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Instability of standing waves for the
Klein-Gordon-Schrodinger system

Hiroaki KikucHI and Masahito OHTA
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Abstract. We study the orbital instability of standing wave solutions for the Klein-
Gordon-Schrédinger system in three space dimensions. It is proved that the standing
wave is unstable if the frequency is sufficiently small.
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1. Introduction

We consider the Klein-Gordon-Schrédinger system with Yukawa cou-
pling in three space dimensions:

{z’@tu + Au = —2uv, (t,r) €R xR3,

1
v —Av+v=u® (t r)eRxR3 M)

where u: Rx R? — C and v: R x R? — R. We study the orbital instability
of standing wave solutions (¢!, 1) of (1), where w > 0 and (i, 1) is
a ground state of
—Ap +wp =20, xRS, @)
A+ =|p? xR

In our previous paper [15], we proved that the standing wave solution
(e%tp,, ,) of (1) is orbitally stable for sufficiently large w > 0. In the
present paper, we will prove that (e“*¢,,, 9,,) is orbitally unstable for suf-
ficiently small w > 0.

It is known that the Cauchy problem for (1) is globally well-posed in
the energy space X = H'(R3,C) x H'(R3, R) x L?(R3, R) (see [2] and also
[1, 3, 6, 13, 14, 23]). That is, for any (ug, vg, v1) € X, there exists a unique
global solution (u, v, dw) € C(R, X) of (1) with (u(0), v(0), dw(0)) =

(ug, vo, v1). Moreover, the solution satisfies the conservation laws:

E(u(t), v(t), 0v0(t)) = E(uo, vo, v1),  [[u(t)ll2 = [luollz, ¢ €R,
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where E(u, v, w) = J(u, v) + ||w|3, and
JI(u, v) = [ Vul3 + [ Voll + [[v]13 ~ 2/ [ul*vdz.
R3

1 Next, we consider the stationary problem (2) in the space H. ;(R3, C)x
H

rad

(R3, R) of radially symmetric functions. For w > 0, we put
So(u, v) = J(u, v) + wllul3

for (u, v) € HY(R3, C)x H*(R3, R). Then, (¢, ) € H'(R3, C)x H'(R3, R)
is a solution of (2) if and only if S/ (p, 1)) = 0. We denote the set of
nontrivial radial solutions of (2) by A, and the set of ground states of (2)

by G.:
Ay ={(u, v) € HL4(R? C) x H4(R* R):

rad

Su/u(uv U) =0, (u’ v) 7& (Oa 0)}5
Go = {(p, ¥) € Ay: Su(p, ¥) < S,(u, v) for all (u, v) € Ay}

We will prove existence of a ground state of (2) in Section 2. We do not know
uniqueness (modulo symmetries) of the ground state, but the uniqueness is
not needed in the following argument.

Definition Let (¢u, ) € Go. We say that the standing wave solution
(e, 1) of (1) is orbitally stable if for any ¢ > 0 there exists § > 0 such
that if (ug, vo, v1) € X and ||(ug, vo, v1) — (¢w, Yw, 0)||x < I, then the
solution (u(t), v(t)) of (1) with (u(0), v(0), dv(0)) = (ug, vo, v1) satisfies

e (t), v(0), Deo(1)) = (¥l + ), (- +), O)lx <2

for all t > 0. Otherwise, (¢!, 1,,) is said to be orbitally unstable.
Now, we state our main result in this paper.

Theorem 1 Let w > 0 and (pu, Yw) € Go. Then, there exists a constant
w* > 0 such that the standing wave solution (', 1) of (1) is orbitally
unstable for any w € (0, w*).

Remark Recall that for every (ug, vo, v1) € X, the solution (u(t), v(t),
0:v(t)) of the Cauchy problem for (1) with (u(0), v(0), d:v(0)) = (uo, vo, v1)
is global and sup{||(u(t), v(t), O(t))||x: t € R} < oo (see, e.g., Lemma 1
of [3]). Thus, we can not expect strong instability of the standing wave solu-
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tions for (1). Concerning strong instability of standing waves, see Berestycki
and Cazenave [4] for nonlinear Schrédinger equations, and see Shatah [24]
and Ohta and Todorova [22] for nonlinear Klein-Gordon equations.

The proof of Theorem 1 is based on the scaling (A3 2u(Az), Nv(A\zx)).
We remark that [|A*2u(\)||2 = |julls for A > 0, and

TN 2u(N), No(\)) a1 = Plu, v), (3)
where

P(u, v) = 2|[Vull3 + 5|Vl + 3]lv]3 ~ G/RB [ul*vdz.

