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A generalized local limit theorem for mixing semi-flows

Yukiko Iwata
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Abstract. Let St : M → M be a semi-flow preserving a probability measure µ on a

compact manifold M and g : M → R a real-valued Borel measurable function. We show a

generalized local limit theorem for the stationary process {g◦St; t ≥ 0} on the probability

space (M, µ) under certain conditions.
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1. Introduction

We consider a continuous dynamical system St : M → M , t ≥ 0, pre-
serving a probability measure µ on a compact manifold M and a real-valued
Borel measurable function g : M → R. Then the family {g ◦St; t ≥ 0} gives
a stationary process with (M, µ) as the underlying probability space. An
important problem in ergodic theory is whether this process satisfies the
limit theorems such as the strong law of large numbers, the central limit
theorem and the law of iterated logarithm. In this paper, we study the lo-
cal limit theorem for such a stationary process to measure the dependence
between the values of g at time 0 and time t (see [B] for the local limit
theorem for independent random variables in the case of discrete time.).

We say that the stationary process {g ◦ St; t ≥ 0} with
∫
M gdµ = 0

satisfies the local limit theorem if

lim
t→∞

sup
z∈R

∣∣∣√tσ

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ

− 1√
2π

e−z2/2tσ

∫ ∞

−∞
u(θ)dθ

∣∣∣ = 0 (1.1)

for all rapidly decreasing functions u, where we assume the limit

σ := lim
t→∞

1
t

∫
M

(∫ t

0
g ◦ Sτdτ

)2
dµ

exists and is not zero. This limit theorem implies that, for any finite interval
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I, we have∣∣∣√tσµ
(∫ t

0
g ◦ Sτdτ ∈ I + z

)
−m(I)

1√
2π

e−z2/2tσ
∣∣∣ → 0 as t →∞

uniformly for z ∈ R, where m is the Lebesgue measure on R.
The local limit theorem are known to hold for some classes of dis-

crete dynamical systems with appropriate choices of the measure µ and the
function g. Rousseau-Egele [R-E] showed the local limit theorem (1.1) for
Lasota-Yorke maps on the interval with an absolutely continuous invariant
measure µ and a function of bounded variation g. Guivarc’h and Hardy [GH]
gave the same result for Anosov diffeomorphisms with a Gibbs measure µ

and a Hölder function g, by generalizing the argument of Rousseau-Egele,
(acutually they showed the local limit theorem for mixing subshifts of finite
type with a Gibbs measure µ and a Lipschitz function g). In these results,
the function g is assumed to satisfy a condition called aperiodic1. In [M],
Morita generalized the result of Rousseau-Egele to the case where g is not
aperiodic (i.e. periodic). Afterwards, Aaronson and Denker [AD] proved
the same result for more general class of discrete dynamical systems, called
Gibbs-Markov maps. On the other hand, Gouëzel [G] showed the local limit
theorem for non uniformly expanding maps by using methods for developed
by Young, Aaronson and Denker.

However, for continuous dynamical systems, there are no results known
for the local limit theorem at present. In fact, the local limit theorem
is not known even for mixing Anosov flows, though some results on the
central limit theorem are known ([HM], [R]). In this paper, we show the
(generalized) local limit theorem for continuous dynamical systems under
certain conditions.

We will show the generalized local limit theorem by considering spectral
properties of the semigroups of transfer operators for a continuous dynami-
cal system and their perturbations. This strategy is basically similar to the
case of discrete dynamical systems in [R-E] and [M]. In order to modify
these methods, we analyze the spectral property of continuous semigroups
and their perturbations.

Our results are applied to discrete dynamical systems. For example,
we can apply our methods to Anosov diffeomorphisms, not using Markov

1In Section 2, we give the definition of the aperiodic function.
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partitions but depending on the result of [GL] (cf. [BT]).
As an application of the result in this paper, we show the local limit

theorem for a certain class of susupension flows [T]. Unfortunately we do
not know whether our conditions hold for Anosov flows, though we expect
that this is the case.

I am grateful for the support of Professor M. Tsujii in my writing this
paper. I would like to thank Professor T. Morita for introducing me to this
topic and giving me some important comments.

2. Results

Let C0(M) be the space of complex-valued continuous functions on a
compact topological space M，C0

R(M) the subspace of real-valued contin-
uous functions on M , and C0

+(M) the space of non-negative valued con-
tinuous functions on M , equipped with the C0 topology．We first take a
Banach space (B, ‖ · ‖B) embedded in C0(M) and satisfying the conditions
(B1) B contains the constant function 1.
(B2) B ∩ C0

R(M) is dense in C0
R(M).

(B3) B is a Banach algebra. i.e. ‖ψ · ϕ‖B ≤ ‖ψ‖B‖ϕ‖B for all ψ, ϕ ∈ B.
Let B∗ be the dual space of B equipped with the norm2

‖ν‖B∗ = sup
‖ϕ‖B≤1

|〈ν, ϕ〉|.

By the condition (B3), we have the bounded operator Mg : B∗ → B∗ de-
fined, for each g ∈ B, by

〈Mgν, ϕ〉 = 〈ν, g · ϕ〉.

Next we take a Banach space (V, ‖ · ‖V ) that is embedded and dense
in B∗. We assume that it satisfies the condition
(B4) The linear space 〈V+〉C spanned by the closed subset

V+ := {ν ∈ V | 〈ν, ϕ〉 ≥ 0 for all ϕ ∈ B ∩ C0
+(M)}

is dense in V .

Remark 1 The conditions (B1)–(B4) hold, for instance, if M is a closed
manifold, B the space of Cr functions on M，V a Banach space that is

2Let x ∈ B. It will be convenient to write 〈x∗, x〉 in place of x∗(x) for every element

x∗ of dual space B∗ of B.
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embedded in the space of distributions of order r and contains C∞(M) as
its dense subset.

Remark 2 Each element f of V+ extends uniquely to a positive-valued
continuous linear functional on C0(M), and thus it can be identified with a
finite Borel measure on M by Riesz’s theorem [H, Theorem 2.1.7]．In the
case where an element f of V extends (uniquely) to a finite signed measure
on M , we will identify f with that measure.

We consider a continuous semiflow St : M → M , t ≥ 0．This acts on
C0(M) naturally and give the semigourp of operators

Ut : C0(M) → C0(M), ϕ 7→ ϕ ◦ St.

We assume that the Banach space B is invariant with respect to this semi-
group, that is, Ut(B) ⊂ B for t ≥ 0, and that Ut : B → B is bounded.

