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Nonlinear scattering for a system of one dimensional

nonlinear Klein-Gordon equations
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Abstract. We consider a system of nonlinear Klein-Gordon equations in one space

dimension with quadratic nonlinearities

(∂2
t − ∂2

x + m2
j )uj = Nj(∂u),

j = 1, . . . , l. We show the existence of solutions in an analytic function space. When the

nonlinearity satisfies a strong null condition introduced by Georgiev we prove the global

existence and obtain the large time asymptotic behavior of small solutions.
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1. Introduction

We consider the Cauchy problem for the system of semi-linear Klein-
Gordon equations{

(∂2
t − ∂2

x + m2
j )uj = Nj(∂u), (t, x) ∈ R × R,

uj(0, x) =
◦
u

(1)

j (x), ∂tuj(0, x) =
◦
u

(2)

j (x), x ∈ R,
(1.1)

where j = 1, . . . , l, mj > 0, the partial derivative ∂ = (∂t, ∂x) and u =
(u1, . . . , ul). We assume that Nj(∂u) are quadratic nonlinearities. Our
purpose is to prove global existence of small solutions and to consider a
scattering problem for equation (1.1) under the strong null condition on the
nonlinearities Nj introduced by [6] which is written as

Nj(∂u) =
l∑

p,q=1

Ajpq

(
(∂tup)∂xuq − (∂xup)∂tuq

)
, (1.2)

where Ajpq ∈ C. Condition (1.2) implies an additional time decay of order
t−1 through the operator Z = x∂t + t∂x, since the following identity is true(

(∂tup)∂xuq − (∂xup)∂tuq

)
=

1
t

(
(∂tup)Zuq − (Zup)∂tuq

)
.
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However we encounter a derivative loss difficulty with respect to the oper-
ator Z. To overcome the derivative loss we use an analytic function space
involving the operator Z. The operator Z was used previously by Klainer-
man [12] to prove global existence theorem for the nonlinear Klein-Gordon
equations with quadratic nonlinearities in three space dimensions (see also
papers [1], [6], [7], [11], [15], [17]). Global existence of small solutions to
cubic nonlinear Klein-Gordon equations in one space dimension was studied
extensively. Non resonance cubic nonlinearities were studied in [11], [14] for
a single equation and in [17] for a system of equations with different masses.
In papers [4], [9], [18], the resonance cubic nonlinearities were also treated.
For the case of quadratic nonlinearities there are few results. In papers
[15], [3] an almost global existence of small solutions to a single semi-linear
Klein-Gordon equation was studied. In [4], the global existence of small
solutions was shown for some type of quadratic nonlinearities, by using the
reduction of the original equation through the hyperbolic coordinates and
the method of normal forms of [16]. By the method of normal forms the
equation with a quadratic nonlinearity can be translated to a cubic one, for
which to prove the global existence is more easy. However some suitable
conditions on quadratic nonlinearities are required for applying this tech-
nique. Using hyperbolic coordinates implies the requirement of a compact
support for the initial data. As far as we know there are no global results for
systems of nonlinear Klein-Gordon equations with quadratic nonlinearities
except of [5], where the authors generalized the method of paper [4] to a sys-
tem of two Klein-Gordon equations. It was shown in [5] a global existence
of small solutions under some mass conditions, a number of conditions for
nonlinearities and the compactness for the initial data. Unfortunately, there
were no any typical example of nonlinearity which satisfies an extensive list
of conditions in Theorem 1.1 from paper [5]. However our condition (1.2) on
the nonlinearities can not be compatible with that from [5] since our system
includes the case which can not be translated to the cubic nonlinearities by
the method of normal forms. On the other hand, we do not use here the
hyperbolic coordinates and the method of normal forms by [16], therefore
we do not need the compactness of the initial data and any mass condition.

In order to explain the analytic function space used in this paper we
now state the notations. Let Lp be the usual Lebesgue space with the norm
‖φ‖Lp = (

∫
R |φ(x)|pdx)1/p if 1 ≤ p < ∞ and ‖φ‖L∞ = supx∈R |φ(x)| if

p = ∞. Sobolev space is
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Hm
p =

{
φ ∈ Lp : ‖φ‖Hm

p
≡

m∑
j=0

‖∂j
xφ‖Lp < ∞

}
,

where m ∈ N, 1 ≤ p ≤ ∞. We also write Hm = Hm
2 for simplicity. We let

Q=(∂t, ∂x, Z), P=(x, ∂x, ∂t, Y, Z), Y=x∂x + t∂t, Z=x∂t + t∂x

and

Xn =
{

φ ∈ L2 : ‖φ‖Xn =
∑
|α|≤n

‖Qαφ‖L2 < ∞
}

, n ∈ N.

