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Nonlinear scattering for a system of one dimensional
nonlinear Klein-Gordon equations
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Abstract. We consider a system of nonlinear Klein-Gordon equations in one space
dimension with quadratic nonlinearities

(07 — 02 + m3)u; = N;(du),

j =1, ..., 1. Weshow the existence of solutions in an analytic function space. When the
nonlinearity satisfies a strong null condition introduced by Georgiev we prove the global
existence and obtain the large time asymptotic behavior of small solutions.

Key words: systems of Klein Gordon equations, scattering problem, one dimension.

1. Introduction

We consider the Cauchy problem for the system of semi-linear Klein-
Gordon equations

(07 — 9% + mf)uj = Nj(0u), (t, x) € R x R, an
o(1 o(2 1.1
u; (0, x) = u§ )(51}), Ou;i(0, ) = u§ )(x), z €R,
where j =1, ..., [, mj > 0, the partial derivative 0 = (0, 0,) and u =
(w1, ..., w). We assume that N;(du) are quadratic nonlinearities. Our

purpose is to prove global existence of small solutions and to consider a
scattering problem for equation (1.1) under the strong null condition on the
nonlinearities N introduced by [6] which is written as

l
N;(Ou) = Z Ajpg ((Ortip)Ozug — (Duup)rug), (1.2)

p,q=1

where Aj,, € C. Condition (1.2) implies an additional time decay of order
t~1 through the operator Z = x0; + td,, since the following identity is true

((Orup)Ouq — (Opup)Opuq) = %((@up)Zuq — (Zup)Byug).
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However we encounter a derivative loss difficulty with respect to the oper-
ator Z. To overcome the derivative loss we use an analytic function space
involving the operator Z. The operator Z was used previously by Klainer-
man [12] to prove global existence theorem for the nonlinear Klein-Gordon
equations with quadratic nonlinearities in three space dimensions (see also
papers [1], [6], [7], [11], [15], [17]). Global existence of small solutions to
cubic nonlinear Klein-Gordon equations in one space dimension was studied
extensively. Non resonance cubic nonlinearities were studied in [11], [14] for
a single equation and in [17] for a system of equations with different masses.
In papers [4], [9], [18], the resonance cubic nonlinearities were also treated.
For the case of quadratic nonlinearities there are few results. In papers
[15], [3] an almost global existence of small solutions to a single semi-linear
Klein-Gordon equation was studied. In [4], the global existence of small
solutions was shown for some type of quadratic nonlinearities, by using the
reduction of the original equation through the hyperbolic coordinates and
the method of normal forms of [16]. By the method of normal forms the
equation with a quadratic nonlinearity can be translated to a cubic one, for
which to prove the global existence is more easy. However some suitable
conditions on quadratic nonlinearities are required for applying this tech-
nique. Using hyperbolic coordinates implies the requirement of a compact
support for the initial data. As far as we know there are no global results for
systems of nonlinear Klein-Gordon equations with quadratic nonlinearities
except of [5], where the authors generalized the method of paper [4] to a sys-
tem of two Klein-Gordon equations. It was shown in [5] a global existence
of small solutions under some mass conditions, a number of conditions for
nonlinearities and the compactness for the initial data. Unfortunately, there
were no any typical example of nonlinearity which satisfies an extensive list
of conditions in Theorem 1.1 from paper [5]. However our condition (1.2) on
the nonlinearities can not be compatible with that from [5] since our system
includes the case which can not be translated to the cubic nonlinearities by
the method of normal forms. On the other hand, we do not use here the
hyperbolic coordinates and the method of normal forms by [16], therefore
we do not need the compactness of the initial data and any mass condition.

In order to explain the analytic function space used in this paper we
now state the notations. Let LP be the usual Lebesgue space with the norm
I6llLr = (i l6(@)Pde) /7 i 1 < p < o0 and [é]lLe = sup,er |6(x)] if
p = 00. Sobolev space is
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Hy = {0 c 172 |ollup = Y 1996]s < o0},

j=0
where m € N, 1 < p < co. We also write H™ = HY" for simplicity. We let
Q=(04, 0z, 2), P=(x, 04,04, YV, Z), Y=20y + 10, Z=10;+1t0;
and
X, = {6 € L% Jolx, = Y 1Q0llr> < oo}, neN.
laj<n