For each g ∈ B ∩ C0
R(M), we introduce the one-parameter semigroup

of operators

Ut(g) : C0(M) → C0(M), ϕ 7→ exp
(
i

∫ t

0
g ◦ Ss(x)ds

)
ϕ ◦ St(x),

which plays the central roll in our argument. Obviously we have Ut(0) =
Ut．By the condition (B3), Ut(g) is a bounded operator from B to B. Let
Pt(g) : B∗ → B∗ be the dual operator of Ut(g) : B → B．

We fix g ∈ B∩C0
R(M) and put the following assumptions on Pt(θg) : B∗

→ B∗ for θ ∈ R: There exists t0 > 0 such that, for all θ ∈ R,
(P1) The operator Mh◦Pt(θg) : B∗ → B∗ is restricted to a bounded operator

on V for any t ≥ t0 and h ∈ B.
(P2) The essential spectral radius of the operator Pt0(θg) : V → V is less

than one.
(P3) Pt0(θg) : V → V is of C3 class with respect to θ ∈ R．
(P4) We have limε→0 ‖Pt+ε(θg)ν − Pt(θg)ν‖V,V = 0 for all ν ∈ 〈V+〉C and

t ≥ t0. Moreover supt0≤t≤2t0 ‖Pt(θg)‖V,V < ∞.3

Under the assumptions (P1)–(P4), the following hold for any t ≥ t0 and
θ ∈ R:

3We denote the operator norm of a linear operator from Banach space (V, ‖ · ‖V ) to

itself with respect to the norm ‖ · ‖V by ‖ · ‖V,V



A generalized local limit theorem for mixing semi-flows 219

Lemma 1 The essential spectral radius of the operator Pt(θg) : V → V is
less than one.

Lemma 2 The spectral radius of the operator Pt(θg) : V → V is not more
than one．If there exists an eigenvalue of Pt(θg) : V → V with modulus one,
then the order of that eigenvalue is one.

Lemma 3 Pt(0) : V → V has 1 as its eigenvalue and corresponding the
eigenspace is spanned by finitely many St-invariant probability measures on
M . (Recall Remark 2.)

Lemma 4 If Pt(θg) : V → V has an eigenvalue eiη (η ∈ R) on the unit
circle，then all the corresponding eigenvectors are Borel finite signed mea-
sures, and absolutely continuous with respect to some probability measures
that are eigenvectors for the eigenvalue 1 of Pt(0) : V → V .

We will prove Lemma 1–4 above (and Lemma 5 and 6 in the following)
in Section 3. Finally we put the assumption
(P5) The eigenvalue 1 of Pt(0) : V → V is simple. The eigenvetor µ0 for

the eigenvalue 1, which is identified with an St-invariant probability
measure, is mixing with respect to St．

Under this additional assumption, we have

Lemma 5 (1) A complex number eiλt, λ ∈ R with modulus one, is an
eigenvalue of Pt(θg) : V → V if and only if there exists a Borel measurable
function h : M → C with |h(x)| ≡ 1 µ0-a.e. x such that

h(St(x)) = exp
(
−iλt + i

∫ t

0
θ · g ◦ Ss(x)ds

)
h(x) µ0-a.e. x. (2.1)

The Borel measurable function h above is unique up to multiplication by
constants with modulus 1.
(2) Pt(θg) : V → V has at most one eigenvalue on the unit circle up to
multiplicity.
(3) If there exists s ≥ t0 such that Ps(θg) : V → V has eiλs, λ ∈ R, as its
eigenvalue then, for any t ≥ t0, Pt(θg) : V → V has eiλt as its eigenvalue.

Put Ug := {θ ∈ R : Pt(θg) has an eigenvalue with modulus one}.4

Lemma 6 Ug is a closed additive subgroup of R.

4If θ ∈Ug then Pt(θg) has an eigenvalue with modulus one for all t≥ t0 by Lemma 5 (3).
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We assume the following conditions on g ∈ B ∩ C0
R(M).

(G1)
∫
M gdµ0 = 0.

(G2) σ2
g := limt→∞

∫
M (1/t)

(∫ t
0 g ◦ Sτdτ

)2
dµ0 > 0.

Remark 3 The existence of the limit σg is proved in the proof of Lemma
11 in Section 4.

As we will see in Section 4, the condition (G1) and (G2) implies that
Ug 6= R and hence we have either Ug = aZ for some a > 0 or Ug = {0}. The
function g is called periodic in the former case, and aperiodic in the latter
case.

It is not difficult to show the following central limit theorem under the
assumptions we put above.

Theorem 7 For each β ∈ R, we have

lim
t→∞

µ0

{
x∈M ;

1
σg

√
t

∫ t

0
g ◦Sτ (x)dτ < β

}
=

1√
2π

∫ β

−∞
e−(1/2)u2

du.

Our main result is

Theorem 8 If g is aperiodic, then, for any rapidly decreasing function u

on R, we have

lim
t→∞

sup
z∈R

∣∣∣σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

− e−z2/2σ2
gt

√
2π

∫ ∞

−∞
u(θ)dθ

∣∣∣ = 0.

If g is periodic (i.e. Ug = aZ for some a > 0) then, for any rapidly decreasing
function u on R, we have

lim
t→∞

sup
z∈R

∣∣∣∣σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

−
∞∑

k=−∞
û(ak)eiakzeλ(a)kt

∣∣∣∫
M

hkdµ0

∣∣∣2 e−z2/2σ2
gt

√
2π

∣∣∣∣ = 0,

where û is the Fourier transform of u, h is a Borel measurable function that
satisfies the conditions in Lemma 5 for the eigenvalue eλ(a)t0 of Pt0(ag) with
modulus one.
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As an application of Theorem 8, we introduce an example of a semiflow
and two Banach spaces on a compact manifold satisfying the assumptions
(B1)–(B3) and (P1)–(P4).

Fix integers ` ≥ 2 and r ≥ 3. Let T : S1 → S1 be the angle-multiplying
map on the circle S1 = R/Z defined by Tx = `x. Let f be a positive-valued
Cr function on S1. The suspension semiflow {St : Xf → Xf}t≥0 of T is
defined on the subset

Xf := {(x, y) ∈ S1 × R; 0 ≤ y < f(x)}

by

St(x, y) :=
(
Tn(x,y+t;f)(x), y + t − fn(x,y+t;f)(x)

)
,

where fn(x) =
∑n−1

i=0 f(T ix) and n(x, t; f) = max{n ≥ 0; fn(x) ≤ t}. Since
T is ergodic with respect to the Lebesgue measure m on S1, the semiflow
St is also ergodic with respect to the invariant probability measure dν :=
(
∫
S1 f(x)dm(x))−1(dm × dy)|Xf

, where dy is the Lebesugue measure on R.
Let Ut be the operator on L2(Xf , ν) defined by Utf = f ◦ St for each t ≥ 0
and Pt : L2(Xf , ν) → L2(Xf , ν) the dual operator of Ut, where we identify
L2(Xf , ν) with its dual space.

Tsujii showed the following [T, Theorem 1.2, Theorem1.5]: If St is
weakly mixing, there exists a Hilbert space C1(Xf ) ⊂ W∗(Xf ) ⊂ L2(Xf , ν)
such that the restriction of Pt to W∗(Xf ) is the bounded operator whose
essential spectral radius is less than 1, where C1(Xf ) is the set of functions
ϕ on Xf such that Utϕ for any t ≥ 0 is C1 on the interior of Xf .

Setting B = C1(Xf ), V = W∗(Xf ) and µ0 = ν, we can check im-
mediately the assumptions (B1)–(B3) and (P1)–(P4). See [T] for more
details. Therefore the conclusion of Theorem 8 holds for the stationary
process {g ◦ St; t ≥ 0} for g ∈ C1(Xf ) satisfying (G1) and (G2). Besides
we can show that σg = 0 if and only if there exists f ∈ W∗(Xf ) such that
(d/dt)(f ◦ St)|t=0 = g. See Appendix.

