarily weakly Q-
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regular] log regular X log. Indeed, such an example appears in the Remark
following [Mzk1], Corollary 1.8.

Now we return to our discussion of configuration spaces. Let X be a
proper hyperbolic curve of genus gX over an algebraically closed field k of
characteristic zero, n ≥ 1 an integer, l a prime number; write Xn ⊆ Pn

for the associated n-th configuration space, Z log
n for the associated n-th log

configuration space, and E for the index set of Xn, Z log
n [cf. Definition 2.1,

(i)]. Thus, Xn may be identified with the interior UZn of Z log
n .

Proposition 5.3 (The Logarithmic Geometry of the Log Configuration
Space) In the notation of the above discussion: Write

V
def= U

[1]
Zn

; V log def= Z log
n ×Zn V

for the 1-interior of Z log
n and the log scheme obtained by restricting the log

structure of Z log
n . For j ≥ 1 an integer, let us denote by ∧jE the set of

subsets of E of cardinality j [so E may be identified with ∧1E] and by

∧∗E
def=

n⋃
j=1

∧jE

the [disjoint] union of the subsets of cardinality j ≥ 1. Then:
( i ) We shall refer to a divisor on Zn obtained as the pull-back via a pro-

jection morphism Zn → X of co-length 1 [and co-profile e ∈ ∧1E = E]
of a point ∈ X(k) as a fiber divisor [of co-profile e] [on Zn]. Then
all fiber divisors of co-profile e ∈ ∧1E = E on Zn determine the same
fundamental class

ηe ∈ H2
ét(Zn, Ql(1))

— which we shall refer to as the fiber class of co-profile e [on Zn].
( ii ) The irreducible divisors on Zn contained in the divisor DZn defining

the log structure of Z log
n are in natural bijective correspondence with

the elements of (∧∗E)\E. That is to say, a point of V belongs to the
irreducible divisor Dε ⊆ V corresponding to an element ε ∈ (∧∗E)\E
if and only if it corresponds to a stable curve with precisely two ir-
reducible components, one isomorphic to X, the other of genus zero,
such that the marked points that lie on X are precisely the marked
points determined by the factors e ∈ ε′

def= E\ε. In particular, we
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obtain a natural isomorphism of schemes

Dε
∼= X|ε′|+1 × Q|ε|−2

— where |ε|, |ε′| are the cardinalities of of ε, ε′, respectively; the pro-
jection Dε → X|ε′|+1 is induced by any projection Xn → X|ε′|+1 of
co-profile ε+, for ε+ ∈ ∧|ε′|+1E an element such that ε′ ⊆ ε+; Q|ε|−2 is
the (|ε|−2)-th configuration space [i.e., Spec(k), when |ε| = 2] of “the”
tripod [cf. § 0] over k. In particular, the index set of the configuration
space X|ε′|+1 appearing in this isomorphism may be naturally identified
with the set “E/ε” obtained from E by identifying the elements of ε

to a single element [ε] ∈ E/ε. We shall refer to the irreducible divisor
on Zn contained in DZn that corresponds to ε ∈ (∧∗E)\E as the log-
prime divisor of co-profile ε [on Zn]; we shall refer to the fundamental
class

ηε ∈ H2
ét(Zn, Ql(1))

of the log-prime divisor of co-profile ε as the log-prime class of co-
profile ε [on Zn].

(iii) Let

W log → V log

be a connected [finite] Kummer log étale covering. Then W log is log
smooth over k and strongly Q-regular, and W , DW are smooth over
k. We shall also refer to irreducible divisors on W that lie over fiber
divisors on Zn as fiber divisors on W , and to fundamental classes of
fiber divisors on W as fiber classes on W ; in a similar vein, we shall
refer to irreducible divisors on W that lie over log-prime divisors on Zn

as log-prime divisors on W , and to fundamental classes of log-prime
divisors on W as log-prime classes on W . Then a fiber class on W is
completely determined by its co-profile. Also, we shall refer to a class
on W or Zn as a log-characteristic class if it is either a fiber class or
a log-prime class.

Proof. Assertion (i) follows, for instance, from [Milne], p. 276, Theorem
11.1, (a). Assertion (ii) follows immediately from the definition of Z log

n

involving the [log] moduli stack of stable curves. Assertion (iii) follows im-
mediately from the definitions and assertion (i). ¤
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Lemma 5.4 (Line Bundles on Log-prime Divisors) In the notation of
Proposition 5.3, (ii):
( i ) The isomorphism Dε

∼= X|ε′|+1 ×Q|ε|−2 of Proposition 5.3, (ii), deter-
mines an isomorphism of Picard groups Pic(Dε)

∼→ Pic(X|ε′|+1).
(ii) The co-normal bundle of Dε is isomorphic [cf. (i)] to the line bundle

obtained by pulling back the canonical bundle ωX of X via the [unique!]
projection X|ε′|+1 → X that arises from a projection morphism Xn →
X of co-length 1 whose co-profile is not contained in ε′.