We use the same notations for vector-functions, for example we write | f{|

= 25:1 ||f]||Hgl for a vector f = (f1, ..., f1). Different positive constants
we denote by the same letter C. We define an analytic function space as
follows:

Aa
GAAX) = {1 € Xi | fllaaiux) = D 1A% lx < oo,
a>0

where A = (A1, ..., Ay), 4; > 0, A = (A1, ..., Ay), of = [[IL; o5,
lo| = Z;V:1 aj, @ > 0 means that o; > 0 for 1 < j < N, and X is a Banach
space. It is easy to see that
GAlmAN(Ala A27 cee AN) X)
= GA27AN (A, ..., An; GM (AL X).
Our basic analytic function space is G®(9;, 0., Z;L?), a = (a1, az, a3). To

prove a-priori estimate of solutions in the neighborhood of t = 0 in the class
G2(0y, 0;, Z;L?) we need to show for some small T

sup [[u(t)l|lga(,, 8y, 20,;12) < 0©-
te[0,7

Since 0 is equivalent to ,/m? — 02 in the linear case, so this estimate is

naturally related with a-priori estimate

sup Hu(t)HGa(x,BI,xaz;Lz) < 00.
t€[0, T

First we state the local existence result. Denote B = (x, 0;, ).
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Theorem 1.1 Assume that for some constant vector A = (A, Ag, A3)
with A1, A3 > 0,0 < A3 < 1 the norms
0(1) 0(2)
Huj HGA(m,ax,acax;Hg) + Hu] HGA(:E,aw,:cam;Hl) < 0.
Then for some T > 0 (which depends on the size of the initial data) there
exists a unique solution of (1.1) which satisfies the estimates

sup ([[u(t)||gasmz) + 10wu(t)]lgapmar) < oo
0<t<T

Moreover for some constant vector a the solution satisfies the estimate

sup |[[u(t)||gap;mz) < oo
0<t<T
Remark 1.1 Typical example of the initial function is given by e exp(—2z?)
which decays exponentially at infinity and has an analytic continuation on
the strip and on the sector. Therefore exp(—2?) € G2 (z, 0., 20,; H?).

Remark 1.2 We do not need the condition A3 < 1. However the result
is changed as "there exists a unique solution of (1.1) and a vector B satisfy
the estimates

sup ([lu(t)|lgBsmz) + 10ut)lgssmr)) < oo,
0<t<T

where Bs < 17. This result follows from the fact that if 3, (|sin 67 /3"

x||278% f |2 < oo, then f has an analytic continuation on the sector {z; z =
x 41y, tanh = y/x, z, y € R}. If A3 > 1, then we can take § = 7/2 and
S5 (AL/N]|27 9 f? |z can not be estimated by (3;(A3/5N)]|2/0%f )’
when f # 0.

Remark 1.3 The first estimate of Theorem 1.1 is also valid for the case
of quasi-linear nonlinearities if nonlinear terms N;(Ou) satisfy the condi-
tion of hyperbolicity. However it seems that the second estimate of The-
orem 1.1 is not valid for that case. The second estimate of Theorem 1.1
enables us to consider the problem in the time interval [T, co) and in the
class GP®)(P; H?), where b(t) = (b(t), b(t), b(t), b(t), b(t)) and the func-
tion b(t) = a(1+4t~?) is a monotone decreasing function which compensates
the derivative loss of the nonlinearities.

We now state a global existence and asymptotics of solutions.
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Theorem 1.2 Assume that for some constant vector A = (A, Ag, A3)
with A1, A > 0,0 < A3 < 1 the norms

o(1) 0(2)
Huj HGA(:E,aw,zam;HQ) + Hu] HGA(;L’,ax,max;Hl) <eg

with some small € > 0. Furthermore suppose that the strong null condition
(1.2) is fulfilled. Then the Cauchy problem (1.1) has a unique global solution
u such that

uj € C([O, o0); G?*(Q; X5))
and
[u(t)l| e (aumeey < C(t) 12

for allt > 0, where a = (a, a, a), a > 0 is a small positive constant depend-
1), T@

, U

ing on A, €. Furthermore there exists a unique final state u j

J
G(0,; L?) satisfying

sin(ty/m? — 92
u;(t)— <Cos(t\/m? - 32)uf M+ s )u+(2)> Hca(a 12)

2 2 J
j_ax

forallt>0,1<j<I.