We use the same notations for vector-functions, for example we write ‖f‖Hm
p

=
∑l

j=1 ‖fj‖Hm
p

for a vector f = (f1, . . . , fl). Different positive constants
we denote by the same letter C. We define an analytic function space as
follows:

GA(A;X) =
{

f ∈ X; ‖f‖GA(A;X) =
∑
α≥0

Aα

α!
‖Aαf‖X < ∞

}
,

where A = (A1, . . . , AN ), Aj > 0, A = (A1, . . . , AN ), α! =
∏N

j=1 αj !,
|α| =

∑N
j=1 αj , α ≥ 0 means that αj ≥ 0 for 1 ≤ j ≤ N , and X is a Banach

space. It is easy to see that

GA1···AN (A1, A2, . . . , AN ;X)

= GA2···AN (A2, . . . , AN ;GA1(A1;X)).

Our basic analytic function space is Ga(∂t, ∂x, Z;L2), a = (a1, a2, a3). To
prove a-priori estimate of solutions in the neighborhood of t = 0 in the class
Ga(∂t, ∂x, Z;L2) we need to show for some small T

sup
t∈[0,T ]

‖u(t)‖Ga(∂t, ∂x, x∂t;L2) < ∞.

Since ∂t is equivalent to
√

m2
j − ∂2

x in the linear case, so this estimate is
naturally related with a-priori estimate

sup
t∈[0, T ]

‖u(t)‖Ga(x, ∂x, x∂x;L2) < ∞.

First we state the local existence result. Denote B = (x, ∂x, Y).
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Theorem 1.1 Assume that for some constant vector A = (A1, A2, A3)
with A1, A2 > 0, 0 < A3 < 1 the norms

‖◦
u

(1)

j ‖GA(x, ∂x, x∂x;H2) + ‖◦
u

(2)

j ‖GA(x, ∂x, x∂x;H1) < ∞.

Then for some T > 0 (which depends on the size of the initial data) there
exists a unique solution of (1.1) which satisfies the estimates

sup
0≤t≤T

(
‖u(t)‖GA(B;H2) + ‖∂tu(t)‖GA(B;H1)

)
< ∞.

Moreover for some constant vector a the solution satisfies the estimate

sup
0≤t≤T

‖u(t)‖Ga(P;H2) < ∞.

Remark 1.1 Typical example of the initial function is given by ε exp(−x2)
which decays exponentially at infinity and has an analytic continuation on
the strip and on the sector. Therefore exp(−x2) ∈ GA(x, ∂x, x∂x;H2).

Remark 1.2 We do not need the condition A3 < 1. However the result
is changed as ”there exists a unique solution of (1.1) and a vector B satisfy
the estimates

sup
0≤t≤T

(
‖u(t)‖GB(B;H2) + ‖∂tu(t)‖GB(B;H1)

)
< ∞,

where B3 < 1”. This result follows from the fact that if
∑

j(| sin θ|j/j!)
×‖xj∂j

xf‖L2 < ∞, then f has an analytic continuation on the sector {z; z =
x + iy, tan θ = y/x, x, y ∈ R}. If A3 ≥ 1, then we can take θ = π/2 and∑

j(A
j
3/j!)‖xj∂j

xf2‖L2 can not be estimated by
(∑

j(A
j
3/j!)‖xj∂j

xf‖H1

)2

when f 6= 0.

Remark 1.3 The first estimate of Theorem 1.1 is also valid for the case
of quasi-linear nonlinearities if nonlinear terms Nj(∂u) satisfy the condi-
tion of hyperbolicity. However it seems that the second estimate of The-
orem 1.1 is not valid for that case. The second estimate of Theorem 1.1
enables us to consider the problem in the time interval [T, ∞) and in the
class Gb(t)(P;H2), where b(t) = (b(t), b(t), b(t), b(t), b(t)) and the func-
tion b(t) = a(1+ t−δ) is a monotone decreasing function which compensates
the derivative loss of the nonlinearities.

We now state a global existence and asymptotics of solutions.
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Theorem 1.2 Assume that for some constant vector A = (A1, A2, A3)
with A1, A2 > 0, 0 < A3 < 1 the norms

‖◦
u

(1)

j ‖GA(x, ∂x, x∂x;H2) + ‖◦
u

(2)

j ‖GA(x, ∂x, x∂x;H1) < ε

with some small ε > 0. Furthermore suppose that the strong null condition
(1.2) is fulfilled. Then the Cauchy problem (1.1) has a unique global solution
u such that

uj ∈ C
(
[0, ∞);Ga(Q;X5)

)
and

‖u(t)‖Ga(∂x;L∞) ≤ C〈t〉−1/2

for all t ≥ 0, where a = (a, a, a), a > 0 is a small positive constant depend-
ing on A, ε. Furthermore there exists a unique final state u

+(1)
j , u

+(2)
j ∈

Ga(∂x;L2) satisfying∥∥∥∥uj(t)−
(
cos

(
t
√

m2
j − ∂2

x

)
u

+(1)
j +

sin
(
t
√

m2
j − ∂2

x

)√
m2

j − ∂2
x

u
+(2)
j

)∥∥∥∥
Ga(∂x;L2)

≤ Cε2〈t〉−1/2

for all t ≥ 0, 1 ≤ j ≤ l.