Proof. First, we consider assertion (i). Since Q|ε|−2 is an open subscheme
of the affine space [of dimension |ε|−2] over k, it follows that Dε

∼= X|ε′|+1×
Q|ε|−2 is isomorphic to an open subscheme of the affine space [of dimension
|ε| − 2] over X|ε′|+1. Thus, the assertion concerning Picard groups follows
immediately from elementary algebraic geometry [cf. e.g., [Fulton], Theo-
rem 3.3, (a)].

As for assertion (ii), we observe that the description of the stable curves
parametrized by Dε given in Proposition 5.3, (ii), implies [in light of the well-
known local structure of a node] that the co-normal bundle in question is
naturally isomorphic to the tensor product of the pull-back of the canonical
bundle described in the statement of assertion (ii) with some [necessarily
trivial — by assertion (i)] line bundle on Dε pulled back from the natural
projection to Q|ε|−2. This completes the proof of assertion (ii). ¤

Lemma 5.5 (Linear Independence of Log-characteristic Classes) In the
notation of Proposition 5.3, (iii): Set

IW
def= Ifiber

W

⋃
I log−prime
W

— where we write Ifiber
W

def= E and I log−prime
W for the set of log-prime divisors

on W . Thus, if we think of the elements of Ifiber
W as the co-profiles of fiber

classes of H2
ét(W, Ql(1)), then we obtain a [fiber or log-prime] class

ηi ∈ H2
ét(W, Ql(1))

for each element i ∈ IW . Then:
( i ) The log-characteristic classes {ηi}i∈IW

are linearly independent over
Ql.

(ii) The restricted fiber classes {ηi|UW
}i∈Ifiber

W
are linearly independent [in

H2
ét(UW , Ql(1))] over Ql.



The profinite fundamental groups of configuration spaces 117

Proof. First, we observe that the description of the kernel of the restric-
tion map H2

ét(W, Ql(1)) → H2
ét(UW , Ql(1)) given in the exact sequence of

Proposition 5.2, (v), implies that assertion (ii) follows immediately from
assertion (i). For i ∈ I log−prime

W , write

Di

for the divisor [tautologically!] determined by i. Thus, [by the definition of
V log, W log]

Di

⋂
Dj = ∅

for all i, j ∈ I log−prime
W such that i 6= j. Also, we observe that it follows im-

mediately from the definitions that, for i ∈ I log−prime
W , the covering W log →

V log determines a finite étale morphism

Di → Dε
∼= X|ε′|+1 × Q|ε|−2

[cf. Proposition 5.3, (ii)]. Finally, we observe that we may assume without
loss of generality that the Kummer log étale covering W log → V log is Galois,
with Galois group Γ def= Gal(W log/V log).

Now let us verify assertion (i) by induction on n. Let∑
i∈IW

ci · ηi = 0

[where the ci ∈ Ql] be a linear relation among the ηi. The case n = 1 is
immediate from the definitions [cf. also [Milne], p. 276, Theorem 11.1, (a)].
Next, we consider the case n = 2. Let j ∈ I log−prime

W . Since n = 2, it follows
immediately from the definitions that Dj is a proper hyperbolic curve such
that the covering W log → V log induces a finite étale morphism of Dj onto
the diagonal of V = Zn = X × X. In particular, it follows that we may
restrict the above linear relation to Dj to obtain a linear relation

−cj · ηj |Dj =
∑

i∈Ifiber
W

ci · ηi|Dj

among classes of H2
ét(Dj , Ql(1)) ∼= Ql [cf. [Milne], p. 276, Theorem 11.1,

(a)]. Moreover, since the class ηj |Dj is the pull-back to Dj of some Q×
l -

multiple of the fundamental class of the diagonal of X ×X [cf. Lemma 5.4,
(ii)], we thus conclude that ηj |Dj 6= 0. Next, let us observe that, for i ∈
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Ifiber
W , the classes ηi are fixed by the natural action of Γ on H2

ét(W, Ql(1)).
Thus, if we identify H2

ét(Dj , Ql(1)) with Ql via the natural isomorphism
H2

ét(Dj , Ql(1)) ∼= Ql, then we conclude that the elements ηi|Dj , ηj |Dj ∈ Ql

[where i ∈ Ifiber
W ] are independent of the choice of j among all Γ-conjugates

of j, hence that the element cj ∈ Ql is independent of the choice of j among
all Γ-conjugates of j. But this implies that the linear relation

∑
i∈IW

ci ·
ηi = 0 arises as the pull-back to W of a similar linear relation on V . That
is to say, we may assume without loss of generality that W log = V log. But
then the Ql-linear independence of the unique log-prime class η∆ and the
two fiber classes η1, η2 follows, for instance, from the [easily verified] non-
singularity of the matrix of intersection numbers among the classes η∆, η1,
η2 [where we recall that η∆ · η1 = η∆ · η2 = η1 · η2 = 1, η1 · η1 = η2 · η2 = 0,
η∆ · η∆ = 2 − 2gX ]. This completes the proof of the case n = 2.