The rest of the paper is organized as follows. In Section 2 we give some
preliminary estimates of the solutions. Section 3 is devoted to the proof of
the local existence Theorem 1.1. We prove Theorem 1.2 in Section 4.

2. Lemmas

We denote o! = H;VZI a;! and

<§> " (o —a!m!m

for 0 < 8 < a. By Lemma 2.8 from paper [2] we have the estimate

() () =(55) "
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forall0 <k <l and 0 < j < m. We next state the commutator relation
between the operators 9y, 9, Y = 20, + t0; and Z = x0; + td,. We denote
0p = 0, when p is an even and 0, = 0; when p is an odd.

Lemma 2.1 The identities are true
l l

l l
9,2l = Z <k> 2k, 20, = Z (k) (=1 011 2",

k=0 k=0
l l
l l
o = 3 ()4 0= 32 (1) v
k=0 k=0

(0}, 2] =10, " Opta, [0h, V] =10

Proof. We prove the first identity by induction. When [ = 1 we find 0,2 =
Z0p+ O0pt1 and 0,) = Y0, + 0, so the identities are valid. We suppose that
the first identity is true for some [ > 1, then we have

2 = (8,2)2' = 20,2 + 0p11 2!

l l
l l
=2 <k> 200+ (k) ZX0p 1141k
k=0 k=0
: I l
= Zl+18p + 8p+1+l + Z ( (k . 1) + (k>)zkap+1+lk
k=1
+1
I+1
= Z < k >Zkap+l+1k.

k=0
Thus by induction the first identity is fulfilled for all [ > 1. The other
identities are considered in the same way. Lemma 2.1 is proved. O

In the following lemma we prove equivalence of the norms of the analytic
functional spaces involving the operator P = (x, 0, 0, V, Z).

Lemma 2.2 The following inequalities are true

1 A N
aPllaamx) < D2 D0 THlIPHdlx < 4 [Polgapix)
|B|=1a=>0

and

[¢lcar.aarx) < l9llaerx)
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with B = (1 + 4elAHA.
Proof. By Lemma 2.1 we have

Al
10p0llgaz(zy) = Z ZIIZZ Wy
=0

LY l I
<SS (k) 10pr 126l
=0 k=0

A’f o~ ALF

=k

Ak
e Z > )00z (22

|8]=1 k=0

We now take Y = G41(); X) and again apply Lemma 2.1 to get

10,2 slly =) IV 02" ¢l

=0
0 A l
SZNZ< )r\apyfz%uxw/*‘*i 2 j‘*naﬂwzwx (2:3)
1= 7=0 |B]=14=0 7"

Substitution of (2.3) into (2.2) yields

H8P¢HGA4 A5(Y,2;X) — Hapd)HGAE)(Z;GM(y;X))

Ak
<e Z Z Z H3 Zk¢||GA4 (V:X)

p=1,2 k=0
< et 30 S5 A gy k)
1! X
16]=1 j=0 k=0

Since [Z, Y] = 0 and [0, 0] = 0 we find

Aa (0% (63 (6% (63 (07
[0p0llgarpx) = ZJHUC L0520, Y22 Oyl x

a>0

o Aa
< et Z Z J’\appaﬁb“x-

B]=10a>0
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In the same way as above via Lemma 2.1 we obtain

o0

Al
||Z¢HGA3(8I;Y) = Z Tﬁ”aizd)”Y

=0

Z 320 ¢||Y+Z
S Z%WZ, 2 oLolly.

|8=1 1=0

H@t@l 'olly

We now take Y = G42(9;; X) and again use Lemma 2.1 to have

o Ak
||za;¢\|yzzk—fuafzai¢||x
k=0
<Z Hzat <z>||x+2 \a 1Ll x

Ak
<eM )" Z ]T!ZII(Z, 0:) 09l ¢lIx.

|5=1 k=0

Since [Z, V] = 0, we find

”ZQS”GA(P;X) = HZ¢||GA27A3(8t,8m;GA17A2(y,Z;X))

<et Z T’SH(at’ Z)aiquGA?’(@z;GA@As V,2;X))
=0
A2+A3 AJAI§ & Al
>y 28 10n 01, 2)0F0L0l G080 (9,220
Jj=0 k=0
<€‘A| Z Z ”fpoz—l—ﬁd)HX
|B|=1a>0 !

