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Abstract. We study the orbital instability of standing wave solutions for the Klein-

Gordon-Schrödinger system in three space dimensions. It is proved that the standing

wave is unstable if the frequency is sufficiently small.
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1. Introduction

We consider the Klein-Gordon-Schrödinger system with Yukawa cou-
pling in three space dimensions:{

i∂tu + ∆u = −2uv, (t, x) ∈ R × R3,

∂2
t v − ∆v + v = |u|2, (t, x) ∈ R × R3,

(1)

where u : R×R3 → C and v : R×R3 → R. We study the orbital instability
of standing wave solutions (eiωtϕω, ψω) of (1), where ω > 0 and (ϕω, ψω) is
a ground state of{

−∆ϕ + ωϕ = 2ϕψ, x ∈ R3,

−∆ψ + ψ = |ϕ|2, x ∈ R3.
(2)

In our previous paper [15], we proved that the standing wave solution
(eiωtϕω, ψω) of (1) is orbitally stable for sufficiently large ω > 0. In the
present paper, we will prove that (eiωtϕω, ψω) is orbitally unstable for suf-
ficiently small ω > 0.

It is known that the Cauchy problem for (1) is globally well-posed in
the energy space X = H1(R3, C)×H1(R3, R)×L2(R3, R) (see [2] and also
[1, 3, 6, 13, 14, 23]). That is, for any (u0, v0, v1) ∈ X, there exists a unique
global solution (u, v, ∂tv) ∈ C(R, X) of (1) with (u(0), v(0), ∂tv(0)) =
(u0, v0, v1). Moreover, the solution satisfies the conservation laws:

E(u(t), v(t), ∂tv(t)) = E(u0, v0, v1), ‖u(t)‖2 = ‖u0‖2, t ∈ R,
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where E(u, v, w) = J(u, v) + ‖w‖2
2, and

J(u, v) = ‖∇u‖2
2 + ‖∇v‖2

2 + ‖v‖2
2 − 2

∫
R3

|u|2vdx.

Next, we consider the stationary problem (2) in the space H1
rad(R3, C)×

H1
rad(R3, R) of radially symmetric functions. For ω > 0, we put

Sω(u, v) = J(u, v) + ω‖u‖2
2

for (u, v) ∈ H1(R3, C)×H1(R3, R). Then, (ϕ, ψ) ∈ H1(R3, C)×H1(R3, R)
is a solution of (2) if and only if S′

ω(ϕ, ψ) = 0. We denote the set of
nontrivial radial solutions of (2) by Aω, and the set of ground states of (2)
by Gω:

Aω = {(u, v) ∈ H1
rad(R3, C) × H1

rad(R3, R) :

S′
ω(u, v) = 0, (u, v) 6= (0, 0)},

Gω = {(ϕ, ψ) ∈ Aω : Sω(ϕ, ψ) ≤ Sω(u, v) for all (u, v) ∈ Aω}.

We will prove existence of a ground state of (2) in Section 2. We do not know
uniqueness (modulo symmetries) of the ground state, but the uniqueness is
not needed in the following argument.

Definition Let (ϕω, ψω) ∈ Gω. We say that the standing wave solution
(eiωtϕω, ψω) of (1) is orbitally stable if for any ε > 0 there exists δ > 0 such
that if (u0, v0, v1) ∈ X and ‖(u0, v0, v1) − (ϕω, ψω, 0)‖X < δ, then the
solution (u(t), v(t)) of (1) with (u(0), v(0), ∂tv(0)) = (u0, v0, v1) satisfies

inf
θ∈R,y∈R3

‖(u(t), v(t), ∂tv(t)) − (eiθϕω( · + y), ψω( · + y), 0)‖X < ε

for all t ≥ 0. Otherwise, (eiωtϕω, ψω) is said to be orbitally unstable.

Now, we state our main result in this paper.

Theorem 1 Let ω > 0 and (ϕω, ψω) ∈ Gω. Then, there exists a constant
ω∗ > 0 such that the standing wave solution (eiωtϕω, ψω) of (1) is orbitally
unstable for any ω ∈ (0, ω∗).