The rest of the paper is organized as follows. In Section 2 we give some
preliminary estimates of the solutions. Section 3 is devoted to the proof of
the local existence Theorem 1.1. We prove Theorem 1.2 in Section 4.

2. Lemmas

We denote α! =
∏N

j=1 αj ! and(
α

β

)
=

α!
(α − β)!β!

for 0 ≤ β ≤ α. By Lemma 2.8 from paper [2] we have the estimate(
l

k

)(
m

j

)
≤

(
l + m

k + j

)
(2.1)
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for all 0 ≤ k ≤ l and 0 ≤ j ≤ m. We next state the commutator relation
between the operators ∂t, ∂x, Y = x∂x + t∂t and Z = x∂t + t∂x. We denote
∂p = ∂x when p is an even and ∂p = ∂t when p is an odd.

Lemma 2.1 The identities are true

∂pZ l =
l∑

k=0

(
l

k

)
Zk∂p+l−k, Z l∂p =

l∑
k=0

(
l

k

)
(−1)k∂p+l−kZk,

∂pY l =
l∑

k=0

(
l

k

)
Yk∂p, Y l∂p =

l∑
k=0

(
l

k

)
(−1)k∂pYk,

[∂l
p, Z] = l∂l−1

p ∂p+1, [∂l
p, Y] = l∂l

p.

Proof. We prove the first identity by induction. When l = 1 we find ∂pZ =
Z∂p +∂p+1 and ∂pY = Y∂p +∂p so the identities are valid. We suppose that
the first identity is true for some l ≥ 1, then we have

∂pZ l+1 = (∂pZ)Z l = Z∂pZ l + ∂p+1Z l

=
l∑

k=0

(
l

k

)
Zk+1∂p+l−k +

l∑
k=0

(
l

k

)
Zk∂p+1+l−k

= Z l+1∂p + ∂p+1+l +
l∑

k=1

((
l

k − 1

)
+

(
l

k

))
Zk∂p+1+l−k

=
l+1∑
k=0

(
l + 1

k

)
Zk∂p+l+1−k.

Thus by induction the first identity is fulfilled for all l ≥ 1. The other
identities are considered in the same way. Lemma 2.1 is proved. ¤

In the following lemma we prove equivalence of the norms of the analytic
functional spaces involving the operator P = (x, ∂x, ∂t, Y, Z).

Lemma 2.2 The following inequalities are true

1
4e|A| ‖Pφ‖GA(P;X) ≤

∑
|β|=1

∑
α≥0

Aα

α!
‖Pβ+αφ‖X ≤ 4e|A|‖Pφ‖GA(P;X)

and

‖φ‖GA(P;GA(P;X)) ≤ ‖φ‖GB(P;X)
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with B = (1 + 4e|A|)A.

Proof. By Lemma 2.1 we have

‖∂pφ‖GA2 (Z;Y) =
∞∑
l=0

Al
2

l!
‖Z l∂pφ‖Y

≤
∞∑
l=0

Al
2

l!

l∑
k=0

(
l

k

)
‖∂p+1−kZkφ‖Y

=
∞∑

k=0

Ak
2

k!
‖∂p+1−kZkφ‖Y

∞∑
l=k

Al−k
2

(l − k)!

≤ eA2
∑
|β|=1

∞∑
k=0

Ak
2

k!
‖∂βZkφ‖Y. (2.2)

We now take Y = GA1(Y;X) and again apply Lemma 2.1 to get

‖∂pZkφ‖Y =
∞∑
l=0

Al
4

l!
‖Y l∂pZkφ‖X

≤
∞∑
l=0

Al
4

l!

l∑
j=0

(
l

j

)
‖∂pYjZkφ‖X ≤ eA4

∑
|β|=1

∞∑
j=0

Aj
4

j!
‖∂βYjZkφ‖X.(2.3)

Substitution of (2.3) into (2.2) yields

‖∂pφ‖GA4,A5 (Y,Z;X) = ‖∂pφ‖GA5 (Z;GA4 (Y;X))

≤ eA5
∑

p=1,2

∞∑
k=0

Ak
5

k!
‖∂pZkφ‖GA4(Y;X)

≤ eA4+A5
∑
|β|=1

∞∑
j=0

∞∑
k=0

Aj
4A

k
5

j!k!
‖∂βYjZkφ‖X.

Since [Z, Y] = 0 and [∂p, ∂] = 0 we find

‖∂pφ‖GA(P;X) =
∑
α≥0

Aα

α!
‖xα1∂α2

x ∂α3
t Yα4Zα5∂pφ‖X

≤ eA1+A4+A5
∑
|β|=1

∞∑
α≥0

Aα

α!
‖∂pPαφ‖X.
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In the same way as above via Lemma 2.1 we obtain

‖Zφ‖GA3 (∂x;Y) =
∞∑
l=0

Al
3

l!
‖∂l

xZφ‖Y

≤
∞∑
l=0

Al
3

l!
‖Z∂l

xφ‖Y +
∞∑
l=1

Al
3

(l − 1)!
‖∂t∂

l−1
x φ‖Y

≤ eA3
∑
|β|=1

∞∑
l=0

Al
3

l!
‖(Z, ∂t)β∂l

xφ‖Y.