Now we assume that n ≥ 3. Let Dj [where j ∈ I log−prime
W ] be a log-

prime divisor of co-length 2 — i.e., which projects to a log-prime divisor of
V whose co-profile ε is of cardinality 2. Then the covering W log → V log

determines a finite étale morphism Dj → Xn−1; that is to say, Dj appears
as a “UW ” that arises in the case “n− 1”. Moreover, it follows immediately
from Lemma 5.4, (ii), that ηj |Dj is a Ql-multiple of the restriction to Dj of
the fiber class of Z log

n−1 of co-profile [ε] ∈ E/ε [cf. Proposition 5.3, (ii)]. On
the other hand, for i ∈ I log−prime

W such that i 6= j, ηi|Dj = 0; for i ∈ Ifiber
W of

co-profile e ∈ E, ηi|Dj is a Q×
l -multiple of the restriction to Dj of the fiber

class of Z log
n−1 whose co-profile is the image of e in E/ε. In particular, by

restricting the linear relation
∑

i∈IW
ci · ηi = 0 to Dj , it follows by applying

assertion (ii) for “n− 1” [i.e., here we apply the induction hypothesis on n]
that ci = 0 for all i ∈ ε′ ⊆ E = Ifiber

W . Since n ≥ 3, it follows that ε′ 6= ∅.
Thus, by varying j [i.e., varying ε], we conclude that ci = 0 for all i ∈ Ifiber

W .
Now to complete the proof of Lemma 5.5, it suffices to show that the

coefficients of any linear relation
∑

i∈Ilog−prime
W

ci ·ηi = 0 vanish. On the other

hand, by restricting to Dj , for j ∈ I log−prime
W , we obtain relations cj ·ηj |Dj =

0 for each j ∈ I log−prime
W . Thus, to complete the proof of Lemma 5.5, it

suffices to show that

ηj |Dj 6= 0

for j ∈ I log−prime
W . On the other hand, by Lemma 5.4, (ii), it follows that

ηj |Dj is a Q×
l -multiple of the pull-back to Dj of a class on X|ε′|+1×Q|ε|−2 [for



The profinite fundamental groups of configuration spaces 119

some ε ∈ (∧∗E)\E, ε′
def= E\ε] that arises as the pull-back to X|ε′|+1×Q|ε|−2

via the projection morphism X|ε′|+1 ×Q|ε|−2 → X|ε′|+1 of the restriction to
X|ε′|+1 of a fiber class of Z|ε′|+1. Since |ε′|+ 1 ≤ n− 1, it thus follows from
assertion (ii) for “|ε′|+1” [i.e., here we apply the induction hypothesis on n]
that the class ηj |Dj 6= 0, as desired. This completes the proof of Lemma 5.5.

¤

Theorem 5.6 (Extendability of Coverings) Let X be a proper hyperbolic
curve over an algebraically closed field k of characteristic zero; n ≥ 1 an
integer; Xn ⊆ Pn the n-th configuration space associated to X; (X∗

n)log def=
Z log

n the n-th log configuration space associated to X;

Y → Xn

a finite étale morphism, where Y is connected; Y ∗ → X∗
n the normalization

of X∗
n in Y ; G a strongly torsion-free profinite group;

φ : π1(Y ) → G

a continuous homomorphism. Then:
( i ) The homomorphism φ factors uniquely through the natural surjection

π1(Y ) ³ π1(Y ∗) induced by the open immersion Y ↪→ Y ∗.
(ii) Suppose further that the covering Y → Xn arises from a product-

theoretic open subgroup of π1(Xn). Then the kernel of φ is product-
theoretic.

Proof. First, we consider assertion (i). In the notation of the discussion
preceding Theorem 5.6: By the log purity theorem [cf. the discussion of § 2],
we have a natural isomorphism π1(UV ) ∼→ π1(V log), where we observe that
[it follows immediately from the definitions that] the interior UV of V log

may be identified with Xn. Thus, the finite étale covering Y → Xn may
be identified with the interior UW of a Kummer log étale covering W log →
V log. In particular, by the log purity theorem, we conclude that the finite
morphism Y ∗ → X∗