3. Proof of Lemma 1–6

Proof of Lemma 1. By the assumption (P2) and the definition of essential
spectral radius (see [EN, p. 218]), we can find n0 ∈ N and 0 < a < 1 such
that, for every n ≥ n0, there exists a compact operator Kn : V → V which
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satisfies ‖Pnt0(θg) − Kn‖V,V < an. By the assumption (P4), we have

‖Pt(θg) − Pt−nt0(θg)Kn‖V,V ≤‖Pt−nt0(θg)‖V,V ‖Pnt0(θg) − Kn‖V,V

≤Can

for all t ≥ t0 where n = [t/t0] − 1 and C := supt0≤t≤2t0 ‖Pt(θg)‖V,V . Since
Pt−nt0(θg)Kn is a compact operator on V , this implies that the essential
spectral radius of Pt(θg) is not more than a < 1. ¤

Proof of Lemma 2. It is sufficient to consider the case where the spectral
radius ρ of Pt(θg) : V → V is not less than one. Let π : V → V be the
spectral projector corresponding to the set of eigenvalues of Pt(θg) with
modulus ρ. Then we have the Pt(θg)-invariant decomposition V = π(V ) ⊕
(I − π)(V ), where the dimension of π(V ) is finite by Lemma 1. By the
condition (B4)，we can choose µi ∈ V+, 1 ≤ i ≤ k, such that vi := π(µi),
1 ≤ i ≤ k are bases on π(V ). Since µi − vi ∈ (I − π)(V ) for 1 ≤ i ≤ k, we
have

lim
n→∞

(
〈ρ−nPnt(θg)µi, ϕ〉 − 〈ρ−nPnt(θg)vi, ϕ〉

)
= 0 ∀ϕ ∈ B.

Since we can identify µi ∈ V+ with a measure, 〈Pnt(θg)µi, ϕ〉 is bounded.
Therefore, if ρ > 1, the first term on the left-hand side should converge to
zero, and hence we should have limn→∞〈ρ−nPnt(θg)vi, ϕ〉 = 0. But this
contradicts the definition of vi. So we have ρ = 1. In the case ρ = 1, the
latter term 〈Pnt(θg)vi, ϕ〉 is bounded uniformly for n ≥ 0 and 1 ≤ i ≤ k.
This implies that Pt(θg)|π(V ) : V → V is power bounded. Therefore orders
of eigenvalues of Pt(θg) with modulus one are one (cf. [K, p. 90]). ¤

Proof of Lemma 3. By the condition (B4), we can find an element µ ∈ V+

with 〈µ, 1〉 > 0. For such µ, we have〈 1
n

n−1∑
k=0

Pkt(0)µ, 1
〉

=
〈
µ,

1
n

n−1∑
k=0

Ukt(0)(1)
〉

= 〈µ, 1〉 > 0.

If one were not an eigenvalue of Pt(0) : V → V , the left-hand side should
converge to zero as n → ∞ by Lemma 2．Therefore Pt(0) : V → V has one
as its eigenvalue.

Let π : V → V be the spectral projector of Pt(0) corresponding to
the eigenvalue one. Then we have the Pt(0)-invariant decomposition V =
π(V )⊕(I−π)(V ). By the condition (B4)，we can choose elements µi ∈ V+,
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1 ≤ i ≤ k, such that vi := π(µi), 1 ≤ i ≤ k, are bases on π(V ). Take a
subsequence nj → ∞ so that, for 1 ≤ i ≤ k，

1
nj

nj−1∑
`=0

P`t(0)(µi)

converges weakly to a probability measure νi．Since vi − µi ∈ (I − π)(V ),
we have

lim
j→∞

〈 1
nj

nj−1∑
`=0

P`t(0)(µi), ϕ
〉

= lim
j→∞

〈 1
nj

nj−1∑
`=0

P`t(0)(vi), ϕ
〉

= 〈vi, ϕ〉 ∀ϕ ∈ B.

This implies νi = vi. Hence the eigenspace π(V ) corresponding to the
eigenvalue one is spanned by the probability measures νi, 1 ≤ i ≤ k. ¤

Proof of Lemma 4. Let π : V → V be the spectral projector corresponding
to the eigenvalue eiηt of Pt(θg) : V → V . Then we have the Pt(θg)-invariant
decomposition V = π(V ) ⊕ (I − π)(V ). By the same argument as in the
proof of Lemma 3，we can choose elements µi ∈ V+, 1 ≤ i ≤ k, such that
vi := π(µi), 1 ≤ i ≤ k are bases on π(V ), and take some subsequence nj →
∞, so that, for 1 ≤ i ≤ k，the two sequences of (signed) measures

1
nj

nj−1∑
`=0

e−i`ηtP`t(θg)µi,
1
nj

nj−1∑
`=0

P`t(0)µi

converge weakly to a finite signed measure vi and a finite measure ωi ∈ V +

respectively．For all non-negative functions ϕ : M → R, we have 〈ωi, ϕ〉 ≥
|〈vi, ϕ〉|. This implies that vi is absolutely continuous with respect to ωi．
From the proof of Lemma 3, ωi is an element of the eigenspace corresponding
to the eigenvalue 1 of Pt(0) : V → V ¤

Proof of Lemma 5. (1) Suppose that Pt(θg) has an eigenvalue eiλt. Let ν

be an element of the eigenspace corresponding to the eigenvalue eiλt. Since
ν is absolutely continuous with respect to µ0 by Lemma 4, there exists a
Borel measurable function h such that ν = hµ0. First we show that |h(x)| ≡
1 for µ0-a.e. x. By the choice of ν, we have

〈Pt(θg)ν, ϕ〉 =
〈
eiλtν, ϕ

〉
for all ϕ ∈ B. (3.1)
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Since B is dense in C0(M), (3.1) holds for ϕ ∈ C0(M) by the condition
(B2). This implies that Pt(θg)ν is equal to eiλthµ0 as a measure. Hence
(3.1) holds for all ϕ ∈ L∞(M, µ0). Put A := {x ∈ M : h(x) 6= 0} and
χ(x) := e−iλt1A|h|/h. Replacing ϕ by ϕ · χ in (3.1), we have

〈µ0, h · Ut(θg)χ · Ut(0)ϕ〉 = 〈µ0, |h| · ϕ〉 (3.2)

for all ϕ ∈ C0(M). Since |h · Ut(θg)χ| ≤ 1 µ0-a.e., (3.2) with ϕ ≡ 1 implies

h · Ut(θg)χ = |h| for µ0-a.e. x.

Using this equality in (3.2), we get

〈µ0, |h| · Ut(0)ϕ〉 = 〈µ0, |h| · ϕ〉 for all ϕ ∈ C0(M).

This implies that |ν| = |h|µ0 is an invariant measure. By ergodicity of µ0,
|h| should be a constant function. We may and do suppose |h| = 1 by
multiplying |h| by some constant. Letting |h| = 1 and ϕ ≡ 1 in (3.2), we
obtain 〈

µ0, e−iλt+iθ
R t
0 g◦Sτ dτ h

Ut(0)h

〉
= 〈µ0, 1〉 = µ0(M).

Since |e−iλt+iθ
R t
0 g◦Sτ dτh/Ut(0)h| = 1 µ0-a.e., this implies (2.1).