We now take Y = GA2(∂t;X) and again use Lemma 2.1 to have

‖Z∂l
xφ‖Y =

∞∑
k=0

Ak
2

k!
‖∂k

t Z∂l
xφ‖X

≤
∞∑

k=0

Ak
2

k!
‖Z∂k

t ∂l
xφ‖X +

∞∑
k=1

Ak
2

(k − 1)!
‖∂x∂k−1

t ∂l
xφ‖X

≤ eA2
∑
|β|=1

∞∑
k=0

Ak
2

k!
‖(Z, ∂x)β∂k

t ∂l
xφ‖X.

Since [Z, Y] = 0, we find

‖Zφ‖GA(P;X) = ‖Zφ‖GA2,A3 (∂t,∂x;GA1,A2 (Y,Z;X))

≤eA2

∞∑
l=0

Al
3

l!
‖(∂t,Z)∂l

xφ‖GA3 (∂t;GA4,A5 (Y,Z;X))

≤eA2+A3

∞∑
j=0

∞∑
k=0

Aj
2A

k
3

j!k!
‖(∂t, ∂x, Z)∂k

t ∂l
xφ‖GA4,A5 (Y,Z;X)

≤e|A|
∑
|β|=1

∞∑
α≥0

Aα

α!
‖Pα+βφ‖X.

In the same way we have

‖Yφ‖GA(P;X) ≤ e|A|
∑
|β|=1

∞∑
α≥0

Aα

α!
‖Pα+βφ‖X.

Thus we get the first inequality of the lemma. The second inequality is
considered in the same manner.
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By the first estimate of the lemma we have∑
|β|=1

‖Pβφ‖GA(P;X) ≤
∑
|β|=1

(4e|A|)|β|
∑
α≥0

Aα

α!
‖Pβ+αφ‖X

hence

‖φ‖GA(P;GA(P;X)) =
∞∑

β≥0

Aβ

β!
‖Pβφ‖GA(P;X)

≤
∞∑

β≥0

(4e|A|)|β|
∑
α≥0

Aα+β

α!β!
‖Pα+βφ‖X

=
∑
α≥0

Aα

α!
‖Pαφ‖X

α∑
β≥0

(
α

β

)
(4e|A|)|β|

=
∑
α≥0

((1 + 4e|A|)A)α

α!
‖Pαφ‖X = ‖φ‖GB(P;X).

Lemma 2.2 is proved. ¤

By Lemma 2.2 we can see that the ordering of the operators x, ∂x, ∂t, Y,
Z in the analytic spaces GA(P;X) is not so important, i.e. the analytic
spaces GA(Y, Z, ∂t, ∂x, x;X) and GA(x, ∂x, ∂t, Y, Z;X) are equivalent.
Also by the definition of the analytic spaces we see that

‖φ‖GA(A+B;X) ≤ ‖φ‖GA,A(A,B;X)

if [A, B] = 0.
By Lemma 2.2 of [8] we have the following result. Let

Xn =
{

φ ∈ L2 : ‖φ‖Xn =
∑
|α|≤n

‖Qαφ‖L2 < ∞
}

, n ∈ N.

Lemma 2.3 The estimate is true

‖fg‖GA(P;Xn) ≤ C‖f‖GA(P;Xn)‖g‖GA(P;Xn)

for n ≥ 2.

We now state the time decay estimates of smooth and decaying func-
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tions through the operator Jm =
√

m2 − ∂2
xUm(t)xUm(−t), where

Um(t) =

(
e−it

√
m2−∂2

x 0

0 eit
√

m2−∂2
x

)
.

Lemma 2.4 Assume that m > 0. Then the estimate

‖φ‖Lp ≤ C〈t〉−(1/2)(1−2/p)
1∑

l=0

‖J l
mφ‖(1/2)(1−2/p)

Hν−1 ‖φ‖1−(1/2)(1−2/p)
Hν

is valid for all t > 0,for 2 ≤ p ≤ ∞, where ν = (3/2)(1 − 2/p).