n determines a Kummer log étale covering (Y ∗)log →
(X∗

n)log. Thus, in summary, we obtain a commutative diagram

UW = Y ↪→ W log ↪→ (Y ∗)logy y y
UV = Xn ↪→ V log ↪→ (X∗

n)log



120 S. Mochizuki and A. Tamagawa

in which the “hooked horizontal arrows” are open immersions; the comple-
ments of the open immersions W ↪→ Y ∗, V ↪→ X∗

n are of codimension ≥ 2;
the vertical arrows are Kummer log étale coverings; by abuse of notation,
we use notation for schemes to denote the corresponding log schemes with
trivial log structure. In particular, it follows immediately from the fact
that the log structure of (X∗

n)log arises from a divisor with normal crossings
that (Y ∗)log is log smooth over k and strongly Q-regular. Thus, by Propo-
sition 5.2, (iii) [which is applicable since (Y ∗)log is log regular and weakly
Q-regular ], it follows that, to complete the proof of assertion (i), it suffices
to show that φ factors through the natural surjection π1(Y ) ³ π1(W ).

Next, we claim that we may assume without loss of generality that G

is abelian. Indeed, to show that φ factors through the natural surjection
π1(Y ) ³ π1(W ), it suffices [by Zariski-Nagata purity, since W , DW are
smooth over k] to show that that φ(ξ) = 1 for each element ξ ∈ π1(Y ) of
the inertia group of an irreducible divisor of DW = W\Y . Let Ξ ⊆ π1(Y ) be
the closed subgroup topologically generated by ξ; suppose that φ(Ξ) 6= {1}.
Then [cf. the argument applied at the beginning of the proof of Theorem 1.5]
there exists an open subgroup Gξ ⊆ G containing φ(Ξ) such that φ(Ξ) [i.e.,
Ξ] has nontrivial image in Gab

ξ . On the other hand, by applying assertion
(i) to the situation where we replace Y by the finite étale covering Yξ → Y

determined [via φ] by the open subgroup Gξ ⊆ G, replace G by Gab
ξ , and

replace W by the normalization Wξ of W in Yξ [where we note that ξ ∈
π1(Yξ) still satisfies the property of being an element of an inertia group of
an irreducible divisor of Wξ\Yξ], we conclude that Ξ has trivial image in
Gab

ξ , a contradiction. This completes the proof of the claim.
Thus, [cf. the proof of Theorem 4.7] it suffices to verify assertion (i) in

the case where G = Zl, for some prime number l. But in this case, the
fact that the given homomorphism π1(Y ) = π1(UW ) → G factors through
π1(UW ) ³ π1(W ) follows immediately from the exact sequence of Proposi-
tion 5.2, (v), in light of the Ql-linear independence asserted in Lemma 5.5,
(i). This completes the proof of assertion (i).

Next, we consider assertion (ii). Write

Y † → Pn

for the normalization of Pn (⊇ Xn) in Y . Since Y ∗ is normal and maps to
X∗

n, hence to Pn, we thus obtain a birational morphism Y ∗ → Y †. Since the
morphism X∗

n → Pn is proper, it thus follows that the morphism Y ∗ → Y †
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is proper. On the other hand, since Y → Xn arises from a product-theoretic
open subgroup of π1(Xn), one verifies immediately that Y † is smooth over
k, and that the kernel of the natural surjection π1(Y ) → π1(Y †) is product-
theoretic. In particular, by Zariski-Nagata purity [i.e., the classical non-
logarithmic version of the “log purity theorem” quoted above], we conclude
that the natural surjection π1(Y ∗) ³ π1(Y †) is an isomorphism. But this
implies that the given homomorphism π1(Y ) → G factors through the nat-
ural surjection π1(Y ) ³ π1(Y †), hence, in particular, is product-theoretic.
This completes the proof of assertion (ii). ¤

Remark 5.6.1 Theorem 5.6, (ii), generalizes Theorem 4.7, in the case
of proper hyperbolic curves, to the case where “G” is not necessarily pro-
solvable. This is possible precisely because, unlike the theory of §4, the
theory of the present § 5 is applicable to coverings of configuration spaces
that are not necessarily product-theoretic [cf. the reduction in the proof of
Theorem 5.6, (i), to the case where G is abelian].

Remark 5.6.2 In an earlier version of the present manuscript, Theo-
rem 5.6 was stated in a form that applied to affine hyperbolic curves of
genus ≥ 2 as well. In fact, however, the proof given for affine curves was
found to contain a gap which the authors were unable to repair. Neverthe-
less, although such a gap exists for the analogue of Theorem 5.6, (i), for
affine hyperbolic curves, this gap does not appear when the covering Y →
Xn of Theorem 5.6 is assumed to be product-theoretic [i.e., the situation
of Theorem 5.6, (ii)], under the further assumption that G be pro-solvable
[cf. Remark 5.6.1]. In particular, it is a routine task to modify the argu-
ment given in the present § 5 so as to yield a proof of Theorem 5.6, (ii)
[under the further assumption that G be pro-solvable] — i.e., a new proof
of Theorem 4.7 — for arbitrary hyperbolic curves of genus ≥ 2.