Remark Recall that for every (u0, v0, v1) ∈ X, the solution (u(t), v(t),
∂tv(t)) of the Cauchy problem for (1) with (u(0), v(0), ∂tv(0)) = (u0, v0, v1)
is global and sup{‖(u(t), v(t), ∂tv(t))‖X : t ∈ R} < ∞ (see, e.g., Lemma 1
of [3]). Thus, we can not expect strong instability of the standing wave solu-
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tions for (1). Concerning strong instability of standing waves, see Berestycki
and Cazenave [4] for nonlinear Schrödinger equations, and see Shatah [24]
and Ohta and Todorova [22] for nonlinear Klein-Gordon equations.

The proof of Theorem 1 is based on the scaling (λ3/2u(λx), λ3v(λx)).
We remark that ‖λ3/2u(λ·)‖2 = ‖u‖2 for λ > 0, and

∂λJ(λ3/2u(λ·), λ3v(λ·))|λ=1 = P (u, v), (3)

where

P (u, v) = 2‖∇u‖2
2 + 5‖∇v‖2

2 + 3‖v‖2
2 − 6

∫
R3

|u|2vdx.

Moreover, solutions (u(t), v(t)) of (1) formally satisfy the identity:

d

dt

{
Im

∫
R3

ux · ∇udx − 2
∫

R3

∂tv(x · ∇v + 3v)dx
}

= P (u, v) − 3‖∂tv‖2
2. (4)

We use a local version of the identity to prove the following sufficient con-
dition for instability (see Lemma 6 below).

Theorem 2 Let (ϕω, ψω) ∈ Gω. Assume that

∂2
λJ(λ3/2ϕω(λ·), λ3ψω(λ·))|λ=1 < 0. (5)

Then, the standing wave solution (eiωtϕω, ψω) of (1) is orbitally unstable.

The proof of Theorem 2 is based on that of Theorem 3 in Ohta [21],
which is a modification of the original idea of Shatah and Strauss [25] (see
Section 4 in [25]). See also Gonçalves Rebeiro [10] for another modification
of [25], and see [8, 9, 17] for applications of [21]. Note that it seems difficult
to apply the abstract theory by Grillakis, Shatah and Strauss [11, 12] to the
problems studied in [8, 9, 10, 17, 21] directly (see also [5, 7, 16] for related
problems). We believe that once we could find an appropriate identity
like (4), our approach is much simpler than others. Another advantage
of our approach is that the assumption (5) in Theorem 2 can be easily
checked in the following way. Since P (ϕω, ψω) = 0 and ‖∇ψω‖2

2 + ‖ψω‖2
2 =∫

R3 |ϕω|2ψωdx, we have

∂2
λJ(λ3/2ϕω(λ·), λ3ψω(λ·))|λ=1
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= 2‖∇ϕω‖2
2 + 20‖∇ψω‖2

2 + 6‖ψω‖2
2 − 12

∫
R3

|ϕω|2ψωdx

= 9‖∇ψω‖2
2 − 3‖ψω‖2

2.

Moreover, by the scaling

ϕω(x) = ω1/2ϕ̃ω(ω1/2x), ψω(x) = ωψ̃ω(ω1/2x), (6)

we have

∂2
λJ(λ3/2ϕω(λ·), λ3ψω(λ·))|λ=1 = 3ω1/2

(
3ω‖∇ψ̃ω‖2

2 − ‖ψ̃ω‖2
2

)
. (7)

Note that (ϕ̃ω, ψ̃ω) satisfies{
−∆ϕ + ϕ = 2ϕψ, x ∈ R3,

−ω∆ψ + ψ = |ϕ|2, x ∈ R3,
(8)

and passing to the limit as ω → 0, (8) reduces formally to the equation

−∆ϕ + ϕ = 2|ϕ|2ϕ, x ∈ R3. (9)

To show that (5) is satisfied for sufficiently small ω > 0, it suffices to prove
the following Proposition.

Proposition 3 Let ω > 0, (ϕω, ψω) ∈ Gω, and define (ϕ̃ω, ψ̃ω) by (6).
Then we have

lim
ω→0

ω‖∇ψ̃ω‖2
2 = 0, inf

ω>0
‖ψ̃ω‖2

2 > 0.