Proof. For the convenience of the reader we give the proof for p = ∞
according to Lemma 2.1 of [10]. For general p, see [10]. We have the L∞ −
L1 time decay estimate for the free evolution group Um(t) (see Lemma 1 in
[13])

‖φ‖L∞ = ‖Um(t)Um(−t)φ‖L∞ ≤ Ct−1/2‖〈i∂x〉3/2Um(−t)φ‖L1

for all t > 0. Taking ρ = ‖xφ‖L2‖φ‖−1
L2 we obtain by the Hölder inequality

‖φ‖L1 ≤ C‖(ρ + |x|)−1‖L2‖(ρ + |x|)φ‖L2

≤ Cρ−1/2‖|x|φ‖L2 + Cρ1/2‖φ‖L2 ≤ C‖|x|φ‖1/2
L2 ‖φ‖

1/2
L2

From these estimates

‖φ‖L∞ ≤Ct−1/2‖〈i∂x〉3/2Um(−t)φ‖1/2
L2

×‖|x|〈i∂x〉3/2Um(−t)φ‖1/2
L2 . (2.4)

Since x〈i∂x〉α = F−1(i∂ξ〈ξ〉α) = 〈i∂x〉αx + α〈i∂x〉α−2∂x, we find by a direct
computation Um(t)x〈i∂x〉αUm(−t)φ = α〈i∂x〉α−2∂xφ + 〈i∇〉α−1Jmφ. Hence

‖x〈i∂x〉αUm(−t)φ‖L2 ≤ C‖φ‖Hα−1 + C‖Jmφ‖Hα−1 . (2.5)

We apply (2.5) to (2.4) to obtain the result of the lemma. ¤

3. Proof of Theorem 1.1

Let us consider the linearized version of equation (1.1){
(2 + m2

j )uj = Nj(∂v), (t, x) ∈ R × R,

uj(0, x) =
◦
u

(1)

j (x), ∂tuj(0, x) =
◦
u

(2)

j (x), x ∈ R,
(3.1)
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for 0 ≤ j ≤ l, where v = (v1, . . . , vl) is given, 2 = ∂2
t − ∂2

x. Suppose that

sup
0≤t≤T

(‖∂tv(t)‖GA(B;H1) + ‖v(t)‖GA(B;H2)) ≤ ρ,

where B = (x, ∂x, Y), A = (A1, A2, A3) with A1, A2 > 0, 0 < A3 < 1 and
prove that

sup
0≤t≤T

(‖∂tu(t)‖GA(B;H1) + ‖u(t)‖GA(B;H2)) ≤ ρ

for small time T > 0.
We apply the operator B = (x, ∂x, Y) to equation (3.1). By the com-

mutator relations [2, xn] = (n(n−1)xn−2−2n∂xxn−1) and [2, Y] = 22 we
get denoting β = (0, 0, β3), γ = (1, 0, 0)

2Bα =
α3∑

β3=0

(
α3

β3

)
2β3Bα−β2 + α1(α1 − 1)Bα−2γ − 2α1∂xBα−γ .

Hence

(2 + m2
j )Bαuj =

α3∑
β3=0

(
α3

β3

)
2β3Bα−βNj(∂v)

− m2
j

α3−1∑
β3=0

(
α3

β3

)
2β3Bα−βuj

+ α1(α1 − 1)Bα−2γuj − 2α1∂xBα−γuj .

Multiplying both sides of the above equation by (1+∂x)2∂tBαuj , integrating
the result with respect to space, we obtain

d

dt
(‖∂tBαuj(t)‖H1 + ‖∂xBαuj(t)‖H1 + mj‖Bαuj(t)‖H1)

≤ 2
α3∑

β3=0

(
α3

β3

)
2β3(‖Bα−βNj(∂v)‖H1 + mj‖Bα−βuj‖H1)

+ 2α1(α1 − 1)‖Bα−2γuj‖H1 + 4α1‖∂xBα−γuj‖H1 .

Multiplying this inequality by Aα/α! and taking a sum over α ≥ 0 we get

d

dt

∑
α≥0

Aα

α!
(‖∂tBαuj(t)‖H1 + ‖∂xBαuj(t)‖H1 + mj‖Bαuj(t)‖H1)
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≤ 2
∑
α≥0

Aα−β

(α − β)!

α3∑
β3=0

(2A)β

β!
(‖Bα−βNj(∂v)‖H1 + mj‖Bα−βuj‖H1)

+ 2A2
1

∑
α≥0

Aα−2γ

(α − 2γ)!
‖Bα−2γuj‖H1

+ 4A1

∑
α≥0

Aα−γ

(α − γ)!
‖∂xBα−γuj‖H1 .

By Lemma 2.2 the norm∑
α≥0

Aα

α!
(‖∂tBαuj(t)‖H1 + ‖∂xBαuj(t)‖H1)

is equivalent to the norm ‖∂u(t)‖GA(B;H1). Therefore we have

‖∂uj(t)‖GA(B;H1) + mj‖uj(t)‖GA(B;H1)

≤ C‖◦
u

(1)

j ‖GA(B;H2) + C‖◦
u

(2)

j ‖GA(B;H1)

+ C

∫ t

0
(‖Nj(∂v)‖GA(B;H1) + ‖u(τ)‖GA(B;H1)

+ ‖∂xu(τ)‖GA(B;H1))dτ

We now use Lemma 2.3 to estimate the nonlinearity∫ t

0
‖Nj(∂v)‖GA(B;H1)dτ

≤ C

∫ t

0
(‖∂tv(τ)‖2

GA(B;H1) + ‖v(τ)‖2
GA(B;H2))dτ.