Conversley, we assume that there exists a Borel measurable function h

with |h(x)| = 1 µ0-a.e. x which satisfies (2.1). Suppose that eiλt is not an
eigenvalue of Pt(θg). Then, for each ϕ ∈ B, the sequence

1
n

n−1∑
k=0

e−ikλtPkt(θg)(Mϕµ0)

should converge to zero in V . Further it converges weakly to zero as a
sequence of measures. Take a positive number ε > 0 arbitrarily. By the
condition (B2), we can find ϕ ∈ B such that

∫
|h − ϕ|dµ0 < ε. Also, we

have that 〈Mhµ0, ψ〉 = 〈e−iλktPtk(θg)(Mhµ0), ψ〉 for all ψ ∈ C0(M) and
k ≥ 0 by (2.1). Therefore

|〈Mhµ0, ψ〉|=
∣∣∣〈 1

n

n−1∑
k=0

e−ikλtPkt(θg)(Mhµ0), ψ
〉∣∣∣

≤
∣∣∣〈 1

n

n−1∑
k=0

e−ikλtPkt(θg)(Mϕµ0), ψ
〉∣∣∣ + ε‖ψ‖C0 .
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Since the first term on the right-hand side converges to 0 as n → ∞, we
obtain

|〈Mhµ0, ψ〉| ≤ ε‖ψ‖C0 for all ψ ∈ C0(M).

This implies Mhµ0 = h ·µ0 = 0 since ε > 0 is arbitrary. But this contradicts
the fact |h(x)| = 1 µ0-a.e. x.

(2) Suppose that Pt(θg) has eigenvalues eiλ1t and eiλ2t(λ1, λ2 ∈ R) on
the unit circle. By (1) in Lemma 5, there exist Borel measurable functions
h1 and h2 such that |h1| = |h2| = 1 µ0-a.e., and that (2.1) for h = h1 and
h = h2. Then we have

h1

h2
(St(x)) = ei(λ1−λ2)t h1

h2
(x) for µ0-a.e. x. (3.3)

Since (St)t≥0 is mixing with respect to µ0, this implies ei(λ1−λ2)t = 1. Hence
we have that eiλ1t = eiλ2t and that h1(x) is a constant multiple of h2(x)
for µ0-a.e. x. By the proof of (1) in Lemma 5, each eigenvector for the
eigenvalue eiλ1t can be written in the form hµ0 where h is a Borel measurable
function which satisfies (2.1) with λ = λ1. Therefore all the eigenvectors
for the eigenvalue eiλ1t are scalar multiples of h1µ0.

(3) We assume that there exists s ≥ t0 such that Ps(θg) has an eigen-
value eiλs. Take an eigenvector f0 6= 0 for the eigenvalue eiλs. Suppose that
there exists t ≥ t0 such that Pt(θg) does not have eigenvalues with modulus
1. Then, by Lemma 1, the spectral radius of Pt(θg) is smaller than 1, that
is , there exist constants K ≥ 1 and b > 0 such that

‖Pn
t (θg)‖V,V ≤ Ke−bnt for all n ≥ 0.

For each integer m > 0 and s ≥ t0, we have

‖f0‖V = ‖e−iλnsPns(θg)f0‖V,V

= ‖e−iλnsPns−mt(θg)Pmt(θg)f0‖V,V

≤‖Pns−mt(θg)Pmt(θg)f0‖V,V

≤Ke−bmt sup
t0≤t≤2t0

‖Pt(θg)‖V,V · ‖f0‖V ,

where n ≥ 0 is the integer such that nt − ms ∈ [t0, 2t0). The right-hand
side converges to 0 as m → ∞. But then this contradicts the fact f0 6= 0.
Therefore Pt(θg) has an eigenvalue on the unit circle for all t ≥ t0. ¤
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Proof of Lemma 6. First we will show that Ug is an additive subgroup on
R. We fix θ1 and θ2 in Ug. By Lemma 5, there exist Borel measurable func-
tions h1 and h2 with |h1(x)| = |h2(x)| = 1 for µ0-a.e. x and real numbers
η1 and η2 satisfying, for all t ≥ t0,

hj(St(x)) = e−iηjt+θj

R t
0 g(Sτ (x))dτhj(x) for µ0-a.e. x,

where j = 1, 2. Taking complex conjugation of the both sides above, we
get hj(St(x)) = eiηjt−iθj

R t
0 g◦Sτ (x)dτhj(x) µ0-a.e. This implies that Pt(−θjg)

has an eigenvalue of modulus 1 by Lemma 5, that is, −θj ∈ Ug.　One also
has that

(h1 · h2)(St(x)) = e−i(η1+η2)t+i(θ1+θ2)
R t
0 g(Sτ (x))dτ (h1 · h2)(x)

µ0-a.e. x.

This implies that Pt((θ1 + θ2)g) has an eigenvalue eiη1t+iη2t with modulus
1, that is, θ1 + θ2 ∈ Ug.

Next we show that Ug is closed. By Lemma 1, for each θ0 ∈ R \ Ug, the
spectral radius of Pt0(θ0g) is less than 1. Since Pt0(θg) is continuous with
respect to θ, if |θ| is small enough then the spectral radius of Pt0((θ0 + θ)g)
is also less than 1. Hence R \ Ug is open set. ¤

4. Spectral decomposition

We fix θ0 ∈ Ug in this section. For each t ≥ t0, Pt(θ0g) has one simple
eigenvalue on the unit circle, and the rest of the spectrum is contained in the
interior of the unit disc by Lemma 5. Therefore we can apply the pertur-
bation theorem [AD, Lemma 4.2] to Pt(θ0g). In the following theorem, we
add some claims which are required to deal with the semigroup (Pt(θg))t≥0.

Proposition 9 There exist c > 0, ε > 0 and a C3 mapping λ : [θ0−c, θ0+
c] → {Re(z) > −ε} such that
(a) For all θ with |θ| < c and t ≥ t0, Pt((θ0+θ)g) has eλ(θ0+θ)t as its simple

eigenvalue, and the rest of the spectrum of Pt((θ0 + θ)g) is contained
in {|z| ≤ e−εt}.

(b) The spectral projector of Pt((θ0 + θ)g) corresponding to the eigenvalue
eλ(θ0+θ)t does not depend on t. We denote this spectral projector by
Q((θ0 + θ)g) : V → V .

(c) Putting Rt((θ0 + θ)g) = Pt((θ0 + θ)g)(I −Q((θ0 + θ)g)), we may write
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Pt((θ0 + θ)g) as

Pt((θ0 + θ)g) = eλ(θ0+θ)tQ((θ0 + θ)g) + Rt((θ0 + θ)g)

for all t ≥ t0. (4.1)

(d) There exists a constant K ≥ 1 such that, for all θ with |θ| < c , we
have

‖Rt((θ0 + θ)g)‖V,V ≤ Ke−εt for all t ≥ t0. (4.2)

(e) The correspondences θ 7→ Q((θ0 + θ)g) and θ 7→ Rt((θ0 + θ)g) are C3

mappings from [θ0 − c, θ0 + c] to the space of bounded linear operators
on V .