In conclusion, Theorem 1 follows from Theorem 2, (7) and Proposi-
tion 3. The rest of the paper is organized as follows. In Section 2, we
show the existence and the variational characterization of ground states of
(2). In Section 3, we give the proof of Theorem 2. In Section 4, using the
variational characterizations of ground states, we prove Proposition 3.

2. Existence of ground states

In this section, we assume ω > 0. We put H1
rad = H1

rad(R3, C) ×
H1

rad(R3, R), and ‖(u, v)‖2
H1 = ‖∇u‖2

2 + ω‖u‖2
2 + ‖∇v‖2

2 + ‖v‖2
2 for (u, v) ∈

H1
rad. Furthermore, we put

Kω(u, v) = ‖(u, v)‖2
H1 − 3

∫
R3

|u|2vdx,
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d(ω) = inf{Sω(u, v) :

(u, v) ∈ H1
rad, Kω(u, v) = 0, (u, v) 6= (0, 0)}, (10)

Mω = {(ϕ, ψ) ∈ H1
rad :

Sω(ϕ, ψ) = d(ω), Kω(ϕ,ψ) = 0, (ϕ, ψ) 6= (0, 0)}.

Note that ∂λSω(λu, λv)|λ=1 = 2Kω(u, v), and that if Kω(u, v) = 0 then

Sω(u, v) =
∫

R3

|u|2vdx =
1
3
‖(u, v)‖2

H1 .

Lemma 1 If (u, v) ∈ H1
rad and Kω(u, v) < 0, then d(ω) <

∫
R3 |u|2vdx.

Proof. If Kω(u, v) < 0, then (u, v) 6= (0, 0), and there exists λ0 ∈ (0, 1)
such that Kω(λ0u, λ0v) = 0. Thus, we have

d(ω) ≤ Sω(λ0u, λ0v) = λ3
0

∫
R3

|u|2vdx <

∫
R3

|u|2vdx.

This completes the proof. ¤

Lemma 2 For any ω > 0, d(ω) > 0.

Proof. Let (u, v) ∈ H1
rad, Kω(u, v) = 0 and (u, v) 6= (0, 0). Then, by the

Young and the Sobolev inequalities, we have

‖(u, v)‖2
H1 = 3

∫
R3

|u|2vdx ≤ 2‖u‖3
3 + ‖v‖3

3 ≤ C‖(u, v)‖3
H1 .

Since (u, v) 6= (0, 0), we have ‖(u, v)‖H1 ≥ 1/C, which implies d(ω) > 0. ¤

Lemma 3 For any ω > 0, the set Mω is not empty.

Proof. Let {(un, vn)} be a minimizing sequence for (10). Then, {(un, vn)}
is bounded in H1

rad, and there exist a subsequence of {(un, vn)} (we denote
it by the same letter) and (ϕ, ψ) ∈ H1

rad such that (un, vn) ⇀ (ϕ, ψ) weakly
in H1

rad. Since the embedding H1
rad(R3) ↪→ Lq(R3) is compact for 2 < q < 6

([26]), we see that∫
R3

|ϕ|2ψdx = lim
n→∞

∫
R3

|un|2vndx = lim
n→∞

Sω(un, vn) = d(ω),

Kω(ϕ, ψ) ≤ lim inf
n→∞

Kω(un, vn) = 0.

By Lemma 1, we have Kω(ϕ, ψ) = 0 and Sω(ϕ, ψ) = d(ω). Moreover, by
Lemma 2, we see that (ϕ, ψ) 6= (0, 0). Thus, (ϕ, ψ) ∈ Mω. ¤
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Lemma 4 For any ω > 0, Gω = Mω.

Proof. First, let (ϕ, ψ) ∈ Mω. Then, there exists a Lagrange multiplier
λ ∈ R such that S′

ω(ϕ, ψ) = λK ′
ω(ϕ, ψ), and we have

0 = 2Kω(ϕ, ψ) = 〈S′
ω(ϕ, ψ), (ϕ, ψ)〉 = λ〈K ′

ω(ϕ, ψ), (ϕ, ψ)〉.