Therefore we get

‖∂uj(t)‖GA(B;H1) + mj‖uj(t)‖GA(B;H2)

≤ C‖◦
u

(1)

j ‖GA(B;H2) + C‖◦
u

(2)

j ‖GA(B;H1)

+ C

∫ t

0
‖u(τ)‖GA(B;H2)dτ + Cρ2T

≤ ρ

4
+ CT sup

t∈[0, T ]
‖u(t)‖GA(B;H2) + Cρ2T,
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provided that C‖◦
u

(1)

j ‖GA(B;H2) + C‖◦
u

(2)

j ‖GA(B;H1) ≤ ρ/4 and

sup
0≤t≤T

(‖∂tv(τ)‖GA(B;H1) + ‖v(τ)‖GA(B;H2)) ≤ ρ.

Therefore for some time T such that {1/(1−CT )}(1/4+ CρT ) < 1 we find

sup
0≤t≤T

(‖∂tu(t)‖GA(B;H1) + ‖u(t)‖GA(B;H2)) ≤ ρ. (3.2)

Therefore the mapping M defined by u = M(v) transforms

XT =
{
u ∈ C([0, T ];L2);

sup
0≤t≤T

(‖∂tu(t)‖GA(B;H1) + ‖u(t)‖GA(B;H2)) < ∞
}

into itself if T > 0 is sufficiently small. In the same way we can prove that

sup
0≤t≤T

(‖∂t(M(v1)−M(v2))‖GA(B;H1)+‖M(v1)−M(v2)‖GA(B;H2))

≤ 1
2

sup
0≤t≤T

(‖∂t(v1(t)−v2(t))‖GA(B;H1) +‖v1(t)−v2(t)‖GA(B;H2)).

Therefore M is a contraction mapping and we have the first result of The-
orem 1.1.

Let us prove the following estimate

‖Bα∂k
t u(t)‖H1 ≤ ρA−k−|α|(|α| + k)! (3.3)

for all α ≥ 0 and k ≥ 0. For k = 0, 1 estimate (3.3) follows from (3.2) and
Lemma 2.2. By equation (3.1) we have

∂k+1
t uj = ∂k−1

t ∂2
xuj + (∂k−1

t Nj(∂v) − m2
j∂

k−1
t uj).

By induction we assume that (3.3) holds for some k, then

‖Bα∂k+1
t u(t)‖H1 ≤‖Bα∂k−1

t ∂2
xu‖H1 + C‖Bα∂k−1

t uj‖H1

+ ‖Bα∂k−1
t Nj(∂v)‖H1

≤CρA−1−k−|α|(|α| + k + 1)!.

Therefore (3.3) is true for all k ≥ 0 and α ≥ 0. Then since (|α|+k)!/(α!k!) ≤
4|α|+k

‖u‖GB(∂t,B;H1) =
∞∑

k=0

∑
α≥0

Bα

α!
Bk

k!
‖Bα∂k

t u‖H1
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≤ Cρ

∞∑
k=0

∑
α≥0

B|α|+k

α!k!
A−k−|α|(|α| + k)!

≤ Cρ

∞∑
k=0

∑
α≥0

(4B

A

)|α|+k
≤ Cρ

if B < A/4.
In the same manner we prove the estimate

‖BαZku(t)‖H1 ≤ ρA−k−|α|(|α| + k)!. (3.4)

For k = 0, 1 estimate (3.4) follows from (3.2) and Lemma 2.2. Applying
the identity Z2 = Y2 + (x2 − t2)2 we find

Z2uj = Y2uj + (x2 − t2)(Nj(∂v) − m2
juj).

Therefore we have

Zk+1uj = Zk−1Y2uj − (t2 − x2)(Zk−1Nj(∂v) − m2
jZk−1uj)

for k ≥ 1. Also we have x∂t = Z − t∂x and x∂x = Y − t∂t

x2Nj(∂u) =
l∑

p,q=1

Ajpq((Zup)Yuq − (Zuq)Yup) − t2Nj(∂u)

− t
l∑

p,q=1

Ajpq((Zup)∂tuq − (Zuq)∂tup)

− t
l∑

p,q=1

Ajpq((∂xup)Yuq − (∂xuq)Yup).

By induction we assume that (3.4) holds for some k, then

‖BαZk+1u‖H1 ≤‖BαY2Zk−1u‖H1 + ‖Bα(t2 − x2)Zk−1u‖H1

+ ‖Bα(t2 − x2)Zk−1N (∂v)‖H1

≤CρA−1−k−|α|(|α| + k + 1)!.

Therefore (3.4) is true for all k ≥ 0 and α ≥ 0. As above since (|α| +
k)!/α!k! ≤ 4|α|+k we find

‖u‖GB(Z,B;H1) =
∞∑

k=0

∑
α≥0

Bα

α!
Bk

k!
‖BαZku‖H1
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≤ Cρ

∞∑
k=0

∑
α≥0

B|α|+k

α!k!
A−k−|α|(|α| + k)!