Proof. Applying the perturbation theorem [AD, Lemma 4.2] to the family
of operators Pt0((θ0 + θ)g) at the parameter θ = θ0, we see that there exist
c > 0, ε > 0 and a C3 function ψ : [−c, c] → C satisfying ψ(0) = 1 and
ψ(θ) ≥ e−εt0 such that Pt0((θ0 + θ)g) has ψ(θ) as its simple eigenvalue and
that the rest of its spectrum is contained in the disk {|z| ≤ e−εt0}. For
each θ ∈ [−c, c], let Q((θ0 + θ)g) be the spectral projector of Pt0((θ0 + θ)g)
corresponding the eigenvalue ψ(θ). Since Pt0((θ0 + θ)g) commutes with
Pt((θ0 + θ)g) for t ≥ t0, so does the spectral projector Q((θ0 + θ)g). Hence
the image V0(θ) and the kernel V1(θ) of Q((θ0 + θ)g) are preserved by the
operator Pt((θ0 + θ)g) for t ≥ t0, that is, Pt((θ0 + θ)g)(Vσ(θ)) ⊂ Vσ(θ) for
σ = 0, 1. Since V0(θ) is one dimensional, the restriction of Pt((θ0 + θ)g)
to V0(θ) is the multiplication by some scalar ψ(θ, t). We have ψ(θ, t0) =
ψ(θ) and ψ(θ, t + s) = ψ(θ, t)ψ(θ, s) for t, s ≥ t0 and θ ∈ [−c, c]. By the
assumption (P3) and (P4), ψ(θ, t) is continuous in (θ, t) (and C3 in θ).
Therefore, applying [EN, Theorem 1.4] to ψ(θ, · )/ψ(θ, t0), we can find a
C3 function λ : [θ0 − c, θ0 + c] → C such that ψ(θ, t) = eλ(θ,t) for θ ∈ [−c, c]
and t ≥ t0. The spectrum of Rt0((θ0 + θ)g) in the claim (c) is contained in
the disk {|z| ≤ e−εt0}. Hence, by using the assumption (P4), we see that

lim
t→∞

eεt‖Rt((θ0 + θ)g)‖V,V = lim
n→∞

eεnt0‖Rnt0((θ0 + θ)g)‖V,V = 0.

This implies the claim (d). The other claims are now obvious. ¤

We next consider the differentiation of λ(θ) in Proposition 9 at θ = θ0.

Lemma 10 λ′(θ0) = 0 = µ0(g).
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Proof. By Lemma 5, there exist a Borel measurable function h and a real
number η ∈ R such that

h(St(x)) = e−iηt+θ0

R t
0 g(Sτ (x))dτh(x) and |hj(x)| = 1

for µ0-a.e. x.

for all t ≥ t0. By the assumption (B2), we take a sequence {hj}∞j=1 ⊂ B

such that ‖hj − h‖L1(µ0) → 0 as j → ∞. Then we have〈
µ0, eiθ

R t
0 g◦Sτ dτ/t

〉
=

〈
µ0, ei((θ/t)+θ0)

R t
0 g◦Sτ dτe−λ(θ0)tUt(0)h̄ · h

〉
= e−λ(θ0)t

〈
µ0, eiθ

R t
0 g◦Sτ dτ/tUt(θ0g)(h̄ − h̄j) · h

〉
+e−λ(θ0)t

〈
Pt

((θ

t
+ θ0

)
g

)
(hµ0), h̄j

〉
for every θ ∈ R and t ≥ t0. Below we consider the limits of the both sides
as t → ∞.

First we consider the left-hand side. Since limt→∞(1/t)
∫ t
0 g ◦ Sτdτ =∫

gdµ0 = 0 µ0-a.e. by ergodicity of µ0, we have limt→∞
∫

eiθ
R t
0 g◦Sτ dτ/tdµ0 =

e0 = 1 by Lebesgue bounded convergence theorem. Hence we have

lim
t→∞

〈
µ0, eiθ

R t
0 g◦Sτ dτ/t

〉
= 1 for all θ ∈ R. (4.3)

Next we consider the right-hand side. For the former term on the right-
hand side, we have∣∣e−λ(θ0)t

〈
µ0, eiθ

R t
0 g◦Sτ dτ/tUt(θ0g)(h̄ − h̄j) · h

〉∣∣ ≤ ∫
|h̄ − h̄j |dµ0.(4.4)

By (4.1) in Proposition 9, the latter term on the right-hand side is written
as

e−λ(θ0)t

〈
eλ((θ/t)+θ0)tQ

((θ

t
+ θ0

)
g

)
(hµ0), h̄j

〉
+ e−λ(θ0)t

〈
Rt

((θ

t
+ θ0

)
g

)
(hµ0), h̄j

〉
.

For each of these terms, we have

lim
t→∞

e−λ(θ0)t

〈
eλ((θ/t)+θ0)tQ

((θ

t
+ θ0

)
g

)
(hµ0), h̄j

〉
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= eiθλ′(θ0)

∫
hh̄jdµ0 (4.5)

and

lim
t→∞

∣∣∣∣e−λ(θ0)t

〈
Rt

((θ

t
+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
≤ lim

t→∞
‖h̄j‖B

∥∥∥∥Rt

((θ

t
+ θ0

)
g

)
(hµ0)

∥∥∥∥
V,V

= 0 (4.6)

by (4.2) and 〈Q(θ0g)(hµ0), h̄j〉 =
∫

hh̄jdµ0. By (4.3), (4.4), (4.5) and (4.6),
we obtain∣∣∣1 − eiθλ′(θ0)

∫
hh̄jdµ0

∣∣∣ ≤ ∫
|h̄ − h̄j |dµ0 for all θ ∈ R.

Since limj→∞
∫

hh̄j = 1 and limj→∞
∫
|h̄ − h̄j |dµ0 = 0, we conclude eiθλ′(θ0)

= 1 for all θ ∈ R. ¤

Lemma 11 λ′′(θ0) = −σ2
g .

Proof. Take h and {hj}∞j=1 in the same way as in the proof of Lemma 10
above. Then we have〈

µ0, e
iθ

R t
0 g◦Sτ dτ/

√
t
〉
= e−λ(θ0)t

〈
µ0, e

iθ
R t
0 g◦Sτ dτ/

√
tUt(θ0g)(h̄− h̄j) ·h

〉
+e−λ(θ0)t

〈
Pt

(( θ√
t
+θ0

)
g

)
(hµ0), h̄j

〉
. (4.7)

We differentiate the both sides of (4.7) with respect to θ twice and consider
the limit as t → ∞. For the left-hand side, we obtain

lim
t→∞

∂2

∂θ2

〈
µ0, eiθ

R t
0 g◦Sτ dτ/

√
t
〉∣∣∣∣

θ=0

= − lim
t→∞

∫ ( 1√
t

∫ t

0
g ◦ Sτdτ

)2
dµ0 = −σ2

g . (4.8)

For the former term on the right-hand side of (4.7), we have∣∣∣∣ ∂2

∂θ2

〈
µ0, eiθ

R t
0 g◦Sτ dτ/

√
tUt(θ0g)(h̄ − h̄j)h

〉∣∣∣
θ=0

∣∣∣∣
=

∣∣∣〈µ0,
−1
t

(∫ t

0
g ◦ Sτdτ

)2
Ut(θ0g)(h̄ − h̄j)

〉∣∣∣
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≤
〈
µ0,

1
t

(∫ t

0
g ◦ Sτdτ

)2
|Ut(θ0g)(h̄ − h̄j)|

〉
≤

〈
µ0,

1
t

(∫ t

0
g ◦ Sτdτ

)2〉
‖h̄ − h̄j‖L1(µ0).