Moreover, solutions (u(t), v(t)) of (1) formally satisfy the identity:

d _
%{Im /}Rg uzx - Vudr — 2 /RS Owv(z - Vo + 3v)daz}
— P(u, v) - 3|03 (4

We use a local version of the identity to prove the following sufficient con-
dition for instability (see Lemma 6 below).

Theorem 2 Let (¢, ¥,) € G,. Assume that
RITNPpu(A), Xehu(A))a=1 < 0. (5)
Then, the standing wave solution (e, 1) of (1) is orbitally unstable.

The proof of Theorem 2 is based on that of Theorem 3 in Ohta [21],
which is a modification of the original idea of Shatah and Strauss [25] (see
Section 4 in [25]). See also Gongalves Rebeiro [10] for another modification
of [25], and see [8, 9, 17] for applications of [21]. Note that it seems difficult
to apply the abstract theory by Grillakis, Shatah and Strauss [11, 12] to the
problems studied in [8, 9, 10, 17, 21] directly (see also [5, 7, 16] for related
problems). We believe that once we could find an appropriate identity
like (4), our approach is much simpler than others. Another advantage
of our approach is that the assumption (5) in Theorem 2 can be easily
checked in the following way. Since P(pu, 1) = 0 and || Vb,||3 + |3 =
Jgs l@w|*thodz, we have

ORI (N30 (A), Xts () [zt
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= 2V I3 + 201V 13 + 6lulf =12 | | lpulPida

= 9(IVhull3 — 3w ll3-

Moreover, by the scaling

pu(T) = Wl/z@cu(wl/?x)a Yo(z) = “”Lw(wl/zm)? (6)

we have
ORI (N0 (A, N (A) amr = 302 (3w Ve 13 = 19 13)- (7)
Note that (@, 1) satisfies

{—Ag0+<,0:2<,m/1, z € R3,

8
_WA¢+¢:‘§0’27 $€R3, ( )

and passing to the limit as w — 0, (8) reduces formally to the equation
—Ap+¢ =2pfp, zeR (9)

To show that (5) is satisfied for sufficiently small w > 0, it suffices to prove
the following Proposition.

Proposition 3 Let w > 0, (po, 1) € G, and define (@, 1) by (6).
Then we have

. T2 ; 7112
lim o Ve[l =0, inf [ldo]lz > 0.

In conclusion, Theorem 1 follows from Theorem 2, (7) and Proposi-
tion 3. The rest of the paper is organized as follows. In Section 2, we
show the existence and the variational characterization of ground states of
(2). In Section 3, we give the proof of Theorem 2. In Section 4, using the
variational characterizations of ground states, we prove Proposition 3.

2. Existence of ground states

In this section, we assume w > 0. We put H}ad = Hl}ad(R?’, C) x
H,y(R?, R), and |[(u, v)[[Fn = [ Vull3 +wllull3 + [Vo[[3 + [[0]3 for (u, v) €

H%ad. Furthermore, we put

Ko, ) = |, 0125 — 3 / [uPde,
RS
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d(w) = inf{S, (u, v):

(u, v) € Hyyq, Ko(u, v) =0, (u,v) #(0,0)}, (10)
Mo ={(p, ¥) € Hyyy:

Su(e, ¥) = d(w), Ku(p,¥) =0, (¢, ¢) # (0, 0)}.

Note that 0xS,(Au, Av)|x=1 = 2K, (u, v), and that if K, (u, v) =0 then

1
Sw(ua ’U) = / ‘U|2’Udl' = g”(ua ’U)H%-Il
R3

Lemma 1 If (u, v) € HL and K, (u, v) <0, then d(w) < [gs [u|*vdz.

rad

Proof. If K,(u, v) < 0, then (u, v) # (0, 0), and there exists \g € (0, 1)
such that K, (Aou, \gv) = 0. Thus, we have

d(w) < S, (Aou, Agv) = )\8/ |lu|?vdz < / |u|?vdz.
R3 R3

This completes the proof. [l
Lemma 2 For any w > 0, d(w) > 0.
Proof. Let (u,v) € H. ,, K, (u, v) =0 and (u, v) # (0, 0). Then, by the

rad?
Young and the Sobolev inequalities, we have

I(u, )3 = 3/{@3 [ul*odz < 2l[ull§ + [[v]§ < Cll(u, v)llgp-

Since (u,v) # (0,0), we have ||(u,v)||g2 > 1/C, which implies d(w) > 0. O
Lemma 3 For any w > 0, the set M,, is not empty.