Remark 5.6.3 It is not clear to the authors at the time of writing whether
or not one should expect the analogue of Theorem 5.6 to hold for affine hy-
perbolic curves. Nevertheless, one way to think about the “extendability of
coverings” property discussed in Theorem 5.6 is the following: This prop-
erty holds [by Theorem 5.6] for the “tautological affine curve” with a given
fixed hyperbolic compactification — i.e., the tautological affine curve over
a configuration space associated to a proper hyperbolic curve. That is to
say, it may be the case that this sort of special property only holds for such
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affine curves with “universal/tautological cusps” and not for affine curves
whose cusps are “non-tautological”.

Corollary 5.7 (Non-existence of Generic Units) In the notation of The-
orem 5.6, let us fix a projection morphism

φX : Xn → B
def= Xn−1

of length 1, which allows us to regard Xn as a family of hyperbolic curves
over B. Denote the [scheme determined by the] generic point of B by η;
write k(η) for the residue field of η, X def= Xn×B η. Let k(η′) be an arbitrary
field extension of k(η), η′ → η the resulting morphism of schemes, Y a
hyperbolic curve over η′, and

Y → Xη′
def= X ×η η′ = Xn ×B η′

a finite étale covering over η′. Then every unit u ∈ Γ(Y, O×
Y ) on Y is

constant, i.e., is contained in the image of k(η′) in OY .

Proof. One reduces immediately by well-known elementary algebraic ge-
ometry arguments [i.e., replacing k(η′) by a finitely generated field extension
of k(η), extending Y → Xη′ over some variety that admits k(η′) as its func-
tion field, and restricting to a closed point of this variety] to the case where
the morphism η′ → η is finite étale. Now let us observe that by the exact
sequence of Proposition 2.2, (i), it follows that, after possibly replacing Y by
an appropriate connected finite étale covering of Y, we may assume without
loss of generality that there exists a commutative diagram

Y −→ Xny y
C −→ B

in which the horizontal arrows are connected finite étale coverings ; the ver-
tical arrows are families of hyperbolic curves; the divisor of cusps DY ⊆ Y

in the [relative, i.e., over C] compactification Y → C of Y → C forms a
split finite étale covering of C; the covering Y → X factors through YηC

def=

Y ×C ηC [where ηC
def= C ×B η] in such a way that the induced covering

Y → YηC

is obtained by base-changing the curve YηC over ηC via a morphism η′ →
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ηC . In particular, since the divisor of zeroes and poles of u on the compact-
ification of the hyperbolic curve Y descends [by our “splitness” assumption
on DY ] to a divisor on the compactification of the hyperbolic curve YηC , it
follows immediately that u is constant if and only if its norm relative to
this covering Y → YηC [which forms a unit on YηC ] is constant. Thus, in
summary, we may assume without loss of generality that Y = YηC , and that
u is a unit on YηC .

Now since u may be regarded as a rational function on Y , the divisor of
zeroes and poles of this rational function on Y may be written in the form

Dcusp + Dbase

— where Dcusp is a divisor supported on DY ; Dbase is a divisor on Y that
arises as the pull-back to Y of a divisor Dbase

C on C. In particular, we obtain
a relation

0 = c(Dcusp) + c(Dbase) ∈ H2
ét(Y , Ql(1))

— where l is a prime number; we write c(−) for the Chern class of the line
bundle determined by a divisor on a k-smooth scheme [such as Y , Y , C].
Next, let us pull-back this relation via a section s : C → Y whose image Ds

is contained in DY . This yields a relation

λ · s∗(c(Ds)) = s∗(c(Dbase)) = c(Dbase
C ) ∈ H2

ét(C, Ql(1))

for some λ ∈ Ql. On the other hand, let us observe that, relative to the
notation of the discussion preceding Theorem 5.6, if we take UW → UV to
be the covering Y → Xn, then Y may be regarded as an open subscheme
of W , and Ds ⊆ Y as a log-prime divisor of W . From this point of view,
it follows from Lemma 5.4, (ii), that s∗(c(Ds)) is a Ql-multiple of the pull-
back to C via C → B = Xn−1 of a fiber class on B = Xn−1. In particular,
we conclude that c(Dbase

C ) is a Ql-multiple of the pull-back to C of a fiber
class on B = Xn−1, hence that c(Dbase) ∈ H2

ét(Y , Ql(1)) is a Ql-multiple
of the pull-back to Y ⊆ W of a fiber class on W .