Since Kω(ϕ, ψ) = 0, we have

〈K ′
ω(ϕ, ψ), (ϕ, ψ)〉 = 2‖(ϕ, ψ)‖2

H1 − 9
∫

R3

|ϕ|2ψdx = −‖(ϕ, ψ)‖2
H1 .

Thus, we have λ = 0, which implies that (ϕ, ψ) ∈ Aω. Moreover, for any
(u, v) ∈ Aω, we have Kω(u, v) = 0. Thus, by (10), we have Sω(ϕ, ψ) =
d(ω) ≤ Sω(u, v), which shows that (ϕ, ψ) ∈ Gω. Therefore, Mω ⊂ Gω.
On the other hand, let (ϕ, ψ) ∈ Gω. By Lemma 3, we can take (u, v) ∈
Mω. Then, we have d(ω) = Sω(u, v) and (u, v) ∈ Gω. Moreover, since
(ϕ, ψ) ∈ Gω, we see that d(ω) = Sω(u, v) = Sω(ϕ, ψ). Furthermore, since
Kω(ϕ, ψ) = 0 and (ϕ, ψ) 6= (0, 0), we have (ϕ, ψ) ∈ Mω. Therefore, Gω ⊂
Mω. This completes the proof. ¤

3. Proof of Theorem 2

Let η ∈ C2([0, ∞)) be a non-negative function such that

η(r) =

{
3 for 0 ≤ r ≤ 1,

0 for r ≥ 2,
η′(r) ≤ 0 for 1 ≤ r ≤ 2,

and let

ζ(r) =
1
r3

∫ r

0
s2η(s)ds.

For n ∈ N and (u, v, w) ∈ X, we put

ηn(x) = η(|x|/n), ζn(x) = ζ(|x|/n), x ∈ R3,

In(u, v, w) = Im
∫

R3

ux · ∇uζndx − 2
∫

R3

w(x · ∇vζn + vηn)dx.

Lemma 5 For r ≥ 0, we have

rζ ′(r) + 3ζ(r) = η(r), ζ ′(r) ≤ 0, 0 ≤ ζ(r) ≤ min
{

1,
8
r3

}
.
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Moreover, for n ∈ N and x ∈ R3, we have

x · ∇ζn(x) + 3ζn(x) = ηn(x),

ηn(x) = 3, ζn(x) = 1 for 0 ≤ |x| ≤ n,

0 ≤ ηn(x) ≤ 3, 0 ≤ ζn(x) ≤ 1,

|∆ηn(x)| ≤ C

n2
, x · ∇ζn(x) ≤ 0,

|xζn(x)| ≤ min{|x|, 8n3/|x|2} ≤ 2n.

Proof. By integration by parts, we have

3
∫ r

0
s2η(s)ds = r3η(r) −

∫ r

0
s3η′(s)ds ≥ r3η(r),

which implies that rζ ′(r) = η(r) − 3ζ(r) ≤ 0 for r ≥ 0. Thus, we have
ζ ′(r) ≤ 0 for r ≥ 0. The other properties can be easily proved. ¤

Lemma 6 Let (u(t), v(t)) be a radially symmetric solution of (1) with
initial data in Xrad. Then, there exists a positive constant C0 independent
of n such that

d

dt
In(u(t), v(t), ∂tv(t))

≤ P (u(t), v(t)) + 6
∫
|x|≥n

|u|2|v|(t, x)dx +
C0

n2
(‖u(t)‖2

2 + ‖v(t)‖2
2)

for t ≥ 0.