Proof.  Let {(un, v,)} be a minimizing sequence for (10). Then, {(un, vn)}
is bounded in H! ;, and there exist a subsequence of {(uy, v,)} (we denote
it by the same letter) and (¢, 1) € HL, ; such that (u,, v,) — (p, 1) weakly
in H! ;. Since the embedding H! ;(R?) — L9(IR?) is compact for 2 < ¢ < 6

([26]), we see that
/ lo|*dz = lim / [t [Pondz = lim S, (tn, v,) = d(w),
R3 n—o0 Jp3 n—oo
K, (p, ¥) <liminf K, (uy,, v,) = 0.
n—oo

By Lemma 1, we have K, (¢, ) = 0 and S, (¢, ) = d(w). Moreover, by
Lemma 2, we see that (¢, ¥) # (0, 0). Thus, (¢, ¥) € M,,. O
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Lemma 4 For any w >0, G, = M,,.

Proof. First, let (p, ¥) € M. Then, there exists a Lagrange multiplier
A € R such that S, (¢, ) = AK],(p, ¥), and we have

0=2Ku,(p, ¥) = (S,(¢, ¥), (0, ¥)) = MEL (@, ¥), (¢, V).
Since K, (¢, 1) = 0, we have

(KL ). (.00 =20 ) =9 [ IoPude = =l(, 0) -

Thus, we have A = 0, which implies that (¢, ¥) € A,. Moreover, for any
(u, v) € Ay, we have K, (u, v) = 0. Thus, by (10), we have S, (¢, ¥) =
dw) < S,(u, v), which shows that (¢, ) € G,. Therefore, M, C G,.
On the other hand, let (¢,v) € G,. By Lemma 3, we can take (u, v) €
M,,. Then, we have d(w) = S,(u, v) and (u, v) € G,. Moreover, since
(p, V) € Gy, we see that d(w) = S, (u, v) = Su(p, ¥). Furthermore, since
K,(p,¥) =0 and (¢, ¥) # (0, 0), we have (¢, ©) € M,,. Therefore, G, C
M,,. This completes the proof. U

3. Proof of Theorem 2
Let n € C2%([0, o)) be a non-negative function such that

3for 0 <r <1, ,
n(r) = n(r)<0forl<r<2

0 for r > 2,

and let
) =5 [ (e
r=3 ; s°n(s)ds.
For n € N and (u, v, w) € X, we put

(@) =n(lzl/n),  Ca(@) = ((l2l/n), =€ R’

In(u, v, w) =Im [ ux-Vu(,dz — 2/ w(x - Vul, + vny,)da.
R3 R3

Lemma 5 Forr >0, we have

P +3C0) = n(r), () <0, 0<¢(r) <min{L, 21

r
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Moreover, for n € N and x € R3, we have

T - V() + 3¢ (7) = nn(z),
0< 77n(90) <3, 0< Cn(x) <1,

C
VKBTS SOEL
|G (2)| < min{|z|,8n°/|z[*} < 2n.

Proof. By integration by parts, we have

3/(; s*n(s)ds = r3n(r) — /OT s°n'(s)ds > rin(r),

which implies that r¢'(r) = n(r) — 3¢((r) < 0 for » > 0. Thus, we have
¢'(r) <0 for r > 0. The other properties can be easily proved. [l

Lemma 6 Let (u(t), v(t)) be a radially symmetric solution of (1) with
iiatial data in X,.aq. Then, there exists a positive constant Cy independent
of n such that

d

g In(u(®), v(?), Bo(?))

< P(u(t), v(t)) + 6/

|lz|=n

[ul?|v](¢, 2)dz + %(HW)II% +o@)3)

fort>0.