Thus, in summary, the relation 0 = c(Dcusp)+c(Dbase) in H2
ét(Y , Ql(1))

constitutes a Ql-linear relation between certain log-prime classes [i.e.,
c(Dcusp)] and certain fiber classes [i.e., c(Dbase)] on Y . Since [it follows
immediately from the definitions that] the complement of Y in W is a [dis-
joint !] union of certain log-prime divisors on W , the description of the
kernel of the restriction map H2

ét(W, Ql(1)) → H2
ét(Y , Ql(1)) given in the
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exact sequence of Proposition 5.2, (v), implies that this Ql-linear relation
0 = c(Dcusp) + c(Dbase) in H2

ét(Y , Ql(1)) arises from some Ql-linear rela-
tion in H2

ét(W, Ql(1)) obtained by appending some Ql-linear combination
of the log-prime classes arising from the log-prime divisors in the comple-
ment W\Y . On the other hand, by the Ql-linear independence asserted
in Lemma 5.5, (i), the coefficients of such a Ql-linear relation necessarily
vanish. In particular, since Dcusp is a Z-linear combination of log-prime
divisors of W that lie in Y , we thus conclude that the coefficients ∈ Z of
this Z-linear combination vanish, i.e., that Dcusp = 0. But this amounts
precisely to the assertion that the unit u is constant. This completes the
proof of Corollary 5.7. ¤

6. Nearly abelian groups

In the present § 6, we discuss another approach, based on the notion of
a “nearly abelian” profinite group, to verifying the group-theoreticity of the
various fiber subgroups associated to a configuration space group.

Definition 6.1 We shall say that a profinite group G is nearly abelian if
it admits a normal closed subgroup N ⊆ G which is topologically normally
generated by a single element ∈ G such that G/N is almost abelian.

Proposition 6.2 (Nearly Abelian Surface Groups) Let C be a nontrivial
full formation. Then a pro-C surface group Π is nearly abelian if and only if
it is a free pro-C group on two generators — i.e., it arises from a hyperbolic
curve which is either of type (0, 3) or of type (1, 1) [cf. Remark 1.2.2].

Proof. Since the sufficiency of the condition given in the statement of
Proposition 6.2 is immediate from the definitions, it suffices to verify the
necessity of this condition. Thus, we suppose that Π is nearly abelian. Now
observe that for any l ∈ ΣC , the maximal pro-l quotient of Π is again a
nearly abelian [pro-l] surface group. Thus, we may assume without loss of
generality that C is primary. Write ΣC = {l}; Π def= Π/[Π, [Π, Π]]; Π1

def=
Πab ∼= Πab; Π2

def= [Π, Π] ⊆ Π. Thus, we have an exact sequence

1 → Π2 → Π → Π1 → 1

and a surjection ∧2Π1 ³ Π2. Here, we regard Π1, Π2 as finitely generated
free Zl-modules. Note [cf. Remark 1.2.2] that if Π1 is of rank d, then Π2 is
of rank (1/2)d(d− 1)− ε, where ε = 0 if Π is open, and ε = 1 if Π is closed.
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Also, we observe that d ≥ 2 if ε = 0, and d ≥ 4 if ε = 1 [cf. Remark 1.2.2].
Thus, to complete the proof of Proposition 6.2, it suffices to show that d =
2.

Next, let us observe that Π is also nearly abelian. Thus, there exists
an element γ ∈ Π such that if we write N ⊆ Π for the subgroup topologi-
cally normally generated by γ, then Π/N is almost abelian. In particular,
[since the commutator subgroup of any open subgroup of Π forms an open
subgroup of Π2] it follows immediately that N

⋂
Π2 ⊆ Π forms an open

subgroup of Π2 — i.e., a Zl-module of the same rank as Π2. If γ ∈ Π2, then
N

⋂
Π2 = N is of rank ≤ 1, so we obtain that (1/2)d(d − 1) − ε ≤ 1, i.e.,

d(d− 1) ≤ 2(1+ ε) ≤ 4, so d ≤ 2, i.e., d = 2, as desired. Thus, it remains to
consider the case where γ 6∈ Π2. In this case, one verifies immediately that
N

⋂
Π2 ⊆ Π2 is given by the image of the morphism

[γ, −] : Π1 → Π2

given by forming the commutator with γ. Since this morphism clearly
vanishes on γ, its image is of rank ≤ d − 1. Thus, we conclude that

d − 1 ≥ 1
2
d(d − 1) − ε

— i.e., that 2 · ε ≥ (d − 1)(d − 2), which implies that d ≤ 2 if ε = 0, and
d ≤ 3 if ε = 1. But this is enough to conclude that d = 2 [and ε = 0]. This
completes the proof of Proposition 6.2. ¤