This implies

lim
t→∞

∣∣∣∣ ∂2

∂θ2

(
e−λ(θ0)t

〈
µ0, eiθ

R t
0 g◦Sτ dτ/

√
tUt(θ0g)(h̄ − h̄j)h

〉)∣∣∣
θ=0

∣∣∣∣
≤ σ2

g‖h̄ − h̄j‖L1(µ0). (4.9)

We decompose the latter term on the right-hand side of (4.7) as

∂2

∂θ2

〈
Pt

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

=
∂2

∂θ2

〈
eλ((θ/

√
t)+θ0)tQ

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

+
∂2

∂θ2

〈
Rt

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

.

As λ′(θ0) = 0, we see

∂

∂θ
(eλ(θ/

√
t+θ0)t)

∣∣∣
θ=0

= 0 and

∂2

∂θ2
(eλ(θ/

√
t+θ0)t)

∣∣∣
θ=0

= eλ(θ0)tλ′′(θ0). (4.10)

From (4.10), we have

lim
t→∞

∂2

∂θ2

〈
eλ((θ/

√
t)+θ0)t−λ(θ0)tQ

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

= λ′′(θ0)
∫

hh̄jdµ0 (4.11)

for all θ ∈ R. Next we consider

∂2

∂θ2

〈
e−λ(θ0)tRt

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

.

Applying Leibniz formula for

Rt

(( θ√
t

+ θ0

)
g

)
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=

n times︷ ︸︸ ︷
Rt0

(( θ√
t

+ θ0

)
g

)
· · ·Rt0

(( θ√
t

+ θ0

)
g

)
Rt−nt0

(( θ√
t
+θ0

)
g

)
where n = [t/t0]− 1 and using the estimate in (d) of Proposition 9, we can
get

lim
t→∞

∂2

∂θ2

〈
e−λ(θ0)tRt

(( θ√
t

+ θ0

)
g

)
(hµ0), h̄j

〉∣∣∣∣
θ=0

= 0. (4.12)

By (4.8), (4.9), (4.11) and (4.12), we obtain∣∣∣∣−σ2
g − λ′′(θ0)

∫
hh̄jdµ0

∣∣∣∣ ≤ σ2
g‖h̄ − h̄j‖L1(µ0).

Since
∫

hh̄jdµ0 → 1 and ‖h̄ − h̄j‖L1(µ0) → 0 as j → ∞, we conclude −σ2
g =

λ′′(θ0). ¤

5. Proof of Theorem 7 and Theorem 8

Proof of Theorem 7. Take h and {hj}∞j=1 in the same way as in the proof
of Lemma 10 in the case θ0 = 0 ∈ Ug. By Lemma 10 and 11, we have

lim
t→∞

∫
M

eiθ
R t
0 g◦Sτ dτ/

√
tdµ0 = lim

j→∞
lim
t→∞

〈
Pt

( θ√
t
g
)
(hµ0), h̄j

〉
= e−θ2σ2

g/2.

This shows the central limit theorem by Glivenko’s theorem. ¤

Let B, S, D, and DK be the spaces of bounded smooth functions,
rapidly decreasing functions, smooth functions with compact support, and
smooth functions whose support is contained in the interval [−K, K], re-
spectively. The topology of B is defined as follows [S]: ϕj ∈ B converges
to ϕ ∈ B in B if and only if

∑
|α|≤m supθ∈R |∂αϕj(θ)− ∂αϕ(θ)| converges to

zero for all m ≥ 0. (see [S] for the topologies of S and D.)

Proof of Theorem 8. Notice that Ug 6= R when σ2
g > 0 by Lemma 11. We

will prove Theorem 8 in the case where g is periodic. In the case where g is
aperiodic, the claim of Theorem 8 can be proved by the parallel argument.

Take a > 0 so that Ug = aZ. Let eλ(a)t be the eigenvalue of Pt(ag)
on the unit circle and let hµ0 be the corresponding eigenvector, where h

satisfies |h| = 1 µ0-a.e. and (2.1). Then, for all k ∈ Z, Pt(akg) has the
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eigenvalue eλ(a)kt and the corresponding eigenvector is hkµ0. (See the proof
of Lemma 6.) So we have, by (2.1),〈

e−λ(a)ktPt(akg)µ0, h̄k
〉
= e−λ(a)kt

〈
µ0, eiak

R t
0 g◦Sτ dτUt(0)h̄k

〉
= e−λ(a)kt

〈
µ0, eλ(a)ktUt(0)hk · h̄k ·Ut(0)h̄k

〉
= 〈µ0, h̄k〉 (5.1)

for all t ≥ t0. Let Q(akg) be the spectral projector of Pt(akg) for the eigen-
value eλ(a)kt. Since the left-hand side of (5.1) converges to 〈Q(akg)µ0, h̄k〉
as t → ∞ and since Q(akg)µ0 is a scalar multiple of hkµ0, we obtain
Q(akg)µ0 = 〈µ0, h̄k〉hkµ0.

First we show Theorem 8 for all u ∈ S where the Fourier transform û

belongs to DK . We see

σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

=
σg

√
t

2π

∫
M

∫ ∞

−∞
eiθzû(θ)eiθ

R t
0 g◦Sτ dτdθdµ0

=
σg

√
t

2π

∫ ∞

−∞
eiθzû(θ)〈Pt(θg)µ0, 1〉dθ.

Let ε : [t0, ∞) → (0, c) be a function satisfying

lim
t→∞

ε(t)4t3/2 = 0 and lim
t→∞

ε(t)t1/2 = ∞.

Using (5.1) and the standard formula

1√
2π

e−z2/2σ2
gt =

1
2π

∫ ∞

−∞
exp

(−θ2

2

)
exp

(−iθz

σg

√
t

)
dθ,

we get

σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

−
∞∑

k=−∞
û(ak)eiakzeλ(a)kt

∣∣〈µ0, hk〉
∣∣2 1√

2π
e−z2/2σ2

gt

=
1
2π

∞∑
−∞

[A1,k + A2,k + A3,k + A4,k + A5,k],
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where

A1,k =
∫
|θ|<ε(t)σg

√
t
exp

(−iθz

σg

√
t

+ iakz
)
û
( θ

σg

√
t

+ ak
)

× exp
(
λ
( θ

σg

√
t

+ ak
)
t
)∣∣〈µ0, hk〉

∣∣2dθ

−
∫
|θ|<ε(t)σg

√
t
û(ak)eiakzeλ(a)kt exp

(−θ2

2

)
× exp

(−iθz

σg

√
t

)∣∣〈µ0, hk〉
∣∣2dθ,

A2,k =
∫
|θ|<ε(t)σg

√
t
exp

(−iθz

σg

√
t

+ iakz
)

× û
( θ

σg

√
t

+ ak
)
exp

(
λ
( θ

σg

√
t

+ ak
)
t
)

×
〈
Q

(( θ

σg

√
t

+ ak
)
g
)
µ0 − Q(ak)µ0, 1

〉
dθ,

A3,k =
∫
|θ|<ε(t)σg

√
t
exp

(−iθz

σg

√
t

+ iakz
)
û
( θ

σg

√
t

+ ak
)

×
〈
Rt

(( θ

σg

√
t

+ ak
)
g
)
µ0, 1

〉
dθ,

A4,k =
∫

ε(t)σg

√
t≤|θ|≤(a/2)σg

√
t
exp

(−iθz

σg

√
t

+ iakz
)
û
( θ

σg

√
t

+ ak
)

×
〈
Pt

(( θ

σg

√
t

+ ak
)
g
)
µ0, 1

〉
dθ,

A5,k =−
∫

ε(t)σg
√

t≤|θ|
û(ak)eiakzeλ(a)kt exp

(−θ2

2

)
× exp

(−iθz

σg

√
t

)∣∣〈µ0, hk〉
∣∣2dθ.