≤ Cρ

∞∑
k=0

∑
α≥0

(4B

A

)|α|+k
≤ Cρ

if B < A/4. From which it follows that there exists a constant vector a
such that

‖u(t)‖Ga(x, ∂x, ∂t,Y,Z;H2) ≤ Cρ.

Theorem 1.1 is proved. ¤

4. Proof of Theorem 1.2

As stated in the introduction we have

Nj(∂u) =
l∑

p,q=1

Ajpq((∂tup)∂xuq − (∂xup)∂tuq)

=
1
t

l∑
p,q=1

Ajpq((∂tup)Zuq − (Zup)∂tuq).

Denote 〈i∂x〉mj =
√

m2
j − ∂2

x, mj > 0. We translate the original equation
to a system of evolution equations{

Lmjwj = 〈i∂x〉−1
mj

Fj(∂w), (t, x) ∈ [T, ∞) × R,

wj(t, x) =
◦
wj , x ∈ R,

(4.1)

where the vector-functions

wj =
(

w
(1)
j

w
(2)
j

)
≡ 1

2

(
uj + i〈i∂x〉−1

mj
∂tuj

uj − i〈i∂x〉−1
mj∂tuj

)
,

◦
wj =

( ◦
w

(1)

j

◦
w

(2)

j

)
≡ 1

2

(◦
u

(1)

j + i〈i∂x〉−1
mj

◦
u

(2)

j

◦
u

(1)

j − i〈i∂x〉−1
mj

◦
u

(2)

j

)
,

Fj(∂w) =
(

iNj(∂(w(1) + w(2)))
−iNj(∂(w(1) + w(2)))

)
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and the linear operator

Lm =
(

∂t + i〈i∂x〉m 0
0 ∂t − i〈i∂x〉m

)
.

We use the free Klein-Gordon evolution group

Um(t) =
(

e−it〈i∂x〉m 0
0 eit〈i∂x〉m

)
introduced in Lemma 2.4. Note that the operator

Jm = 〈i∂x〉mUm(t)xUm(−t)

= 〈i∂x〉m
(

x + t〈i∂x〉−1
m ∂x 0

0 x − t〈i∂x〉−1
m ∂x

)
=

(
x〈i∂x〉m − i〈i∂x〉−1

m ∂x + it∂x 0
0 x〈i∂x〉m − i〈i∂x〉−1

m ∂x − it∂x

)
(4.2)

is useful for obtaining the time decay estimates of solutions as stated in
Lemma 2.4, where we applied the commutator relations

[x, 〈i∂x〉λm] = F−1[i∂ξ, 〈ξ〉λm] = λ〈i∂x〉λ−2
m ∂x. (4.3)

By a direct calculation we see that [Lm, Jm] = 0. However the operator Jm

does not act as the first order differential operator on the power nonlinearity.
Therefore we use the first order differential operator

ZE =
(
Z 0
0 Z

)
which is related to Jm by

ZE = Lmx − i

(
1 0
0 −1

)
Jm (4.4)

and it almost commutes with Lm

[Lm, ZE] = E∂x − i

(
1 0
0 −1

)
[x, 〈i∂x〉m]∂t (4.5)

=−i

(
1 0
0 −1

)
〈i∂x〉−1

m ∂xLm.
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Now we construct the solution for all t ≥ T . Denote Q = (∂t, ∂x, Z). Since
[∂2

t − ∂2
x + m2

j , Q] = 0, applying the operator Qα to equation (1.1) we get

(∂2
t − ∂2

x + m2
j )Qαuj = QαNj(∂u), (4.6)

where

QαNj(∂u) =
1
t

l∑
p,q=1

Ajpq

∑
0≤β≤α

(
β

α

)
×((Qα−β∂tup)QβZuq − (Qα−βZup)Qβ∂tuq).

Therefore we have
((∂t + i〈i∂x〉mj )Qαw

(1)
j

(∂t − i〈i∂x〉mj )Qαw
(2)
j

)
= 〈i∂x〉−1

mj
QαFj(∂w),

(t, x) ∈ [T, ∞) × R,

Qαwj(t, x) = Qα ◦
wj(x), x ∈ R.

(4.7)

Note that by Theorem 1.1, we may assume that

sup
t∈[0, T ]

‖w(t)‖Gb(t)(Q;X5)

≤ C(t)(‖◦
u

(1)

j ‖GA1A2A3 (x,∂x,x∂x;H2) + ‖◦
u

(2)

j ‖GA1A2A3 (x,∂x,x∂x;H1))

≤ Cε,

where b(t) = (b(t), b(t), b(t)) and b(t) = a(1 + t−δ) for some small a. We
consider now problem (4.7) with the nonlinearities replaced by
〈i∂x〉−1

mj
QαFj(∂v), where v is in the space

X =
{

v; sup
t∈[T,∞)

‖v(t)‖Gb(t)(Q;X5)

+ aδ

∫ ∞

T
t−1−δ‖Qv(t)‖Gb(t)(Q;X5)dt ≤ 2Cε

}
.