Proof. By simple computations and Lemma 5, we have the following iden-
tity (see [18, 19, 20, 22, 24]):

d

dt
In(u(t), v(t), ∂tv(t))

= 2
∫

R3

|∇u|2ζndx +
∫

R3

|∇v|2(2ζn + ηn)dx

+
∫

R3

v2ηndx − 2
∫

R3

|u|2vηndx −
∫

R3

(∂tv)2ηndx

+ 2Re
∫

R3

(∇ζn · ∇u)(x · ∇u)dx − 1
2

∫
R3

|u|2∆ηndx

+ 2
∫

R3

(∇ζn · ∇v)(x · ∇v)dx −
∫

R3

v2∆ηndx.
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Since u(t), v(t) and ζn are radially symmetric, we have

Re
∫

R3

(∇ζn · ∇u)(x · ∇u)dx =
∫

R3

x · ∇ζn|∇u|2dx,∫
R3

(∇ζn · ∇v)(x · ∇v)dx =
∫

R3

x · ∇ζn|∇v|2dx.

Thus, by Lemma 5, we obtain the desired inequality. ¤

In the following, as in Section 2, we put

H1
rad = H1

rad(R3, C) × H1
rad(R3, R).

Lemma 7 Let ω > 0 and (ϕω, ψω) ∈ Gω. Then

Sω(ϕω, ψω) = inf
{

Sω(u, v) : (u, v) ∈ H1
rad,∫

R3

|u|2vdx =
∫

R3

|ϕω|2ψωdx
}

.

Proof. By Lemmas 1 and 4, if (u, v) ∈ H1
rad and Kω(u, v) < 0, then∫

R3

|ϕω|2ψωdx = d(ω) <

∫
R3

|u|2vdx.

Thus, if (u, v) ∈ H1
rad satisfies

∫
R3 |u|2vdx =

∫
R3 |ϕω|2ψωdx, then we have

Kω(u, v) ≥ 0, and

Sω(ϕω, ψω) =
∫

R3

|ϕω|2ψωdx =
∫

R3

|u|2vdx ≤ Sω(u, v).

This completes the proof. ¤

Lemma 8 Under the assumption in Theorem 2, there exist positive con-
stants ε0 and δ1 such that

J(ϕω, ψω) ≤ E(u, v, w) + (Λ(u, v) − 1)P (u, v),

|Λ(u, v) − 1| < δ1

for any (u, v, w) ∈ Nε0 satisfying ‖u‖2 = ‖ϕω‖2, where

Λ(u, v) =
(∫

R3

|ϕω|2ψωdx/

∫
R3

|u|2vdx
)1/3

, (11)

Nε = {(u, v, w) ∈ Xrad : inf
θ∈R

‖(u, v, w) − (eiθϕω, ψω, 0)‖X < ε}.
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Proof. Since

J(λ3/2u(λ·), λ3v(λ·))

= λ2‖∇u‖2
2 + λ5‖∇v‖2

2 + λ3‖v‖2
2 − 2λ3

∫
R3

|u|2vdx,

we see that the function (λ, u, v) 7→ ∂2
λJ(λ3/2u(λ·), λ3v(λ·)) is continuous

on (0, ∞)×H1
rad(R3, C)×H1

rad(R3, R). Thus, by the assumption (5), there
exist positive constants ε1 and δ1 such that ∂2

λJ(λ3/2u(λ·), λ3v(λ·)) < 0 if
|λ − 1| < δ1 and (u, v, 0) ∈ Nε1 . Thus, the Taylor expansion at λ = 1 and
(3) imply that

J(λ3/2u(λ·), λ3v(λ·)) ≤ J(u, v) + (λ − 1)P (u, v) (12)

if |λ − 1| < δ1 and (u, v, 0) ∈ Nε1 . Moreover, by (11), we can take ε0 ∈
(0, ε1) such that |Λ(u, v) − 1| < δ1 if (u, v, 0) ∈ Nε0 . Let (u, v, w) ∈ Nε0

and ‖u‖2 = ‖ϕω‖2. Since ‖λ3/2u(λ·)‖2 = ‖u‖2 = ‖ϕω‖2 and∫
R3

|λ3/2u(λ·)|2λ3v(λ·)dx =
∫

R3

|ϕω|2ψωdx

when λ = Λ(u, v), it follows from Lemma 7 that

J(ϕω, ψω) ≤ J(λ3/2u(λ·), λ3v(λ·))|λ=Λ(u, v). (13)