By Theorem 7 and Proposition 9, there exist positive constants C1(k), C2(k),
K(k) and εk > 0, which depend only on k, g and µ0 such that∣∣∣∣exp

(
λ
( iθ

σg

√
t

+ ak
)
t − λ(a)kt

)
− exp

(−θ2

2

)∣∣∣∣ ≤ C1(k)
|θ|3√

t
,∥∥∥∥Q

(( θ

σg

√
t

+ ak
)
g

)
− Q(akg)

∥∥∥∥
V,V

≤ C2(k)
|θ|√

t
,
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∥∥∥∥Rt

(( θ

σg

√
t

+ ak
)
g

)∥∥∥∥
V,V

≤ K(k)e−εkt,

provided that |θ/(σg

√
t)| is small enough. Hence we obtain the estimate

|A1,k + A2,k + A3,k|
≤ C1(k)(‖û‖L∞ · ε(t)4t3/2 + ‖û′‖L∞ · ε(t)2t1/2)

+ C2(k)‖û‖L∞ε(t)2t1/2‖µ0‖V + K(k)‖û‖L∞e−εktε(t)t1/2‖µ0‖V

≤ B1(k)(ε(t)4t3/2 + ε(t)2t1/2 + e−εktε(t)t1/2)(‖û‖L∞ + ‖û′‖L∞),

where B1(k) is a positive constant depending only on g and k.
Next we estimate |A4,k|. For all θ with ε(t) ≤ |θ/(σg

√
t)| ≤ a/2, the

spectral radius of Pt((θ/(σg

√
t) + ak)g) is less than one. By continuity of

Pt((θ/(σg

√
t)+ ak)g) with respect to θ, there exist constants 0 < b < 1 and

C3(k) > 0, which is a positive constant depending only on k and g, such
that

max
c≤|θ|≤a/2

∥∥∥∥Pt

(( θ

σg

√
t

+ ak
)
g

)∥∥∥∥
V,V

≤ C3(k)e−bt.

By Lemma 11, we have limt→∞(λ((θ/(σg

√
t))+ak)t−λ(ak)t) = −θ2/2 and

thus ∣∣∣λ( θ

σg

√
t

+ ak
)
t
∣∣∣≤ ∣∣∣λ(ak)t − θ2

2

∣∣ +
θ2

4

= 1 − θ2

4
for sufficiently large t ≥ t0.

Hence there exist positive constants C4(k) and B2(k), which depend only
on k and g, such that

|A4,k| ≤ ‖û‖L∞

(
C4(k)

∫
ε(t)σg

√
t≤|θ|<cσg

√
t
e(1−θ2/4)dθ

+
∫

cσg
√

t≤|θ|≤(a/2)σg
√

t
C3(k)e−btdθ

)
≤B2(k)

√
t(e−ε(t)2σ2

gt/4 + 2e−bt)‖û‖L∞ .

It is easy to see limt→∞ |A5,k| = 0.
From the estimates on Aj,k above, there exists a positive-valued function
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{γ(t)}t≥0 of real numbers with limt→∞ γ(t) = 0 such that

|A1,k + A2,k + A3,k + A4,k + A5,k| ≤ B(K)γ(t)(‖û‖∞ + ‖û′‖∞)(5.2)

for all u ∈ S with û ∈ DK , where B(K) is a positive constant depending
only on K. Therefore the claim of Theorem 8 holds for all u ∈ S with
û ∈ DK .

In the following, we will show that the assumption û ∈ DK is actually
not necessary. Let µz,t be a measure on R characterized by the condition∫

R
φ(θ)µz,t(dθ) = σg

√
t

∫
φ
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

for all φ ∈ C0(R).

We have that {µz,t}z,t ⊂ B∗ ⊂ S∗. Let µ̂z,t be the Fourier transform of µz,t.
We first show that {µ̂z,t}t,z is a bounded subset of B∗. Obviously µz,t is a
positive measure, i.e., µz,t(φ) ≥ 0 for all non-negative functions φ ∈ S. This
implies that

〈µ̂z,t, φ ∗ ¯̌φ〉 =
1√
2π

〈µz,t, φ̂ · φ̂〉 ≥ 0 for all φ ∈ D,

where ∗ is convolution and φ̌ is defined by φ̌(θ) = φ(−θ). That is, {µ̂z,t}z,t

is a set of distributions of positive type [S]. The set {µz,t}z,t is bounded in
D∗

K . In fact, we have, by (5.2),∣∣∣∫
R

φ(θ)µz,t(dθ)
∣∣∣ =

∣∣∣σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ0

∣∣∣
≤ 2

∣∣∣[K/a]∑
k=0

û(ak)eiakzeλ(a)kt|〈µ0, hk〉|2 1√
2π

e−z2/2σ2
gt

∣∣∣
+ |A1,k + A2,k + A3,k + A4,k + A5,k|

≤
[K

a

] 2√
2π

‖û‖∞ + B(K)γ(t)(‖û‖∞ + ‖û′‖∞)

for all u ∈ S with û ∈ DK . We can now conclude that {µ̂z,t}t,z is bounded
in B∗ using the following theorem [S, p. 276]: if the set of distributions of
positive type is bounded in D∗

Ω, Ω is a neighbourhood of the origin in R,
then it is bounded in B∗.

Take u ∈ S arbitrarily. Then take a sequence (ρj)∞j=1 of probability
measures on R such that ρ̂j ∈ D for each i and converges weakly to Dirac
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measure δ0 as j → ∞. For arbitary ε > 0, we have∣∣∣∫
R

u(θ)(ρj ∗ µz,t)(dθ) −
∫

R
u(θ)µz,t(dθ)

∣∣∣
≤

∫
|s|<ε

∣∣∣∫
R

u(θ + s) − u(θ)µz,t(dθ)
∣∣∣ρj(ds)

+
∫
|s|≥ε

∣∣∣∫
R

u(θ + s) − u(θ)µz,t(dθ)
∣∣∣ρj(ds).