We multiply both sides of equation (4.7) by the vector

b2|α|(t)(α!)−2

(Qαw
(1)
j

Qαw
(2)
j

)
.
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Then integrating in space and taking the real part of the result, we obtain
for all |α| ≥ 1

d

dt

1
α!

b|α|(t)‖Qαwj(t)‖L2 −
|α|
α!

b|α|−1(t)b′(t)‖Qαwj(t)‖L2

=
α!

2b|α|(t)‖Qαwj(t)‖L2

× Re
( 1

α!
b|α|(t)〈i∂x〉−1

mj
QαFj(∂v),

1
α!

b|α|(t)Qαwj

)
.

Hence using the fact that

d

dt
‖wj(t)‖L2 ≤ 1

2
‖Fj(∂v)‖L2

and using the norm

‖w‖Gb(t)(Q;X5) =
l∑

j=1

∑
α≥0

1
α!

b|α|(t)‖Qαwj(t)‖X5 ,

we get

d

dt
‖w‖Gb(t)(Q;X5) + aδt−1−δ

∑
|β|=1

‖Qβw‖Gb(t)(Q;X5)

≤ C‖〈i∂x〉−1
mj

Fj(∂v)‖Gb(t)(Q;X5).

Applying Lemma 2.3, time decay estimate of Lemma 2.4 and (4.4) we get

‖〈i∂x〉−1
mj

F (∂v)‖Gb(t)(Q;X5)

≤ Ct−3/2(‖Qv‖Gb(t)(Q;X5) + ‖v‖Gb(t)(Q;X5))

×
( ∞∑
|α|=0

1
α!

b|α|(t)
∑
|β|≤4

‖JmjQα+βv‖L2 + ‖v‖Gb(t)(Q;X4)

)
≤ Ct−3/2(‖Qv‖Gb(t)(Q;X5) + ‖v‖Gb(t)(Q;X5))

×
( ∞∑
|α|=0

1
α!

b|α|(t)
∑
|β|≤4

‖xLmjQα+βv‖L2 + ‖v‖Gb(t)(Q;X5)

)
.

Since by (4.7) and the strong null condition we get
∞∑

|α|=0

1
α!

b|α|(t)
∑
|β|≤4

‖xLmjQα+βv‖L2 ≤ C‖v‖Gb(t)(Q;X5)
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from which it follows that
d

dt
‖w‖Gb(t)(Q;X5) + aδ(1 + t)−1−δ‖Qw‖Gb(t)(Q;X5)

≤ Ct−3/2(‖Qv‖Gb(t)(Q;X5) + ‖v‖Gb(t)(Q;X5))‖v(t)‖Gb(t)(Q;X5).

Thus we have the a-priori estimate

sup
t∈[T,∞)

‖w(t)‖Gb(t)(Q;X5) + aδ

∫ ∞

T
t−1−δ‖Qw(t)‖Gb(t)(Q;X5)dt

≤ 2Cε.

Therefore we find that the mapping M defined by w = M(v) transforms
X into itself. In the same way we can prove

sup
t∈[T,∞)

‖M(v1) −M(v2)‖Gb(t)(Q;X5)

+ aδ

∫ ∞

T
t−1−δ‖Q(M(v1)(t) −M(v2)(t))‖Gb(t)(Q;X5)dt

≤ 1
2

sup
t∈[T,∞)

‖v1(t) − v2(t)‖Gb(t)(Q;X5)

+
1
2
aδ

∫ ∞

T
t−1−δ‖Qv1(t) −Qv2(t)‖Gb(t)(Q;X5)dt,

which means that there exists a unique global solution

wj ∈ C([0, ∞);Ga(Q;X5))

to the Cauchy problem (4.7) satisfying the estimate

‖wj(t)‖Ga(∂x;L∞) ≤ C〈t〉−1/2

for all t ≥ 0, 1 ≤ j ≤ l.
We next consider the asymptotic behavior of solutions. By the integral

equation we have

‖Umj (−t)wj(t) − Umj (−s)wj(s)‖Ga(∂x;L2) ≤Cε2

∫ t

s
〈τ〉−1−1/2dτ

≤Cε2s−1/2 (4.8)

for all t > s ≥ 1 with some δ > 0. We let t → ∞, then there exist unique
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final states w+
j ∈ Ga(∂x;L2) such that

‖w+
j − Umj (−s)wj(s)‖Ga(∂x;L2) ≤ Cρ2s−1/2.

The asymptotic behavior stated in the theorem follows from the relations
uj = w

(1)
j + w

(2)
j , 〈i∂x〉−1

mj
∂tuj = w

(1)
j −w

(2)
j . Theorem 1.2 is proved. ¤
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