Corollary 6.3 (Group-theoreticity of Projections of Configuration Spaces
II) Let C be a PT-formation. For ξ = α, β, let Xξ be a hyperbolic curve
whose type is neither (0, 3) nor (1, 1) over an algebraically closed field kξ

of characteristic zero; nξ ≥ 1 an integer; Xξ
nξ the nξ-th configuration space

associated to Xξ; Πξ def= πC
1 (Xξ

nξ); Eξ the index set of Xξ
nξ . Let

γ : Πα ∼→ Πβ

be an isomorphism of profinite groups. Then γ induces a bijection σ : Eα
∼→

Eβ [so nα = nβ ] such that

γ(Fα) = Fβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆

Eα, E′
β ⊆ Eβ correspond via σ.
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Proof. Just as in the proof of Corollary 4.8, to complete the proof of Corol-
lary 6.3, it suffices to verify that the image via γ of any fiber subgroup of
Πα of co-length one is contained in a fiber subgroup of Πβ of co-length one.
For j = 1, . . . , nξ, let us write

Kξ
j ⊆ Πξ

for the fiber subgroup ⊆ Πξ of co-length one with co-profile given by the
element of Eξ labeled by j, and

Jξ
j ⊆ Πξ

for the fiber subgroup ⊆ Πξ of length one with profile given by the element
of Eξ labeled by j. Thus, [cf. Proposition 2.4, (vi)] to complete the proof
of Corollary 6.3, it suffices to verify the following statement [in general]:

For each i ∈ Eα, there exists a j ∈ Eβ such that Jβ
j′ ⊆ γ(Kα

i ) for all
j′ ∈ Eβ such that j′ 6= j.
To verify this statement, we reason as follows: Write

φ : Πβ ∼→ Πα ³ G
def= Πα/Kα

i

for the surjection determined by γ−1. Then it suffices to show that there do
not exist two distinct elements j1, j2 ∈ Eβ such that Jβ

j1
, Jβ

j2
have nontrivial

image under φ. Thus, let us suppose that the images J1, J2 of Jβ
j1

, Jβ
j2

under φ are nontrivial. Since Jβ
j1

, Jβ
j2

are topologically finitely generated
normal closed subgroups of Πβ , it follows from Theorem 1.5 that J1, J2 are
open in G [cf. Remark 3.3.2]. Moreover, by Proposition 2.4, (v), it follows
that there exists a normal closed subgroup N ⊆ G that is topologically
normally generated by a single element such that the images of J1, J2 in
G/N commute. Thus, G/N contains an abelian open subgroup, i.e., is almost
abelian. On the other hand, since Kα

i ⊆ Πα is a fiber subgroup of co-length
one, it follows that G = Πα/Kα

i is a surface group. Thus, in summary, we
conclude that G is a nearly abelian surface group, which, by Proposition 6.2,
contradicts our hypothesis concerning the type of the hyperbolic curve Xα.
This completes the proof of Corollary 6.3. ¤

Remark 6.3.1 Unlike the case with Corollary 4.8, it seems unrealistic at
the time of writing to extend the technique of the proof of Corollary 6.3
to the case of arbitrary product-theoretic open subgroups ⊆ πC

1 (Xξ
nξ) [cf.
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Corollary 4.8], since this would require an analogue of Proposition 6.2 for
surface groups that become almost abelian after forming the quotient by
a subgroup topologically normally generated by a very large number of
elements [roughly, on the order of the index of the product-theoretic open
subgroups under consideration].

7. A discrete analogue

In the present § 7, we discuss various consequences of Theorems 4.7,
5.6 and Corollaries 4.8, 6.3 [cf. Corollaries 7.3, 7.4 below] for the topological
fundamental groups of configuration spaces over the complex number field
C.

In the following discussion, if Z is a connected scheme of finite type
over C, then we shall use the notation

πtop
1 (Z)

to denote the “topological fundamental group” [i.e., the fundamental group
in the usual sense of algebraic topology], for some choice of basepoint, of
the topological space of C-rational points Z(C) [equipped with the topology
determined by the topology of C].

Let X be a hyperbolic curve over C, n ≥ 1 an integer. Write Xn ⊆
Pn for the n-th configuration space associated to X [cf. the notation of
Definition 2.1, (i)]. Since the complement in a connected complex manifold
of any submanifold of [complex] codimension ≥ 1 is clearly connected, it thus
follows that the inclusion Xn ↪→ Pn induces a natural surjection πtop

1 (Xn) ³
πtop

1 (Pn).
The following “discrete analogue” of [a certain portion of] Proposi-

tion 2.2 is well-known:

Proposition 7.1 (Topological Fundamental Groups of Configuration
Spaces) In the notation of the above discussion:
( i ) Any projection morphism Xn → Xn−1 of length one determines a

natural exact sequence

1 → πtop
1 ((Xn)x) → πtop

1 (Xn) → πtop
1 (Xn−1) → 1

[where we write X0
def= Spec(C); x is a C-valued geometric point of

Xn−1].
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(ii) The natural morphism

πtop
1 (Xn) → π1(Xn)

to the étale fundamental group π1(Xn) is injective, i.e., πtop
1 (Xn) is

residually finite.