Since {µ̂z,t}t,z is bounded in B∗, and since û ∈ B, there exists constant
D1(u) depending only on u such that

sup
z∈R

sup
s>0

∣∣∣∫
R

u(θ + s)µz,t(dθ)
∣∣∣

= sup
z∈R

sup
s>0

1
2π

∣∣∣∫
R

û(θ)σg

√
teiθ(z+s)〈Pt(θg)µ0, 1〉dθ

∣∣∣ ≤ D1(u)

for all t ≥ t0. Moreover, since the set {s−1(u(θ + s)− u(θ)) : 0 < |s| ≤ 1} is
bouded in B, we have

sup
z∈R

sup
0<|s|≤1

∣∣∣∫
R

u(θ + s) − u(θ)
s

µz,t(dθ)
∣∣∣ ≤ D2(u) for all t ≥ t0.

Thus we obtain∣∣∣∫
R

u(θ)(ρj ∗ µz,t)(dθ) −
∫

R
u(θ)µz,t(dθ)

∣∣∣
≤ D2(u)ε + ρj({s ∈ R; |s| ≥ ε}) · D1(u).

Therefore, for any ε > 0, there exists an integer j0(ε) such that∣∣∣∫
R

u(θ)(ρj ∗ µz,t)(dθ) −
∫

R
u(θ)µz,t(dθ)

∣∣∣
≤ D3(u)ε for all j ≥ j0(ε), z ∈ R, and t ≥ t0, (5.3)

where D3(u) is a constant depending only on u.
Take j ≥ j(ε). As ̂ρj ∗ µz,t ∈ D, we have

lim
t→∞

∣∣∣∣ ∫
R

u(θ)(ρj ∗ µz,t)(dθ)
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−
∞∑

k=−∞
û(ak)ρ̂j(ak)eiakzeλ(a)kt

∣∣∣∫ hkdµ0

∣∣∣2 e−z2/2σ2
gt

√
2π

∣∣∣∣ = 0 (5.4)

for all z ∈ R. Obviously we have that |
∫

hkdµ0|2 ≤ 1 and
∑

k>k0
|û(ak)| ≤ ε

for sufficiently large k0 ≥ 0. So we have∣∣∣∣ ∞∑
k=−∞

û(ak)(ρ̂j(ak) − 1)eiakzeλ(iak)t
∣∣∣∫ hkdµ0

∣∣∣2∣∣∣∣
≤

∑
k≤k0

|û(ak)(ρ̂j(ak) − 1)| + ε ≤ 3ε (5.5)

for all z ∈ R and t ≥ t0. By (5.3), (5.4) and (5.5), we obtain

lim
t→∞

sup
z∈R

∣∣∣σg

√
t

∫
M

u
(
z +

∫ t

0
g ◦ Sτdτ

)
dµ

−
∞∑

k=−∞
û(ak)eiakzeλ(a)kt|〈µ0, hk〉|2 e−z2/2σ2

gt

√
2π

∣∣∣
≤ lim

t→∞
sup
z∈R

∣∣∣∫
R

u(θ)µz,t(dθ) −
∫

R
u(θ)(ρj ∗ µz,t)(dθ)

∣∣∣
+ lim

t→∞
sup
z∈R

∣∣∣∫
R

u(θ)(ρj ∗ µz,t)(dθ)

−
∞∑

k=−∞
û(ak)ρ̂j(ak)eiakzeλ(a)kt|〈µ0, hk〉|2 e−z2/2σ2

gt

√
2π

∣∣∣
+ lim

t→∞
sup
z∈R

∣∣∣ ∞∑
k=−∞

(ûρ̂j(ak) − û(ak))

× eiakzeλ(iak)t|〈µ0, hk〉|2 e−z2/2σ2
gt

√
2π

∣∣∣
≤ (D3(u) + 3)ε for j ≥ j0(ε).

Since ε > 0 is arbitrary, this gives the conclusion of Theorem 8 for u ∈ S,
in the case where g is periodic. ¤

6. Appendix

By the condition (B2), B is dense in L2(M, µ0). Therefore the dual
space L2(M, µ0)∗ of L2(M, µ0) is identified with a subspace of B∗. Further,
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identifying L2(M,µ0)∗ with L2(M,µ0) by Riesz’s theorem, we can regard
the operator Pt as that on L2(M, µ0). Extending Ut to the operator on
L2(M, µ0), we have

〈Ptφ, ϕ〉L2(M,µ0) = 〈φ, Utϕ〉L2(M,µ0) for all φ, ϕ ∈ L2(M, µ0).

This implies that Pt is the Perron-Frobenius operator on L2(M, µ0) in the
usual sense (see [LM]). Note that we have PtUt = Id on L2(M, µ0) since

〈φ, PtUtϕ〉 = 〈Utφ, Utϕ〉 = 〈φ, ϕ〉 for all φ, ϕ ∈ L2(M, µ0). (6.1)

Proposition 12 We assume that the Banach space V is embedded in
L2(M, µ0)∗ and that the real-valued function g ∈ V ∩ B satisfies the condi-
tion (G1). Then σg = 0 if and only if there exists a function f ∈ L2(M, µ0)
such that (d/dt)(f ◦ St)|t=0 = g.

Proof. Suppose that there exists a function f ∈ L2(M, µ0) such that
(d/dt)(f ◦ St)|t=0 = g. Then we have

1
t

∫
M

(∫ t

0
g ◦ Sτdτ

)2
dµ0 =

1
t

∫
M

(f ◦ St − f)2dµ0 ≤ 4
t

∫
M

f2dµ0.

This implies σg = 0. Below we prove the converse.
Suppose that σg = 0. Since V is identified with a subspace of L2(M, µ0)

and since g ∈ V ∩ B by the assumption, Lg :=
∫ ∞
0 Pτgdτ converges abso-

lutely in L2(M, µ0). Let gt =
∫ t
0 g ◦ Sτdτ for t > 0. Then

0 = σ2
g =

∞∑
k=−∞

∫
gt · gt ◦ S|k|tdµ0

=
∞∑

k=−∞

∫
P|k|tgt · gtdµ0 =

∫ (
2

∞∑
k=0

Pktgt − gt

)
gtdµ0.

Putting ft =
∑∞

k=0 Pktgt ∈ L2(M,µ0), we have

0 = σ2
g =

∫
(2ft − ft + Ptft)(ft − Ptft)dµ0 =

∫
f2

t − (Ptft)2dµ0.

Therefore, by (6.1), we obtain∫
(ft − UtPtft)2dµ0 =

∫
f2

t − (Ptft)2dµ0 = 0.
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That is, we have ft = UtPtft. Using this, we obtain

ft =
∞∑

k=0

Pkt

∫ t

0
Uτgdτ

= gt +
∞∑

k=1

Pkt

∫ t

0
Uτgdτ = gt +

∞∑
k=1

Pkt−tPt

∫ t

0
Uτgdτ

= gt +
∞∑

k=1

Pkt−t

∫ t

0
Pt−τgdτ = gt +

∞∑
k=1

∫ kt

kt−t
Pτgdτ = gt + Lg

and

UtPtft =
∞∑

k=0

UtPkt

∫ t

0
Pt−τgdτ =

∞∑
k=0

UtPkt

∫ t

0
Pτgdτ

=
∞∑

k=0

Ut

∫ t+kt

kt
Pτgdτ = Ut

( ∞∑
k=0

∫ t+kt

kt
Pτgdτ

)
= UtLg.

Therefore we have gt = UtLg − Lg. Mulutiplying the both sides of this
equality by 1/t and considering the limit as t → 0, we conculude g =
(d/dt)(Lg ◦ St)|t=0. ¤
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