Therefore, by (12) and (13), we have

J(ϕω, ψω) ≤ E(u, v, w) + {Λ(u, v) − 1}P (u, v)

for (u, v, w) ∈ Nε0 satisfying ‖u‖2 = ‖ϕω‖2. ¤

In Lemmas 9 and 10 below, we assume the assumption in Theorem 2,
and let ε0 be the positive constant given in Lemma 8. For (u0, v0, v1) ∈
Nε0 , we define the exit time T0(u0, v0, v1) from Nε0 by

T0(u0, v0, v1) = sup{T > 0: (u(t), v(t), ∂tv(t)) ∈ Nε0

for any 0 ≤ t ≤ T},

where (u(t), v(t), ∂tv(t)) is the solution of (1) with (u(0), v(0), ∂tv(0)) =
(u0, v0, v1). Moreover, we put

R0 = {(u, v, w) ∈ Nε0 : E(u, v, w) < J(ϕω, ψω),

‖u‖2 = ‖ϕω‖2, P (u, v) < 0}.
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Lemma 9 For any (u0, v0, v1) ∈ R0, there exists a constant δ0 > 0 such
that

P (u(t), v(t)) ≤ −2δ0, t ∈ [0, T0(u0, v0, v1)),

where (u(t), v(t)) is the solution of (1) with (u(0), v(0), ∂tv(0))=(u0, v0, v1).

Proof. Let (u0, v0, v1) ∈ R0, and put

T0 := T0(u0, v0, v1), δ2 := J(ϕω, ψω) − E(u0, v0, v1).

Then, by Lemma 8 and by the conservations of E and ‖u‖2, we have

0 < δ2 ≤ {Λ(u(t), v(t)) − 1}P (u(t), v(t)), t ∈ [0, T0).

Since the function t 7→ P (u(t), v(t)) is continuous and P (u0, v0) < 0, we
have P (u(t), v(t)) < 0 and 1 − δ1 < Λ(u(t), v(t)) < 1 for t ∈ [0, T0). Thus,
we have

−P (u(t), v(t)) ≥ δ2

1 − Λ(u(t), v(t))
≥ δ2

δ1
, t ∈ [0, T0),

which completes the proof. ¤

Lemma 10 If (u0, v0, v1) ∈ R0, then T0(u0, v0, v1) < ∞.

Proof. Suppose that there exists (u0, v0, v1) ∈ R0 such that T0(u0, v0, v1)
= ∞. Let (u(t), v(t)) be the solution of (1) with (u(0), v(0), ∂tv(0)) =
(u0, v0, v1). By Lemma 6, we have

d

dt
In(u(t), v(t), ∂tv(t))

≤ P (u(t), v(t)) + 6
∫
|x|≥n

|u|2|v|(t, x)dx +
C0

n2
(‖u(t)‖2

2 + ‖v(t)‖2
2)

for t ≥ 0. Since (u(t), v(t), ∂tv(t)) ∈ Nε0 for t ≥ 0,

M := sup
t≥0

‖(u(t), v(t), ∂tv(t))‖X < ∞.

Furthermore, since u(t) and v(t) are radially symmetric, by the radial lemma
of Strauss [26], there exists a constant C1 > 0 such that

6
∫
|x|≥n

|u|2|v|(t, x)dx≤ 6‖v(t)‖L∞(|x|≥n)‖u(t)‖2
2
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≤ C1

n
‖u(t)‖2

2‖v(t)‖H1 , t ≥ 0.

Thus, there exists n0 ∈ N such that

6
∫
|x|≥n0

|u|2|v|(t, x)dx +
C0

n2
0

(‖u(t)‖2
2 + ‖v(t)‖2

2)

≤ C1M
3

n0
+

C0M
2

n2
0

≤ δ0, t ≥ 0,

and by Lemmas 8 and 9, we have

d

dt
In0(u(t), v(t), ∂tv(t)) ≤ −δ0, t ≥ 0,

which implies In0(u(t), v(t), ∂tv(t)) → −∞ as t → ∞. On the other hand,
by Lemma 5, there exists a constant C2 > 0 such that

|In0(u(t), v(t), ∂tv(t))| ≤ C2n0‖(u(t), v(t), ∂tv(t))‖2
X ≤ C2n0M

2,

t ≥ 0.