Proof. Assertion (i) is discussed, for instance, in [Birm], Theorem 1.4. To
verify assertion (ii), observe that [by induction on n] it follows from the exact
sequences of assertion (i) and the analogue of assertion (i) for π1(Xn) [cf.
Proposition 2.2, (i)], that we may assume without loss of generality that n =
1. Now let us recall that πtop

1 (X) may be embedded [by considering the well-
known uniformization of X(C) by the upper half-plane] into SL2(R)/{±1}.
That is to say, πtop

1 (X) is a “finitely generated linear group”, so the desired
residual-finiteness follows from a well-known theorem of Mal’cev [cf. e.g.,
[Wehr], Theorem 4.2]. ¤

Definition 7.2 (i) We shall refer to a subgroup H ⊆ πtop
1 (Xn) as being

product-theoretic if H arises as the inverse image via the natural surjection
πtop

1 (Xn) ³ πtop
1 (Pn) of a subgroup of πtop

1 (Pn).
(ii) Write E for the index set of Xn. Let E′ ⊆ E be a subset of cardinality
n′; E′′ def= E\E′; n′′ def= n − n′; pE′ = pE′′

: Xn → Xn′′ the projection
morphism of profile E′. Then we shall refer to the kernel

F ⊆ πtop
1 (Xn)

of the induced surjection πtop
1 (Xn) ³ πtop

1 (Xn′′) [cf. Proposition 7.1, (i)] as
the fiber subgroup of πtop

1 (Xn) of profile E′.

Remark 7.2.1 Note that by the injectivity of Proposition 7.1, (ii), it
follows immediately that the fiber subgroup of profile E′ of πtop

1 (Xn) [cf. the
notation of Definition 7.2, (ii)] is equal to the inverse image via the natural
injection πtop

1 (Xn) ↪→ π1(Xn) of Proposition 7.1, (ii), of the fiber subgroup
of π1(Xn) of profile E′.

Corollary 7.3 (Discrete Extendability of Coverings) Let X be a hyper-
bolic curve of genus ≥ 2 over C; n ≥ 1 an integer; Xn ⊆ Pn the n-th
configuration space associated to X; (X∗

n)log def= Z log
n the n-th log configura-

tion space associated to X;

Y → Xn
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a finite étale morphism, where Y is connected; Y ∗ → X∗
n the normalization

of X∗
n in Y ; G a strongly torsion-free profinite group;

φ : πtop
1 (Y ) → G

a homomorphism [of abstract groups!]. Then:
( i ) Suppose that X is proper. Then the homomorphism φ factors uniquely

through the natural morphism πtop
1 (Y ) → πtop

1 (Y ∗) induced by the open
immersion Y ↪→ Y ∗.

(ii) Suppose that one of the following holds: (a) X is proper; (b) G is
pro-solvable. Also, let us suppose that the covering Y → Xn arises
from a product-theoretic subgroup of finite index of πtop

1 (Xn). Then
the kernel of φ is product-theoretic.

Proof. Indeed, since the homomorphism φ : πtop
1 (Y ) → G necessarily fac-

tors through the profinite completion of πtop
1 (Y ), the conclusion of assertion

(i) (respectively, assertion (ii) when (a) holds; assertion (ii) when (b) holds)
follows immediately from Theorem 5.6, (i) (respectively, Theorem 5.6, (ii);
Theorem 4.7). ¤

Corollary 7.4 (Group-theoreticity of Projections of Configuration Spaces
III) For ξ = α, β, let Xξ be a hyperbolic curve over C whose type is
neither (0, 3) nor (1, 1); nξ ≥ 1 an integer; Xξ

nξ the nξ-th configuration

space associated to Xξ; Eξ the index set of Xξ
nξ ; Hξ ⊆ Πξ def= πtop

1 (Xξ
nξ) a

product-theoretic subgroup of finite index. Let

γ : Hα
∼→ Hβ

be an isomorphism of groups. Moreover, if either Hα 6= Πα or Hβ 6= Πβ,
then we assume that Xξ is of genus ≥ 2, for ξ = α, β. Then γ induces a
bijection σ : Eα

∼→ Eβ [so nα = nβ ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆

Eα, E′
β ⊆ Eβ correspond via σ.

Proof. Indeed, in light of Remark 7.2.1, Corollary 7.4 follows immediately
by applying Corollaries 4.8, 6.3 to the isomorphism induced by γ between
the profinite completions of Hα, Hβ . ¤
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Remark 7.4.1 There is a partial overlap between the content of Corol-
lary 7.4 above and Theorems 1, 2 of [IIM].
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