Proof. By simple computations and Lemma 5, we have the following iden-
tity (see [18, 19, 20, 22, 24]):

qa
dt

_2/ \Vu]QCnd:c—i—/ (Vo[2(26, + nn)da
R3 R3

+/ Uanda:—2/ |u|2m7nd:17—/ (O)*npdx
R3 R3 R3
1
+ 2Re/ (VG - Vu)(z - Vu)dx — / lu|? An,dz
R3 2 Jps

In(u(t), v(t), drv(t))

+ 2/ (Vi - Vo)(x - Vu)dr — / v2 An,d.
R3 R?
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Since u(t), v(t) and ¢, are radially symmetric, we have
Re/ (V& - Vu)(z - Va)de = / z - V| Vuldz,
R3 R3

/ (V¢ - Vo)(x - Vo)de = / z - V(| Vo|?d.
R3

R3
Thus, by Lemma 5, we obtain the desired inequality. ]
In the following, as in Section 2, we put
H Had(Rgv C) X Hrad(Rga R)

T

Lemma 7 Letw >0 and (¢u,Ys) € Go. Then

Sulipus ) = inf {Su(u, 0): (u, v) € Hiy,

/\u|21)dx:/ \g0w|21/1wda:}.
3 3

Proof. By Lemmas 1 and 4, if (u, v) € H!, ; and K, (u, v) <0, then

/!%\Q%dw— /\u|2vdac
R3

Thus, if (u, v) € Hy 4 satisfies [gs [ul?vde =[5 |pw|*Ywda, then we have
K, (u, v) >0, and

Awmww:/Wﬁmm:/mes&mw
R3 R3

This completes the proof. ]

Lemma 8 Under the assumption in Theorem 2, there exist positive con-
stants €y and 01 such that

J(bw; Yo) < E(u, v, w) 4+ (Aw, v) = 1) P(u, v),
|A(u, v) — 1] < &1

for any (u, v, w) € Nz, satisfying ||ull2 = ||wll2, where

= (/Rd o *hudz/ /R3 IU\zvd:L‘) 1/3, (11)

N ={(u, v, w) € Xyaq: égﬂg |(u, v, w) — (ew(pw, Yy, 0)|lx < e}
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Proof. Since
JO32u(X), Mo(\))
= A2HVuH%JMBIIWII%JM?’IIUH%—2*)’/ Jul*vdz,
R3

we see that the function (), u, v) — 83J(A¥2u()-), A3v(\-)) is continuous
on (0, 00) x HL (R3, C) x HL ,(R3, R). Thus, by the assumption (5), there

rad

exist positive constants 1 and &; such that 92.J(A3/2u()-), A3v(\)) < 0 if
IA—1| < é; and (u, v, 0) € N,. Thus, the Taylor expansion at A = 1 and
(3) imply that

JN32u(N), Au(N\)) < J(u, v) + (A —1)P(u, v) (12)

if [N —1| < é; and (u, v, 0) € N;,. Moreover, by (11), we can take gy €
(0, £1) such that [A(u, v) — 1] < 61 if (u, v, 0) € N,. Let (u, v, w) € Ng,
and [|ullz = [lgu 2. Since [A*?u(A)]l2 = [|ull2 = [l¢u 2 and

g I 2u (M) PN (N ) da = /Rd |pu|*Ydz
when A = A(u, v), it follows from Lemma 7 that
J(@u, ) < TN u(A), NBo(A)) A2, 0)- (13)
Therefore, by (12) and (13), we have
J(Pw, Vo) < E(u, v, w) + {A(u, v) — 1}P(u, v)
for (u, v, w) € N, satisfying ||ull2 = ||¢wl|2- O

In Lemmas 9 and 10 below, we assume the assumption in Theorem 2,
and let 9 be the positive constant given in Lemma 8. For (ug, vg, v1) €
Ne,, we define the exit time Tp(ug, vo, v1) from N, by

To(uo, vo, v1) = sup{T > 0: (u(t), v(t), Ow(t)) € N,
for any 0 <t < T},
where (u(t), v(t), Ov(t)) is the solution of (1) with (u(0), v(0), dwv(0)) =
(uo, vo, v1). Moreover, we put
Ro = {(uv v, w) € N503 E(u, v, w) < J(‘Pwa 1/@)7
[ull2 = llewll2, P(u, v) <0}
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Lemma 9 For any (ug, vo, v1) € Ro, there exists a constant 5y > 0 such
that

P(u(t), v(t)) < =28y, t €0, To(uo, vo, v1)),
where (u(t), v(t)) is the solution of (1) with (u(0), v(0), :v(0)) = (uo, vo, v1).
Proof.  Let (uo, vo, v1) € Ro, and put

Ty := To(ug, vo, v1), 02 := J(pw, V) — E(ug, vo, v1).
Then, by Lemma 8 and by the conservations of E and |ul|2, we have

0 < 02 < {A(u(t),v(t)) — 1} P(u(t),v(t)), te€l0,Tp).