This contradiction proves the Lemma. ¤

Proof of Theorem 2. Since

∂λJ(λ3/2ϕω(λ·), λ3ψω(λ·))|λ=1 = P (ϕω, ψω) = 0,

∂2
λJ(λ3/2ϕω(λ·), λ3ψω(λ·))|λ=1 < 0,

λ∂λJ(λ3/2ϕω(λ·), λ3ψω(λ·)) = P (λ3/2ϕω(λ·), λ3ψω(λ·)),
‖λ3/2ϕω(λ·)‖2 = ‖ϕω‖2,

we see that (λ3/2ϕω(λ·), λ3ψω(λ·), 0) ∈ R0 for λ > 1 sufficiently close to
1. Moreover, since (λ3/2ϕω(λ·), λ3ψω(λ·), 0) → (ϕω, ψω, 0) in X as λ → 1,
the orbital instability of (eiωtϕω, ψω) follows from Lemma 10. ¤

4. Proof of Proposition 3

Let φ ∈ H1
rad(R3) be a unique positive radial solution of (9), and we

put

K̃ω(u, v) = ‖∇u‖2
2 + ‖u‖2

2 + ω‖∇v‖2
2 + ‖v‖2

2 − 3
∫

R3

|u|2vdx.
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Then, since ‖∇φ‖2
2 + ‖φ‖2

2 = 2‖φ‖4
4 and φ ∈ L∞(R3), we see that

K̃ω(
√

2φ, 2φ2) = 2‖∇φ‖2
2 + 2‖φ‖2

2 + 8ω‖φ∇φ‖2
2 − 8‖φ‖4

4

=−4‖φ‖4
4 + 8ω‖φ∇φ‖2

2 < 0

if 0 < ω < ω0, where ω0 = ‖φ‖4
4/(2‖φ∇φ‖2

2). Thus, by Lemmas 1 and 4, we
have ∫

R3

|ϕ̃ω|2ψ̃ωdx ≤ 4‖φ‖4
4, ω ∈ (0, ω0).

Since K̃ω(ϕ̃ω, ψ̃ω) = 0, we have

‖ϕ̃ω‖2
H1 + ω‖∇ψ̃ω‖2

2 + ‖ψ̃ω‖2
2 ≤ 12‖φ‖4

4, ω ∈ (0, ω0). (14)

By the first equation of (8) and by the Hölder and the Gagliardo-Nirenberg-
Sobolev inequalities, we have

‖ϕ̃ω‖H2 = ‖(1 − ∆)ϕ̃ω‖2 = 2‖ϕ̃ωψ̃ω‖2 ≤ 2‖ϕ̃ω‖6‖ψ̃ω‖3

≤ C‖∇ϕ̃ω‖2‖ψ̃ω‖1/2
2 ‖∇ψ̃ω‖1/2

2 . (15)

Moreover, by the second equation of (8), we have

‖∇ψ̃ω‖2 = ‖(1 − ω∆)−1∇|ϕ̃ω|2‖2 ≤ ‖∇|ϕ̃ω|2‖2

≤ 2‖ϕ̃ω‖∞‖∇ϕ̃ω‖2 ≤ C‖ϕ̃ω‖H2‖∇ϕ̃ω‖2. (16)

Therefore, by (14), (15) and (16), we have

ω‖∇ψ̃ω‖2
2 ≤ Cω‖∇ϕ̃ω‖4

2‖ψ̃ω‖2‖∇ψ̃ω‖2 ≤ Cω1/2, ω ∈ (0, ω0),

which implies limω→0 ω‖∇ψ̃ω‖2
2 = 0.

Finally, by the first equation of (8), we have

‖ϕ̃ω‖2
H1 = 2

∫
R3

|ϕ̃ω|2ψ̃ωdx ≤ 2‖ϕ̃ω‖2
4‖ψ̃ω‖2 ≤ C‖ϕ̃ω‖2

H1‖ψ̃ω‖2.

Since ϕ̃ω 6= 0, we have ‖ψ̃ω‖2 ≥ 1/C for ω > 0. This completes the proof of
Proposition 3. ¤
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