Since the function ¢ — P(u(t), v(t)) is continuous and P(ug, vg) < 0, we
have P(u(t), v(t)) < 0 and 1 — &1 < A(u(t), v(t)) < 1 for t € [0, Tp). Thus,
we have

09 0o
T AQu(), o(@) ~ o1’

which completes the proof. ]

—P(u(t), v(t)) =

le [Oa T0)7

Lemma 10 If (ug, vo, v1) € Ro, then Ty(ug, vo, v1) < 00.

Proof. Suppose that there exists (ug, vo, v1) € Ro such that Ty(ug, vo, v1)
= oo. Let (u(t), v(t)) be the solution of (1) with (u(0), v(0), dw(0)) =
(ug, vo, v1). By Lemma 6, we have

d
%In(u(t), v(t), Opu(t))
< P(u(t), v(t)) + 6/| N [ul?|ol(t, «)da + %(HU(t)Ilg +o®)I3)

for ¢t > 0. Since (u(t), v(t), Ov(t)) € N, for t >0,

M = igg [(u(t), v(t), Oww(t))||x < oc.

Furthermore, since u(t) and v(t) are radially symmetric, by the radial lemma
of Strauss [26], there exists a constant C; > 0 such that

6/|> [ul?|ol(t, @)da < 6]|v(t)]| Lo (jof > (B3
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C
< u@IBlo®m, ¢ >0.

Thus, there exists ng € N such that

Co
6/ ul?[v[ (¢, z)dx + =5 ([u(®)]3 + [v()]]5)
|z|>ng g
CiM3 CyM?
< +

no ng

§607 t207

and by Lemmas 8 and 9, we have

Zf]no(u( ) ( ) ﬁtv( )) < _50’ t> 0’

which implies I, (u(t), v(t), Opv(t)) — —oo as t — oco. On the other hand,
by Lemma 5, there exists a constant Co > 0 such that

[T (u(t), v(t), Dpo(t))] < Comol|(u(t), v(t), dev())|[% < CanoM?,
t > 0.

This contradiction proves the Lemma. O
Proof of Theorem 2. Since

a)\J()‘g/Q(pw()\')7 )\37;Z)w( ))|>\ 1= (‘;Dwa ¢w) = Oa

BTN @A), Nehu(A))[a=1 <0,

AT (NP0, (M), N0 (A) = PO 200 (A), Xihu(X),

X200 (A2 = [lwlle,

we see that (A3/2p,(N), A3, (X), 0) € Ro for A > 1 sufficiently close to
1. Moreover, since (A3/2p,(X-), A (X-), 0) = (@, 1y, 0) in X as X — 1,
the orbital instability of (e, 1,,) follows from Lemma 10. O
4. Proof of Proposition 3

Let ¢ € H! (R®) be a unique positive radial solution of (9), and we
put

Koy(u, v) = [|Vull3 + [ull + wl[ Vo3 + (o3 —3/RS [ul*vdz.
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Then, since ||[Vo|3 + ||6]|3 = 2||¢||] and ¢ € L>=(R?), we see that
Ko (v26, 20%) = 2|Vl3 + 2|63 + 86V ell3 — 8ll¢ll3
= —4llol3 +8wlloV]; <0

if 0 < w < wp, where wy = ||¢]|1/(2]|¢V¢[|3). Thus, by Lemmas 1 and 4, we
have

[ Vpuliuda < aloll, e (©.w0)

Since R’w(cﬁw, zﬁw) =0, we have
GullFn + @l Vw3 + b3 < 12]6)11,  w € (0, wo). (14)

By the first equation of (8) and by the Holder and the Gagliardo-Nirenberg-
Sobolev inequalities, we have

1wz = (1 = A)@ullz = 2l Gutullz < 20@ullsllvells
_ 5127 1/2
< CIV@ullalldully IV dully. (15)
Moreover, by the second equation of (8), we have
IVdollz = 11 = wA) V(a2 < Vw12
< 2| @ullooIVRullz < Clldwll a2 IV 2ull2- (16)
Therefore, by (14), (15) and (16), we have
W[ Violl3 < Col Vaul3lldull2lViullz < Cw'/2, w € (0, wo),
which implies lim,, o w||Vi,||3 = 0.
Finally, by the first equation of (8), we have
12ulfn =2 [ uldudr < 2 @ullfIdullz < Cllwlfp ¥l
Puwl|| g1 ]R3(Pw WwdT = Sow4¢w2_ Pullgrl|Pwl2-
Since @,, # 0, we have |9, |2 > 1/C for w > 0. This completes the proof of
Proposition 3. 0
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