In the same way we have
1Yol garpx) < e Z Z ”730‘+/3¢HX
|8]=1 20 '

Thus we get the first inequality of the lemma. The second inequality is
considered in the same manner.
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By the first estimate of the lemma we have

Aa
S 1P 6lartpag < 3 (A3 0 potag)x

|B|=1 |Bl=1 a>0
hence
[9llcampaamx) = Z bl HP dllaarx)
ﬁ>0
< S S AT g
>0 a>0
A“ L (a
_ 2 pa AN B
=5 APl Y () e
a>0 £5>0
(1 +4ethay>
=> o 1PY¢llx = l|9llaBpx)-
a>0 ’
Lemma 2.2 is proved. (]

By Lemma 2.2 we can see that the ordering of the operators x, 9., 0, Y,
Z in the analytic spaces G*(P;X) is not so important, i.e. the analytic
spaces GA(Y, Z, 0y, 0y, 2;X) and GA(z, 0, 0, Y, Z;X) are equivalent.
Also by the definition of the analytic spaces we see that
9llga(arsx) < lollaaaanx)
if [A, B] = 0.
By Lemma 2.2 of [8] we have the following result. Let
X, = {6 € L% Jolx, = Y 1Q%llr> < oo}, neN.
lo<n

Lemma 2.3 The estimate is true

If9llgarpx,) < Clliflleapx)llearx,)
forn > 2.

We now state the time decay estimates of smooth and decaying func-
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tions through the operator J,, = /m? — 02U, (t)aly, (—t), where
—ity/m2—02
um(t) = (8 ; 02 2> :
0 elty/m —02

Lemma 2.4 Assume that m > 0. Then the estimate
lélle < Ct)~0/20-2/P ZM [ i

is valid for all t > 0,for 2 < p < oo, where v = (3/2)(1 —2/p).

Proof. For the convenience of the reader we give the proof for p = oo
according to Lemma 2.1 of [10]. For general p, see [10]. We have the L>° —
L! time decay estimate for the free evolution group U, (t) (see Lemma 1 in

[13])
9L = (U (D (=)0 l[Le < CEV2]|(i00)> U (—t) |11
for all t > 0. Taking p = ||x¢||r2 ||(1>H£2 we obtain by the Holder inequality

I8l < Cll(p+ ) L2l (p + |2]) |
< Cp~ |||zl L2 + Cp2|gllL> < Ol p]l 12 ol 1s

From these estimates
Il|ree < CE Y2 (i0,)> Uy (—t) |1
||| (102) U (—) B 15 (2.4)

Since z(i0;)* = F~1(i0¢(€)*) = (i0z)*x + a(i0y)*~20,, we find by a direct
computation Up, ()2 (i02) U (—t)p = a(i0y)* 20, + (iV)* L T, Hence

[12(i02) “Unm (=) P2 < C|[@lla—1 + Cl|Tmollga-1. (2.5)
We apply (2.5) to (2.4) to obtain the result of the lemma. O

3. Proof of Theorem 1.1
Let us consider the linearized version of equation (1.1)

{(D + m?)u] = N;(0v), (t, z) e R xR,

o(1) 0(2) (3.1)
uj(07 1:) = Uy (:E)v atuj(ov SL’) = Uy ($)7 r €R,
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for 0 < j <1, where v = (vy, ..., v;) is given, O = 9? — 92. Suppose that
S0P, (10w )l gasa) + o) leasm2) < P

where B = (z, 0., V), A = (A1, Ag, A3) with A;, A3 > 0,0 < A3 < 1 and
prove that

Oiltlp (lOwu(t)|aasmy + lu®)llaasmz) < p

for small time 7" > 0.

We apply the operator B = (z, d,, )) to equation (3.1). By the com-
2" = (n(n—1)2""2 - 2nd,z" ') and [0, V] = 20 we
53) (1a 07 0)

mutator relations [O,
get denoting 5 = (0,
a3

0,
Z ( >25380 A0+ ai(a; — 1)BY Y — 20,0,BY77.

Hence

+ ag(ag — 1)Ba*27uj — 20108 Tu

Multiplying both sides of the above equation by (1+40,)20;B%u;, integrating
the result with respect to space, we obtain

d QL Q (0%
@ 008y 1)l + 1190058 + s 1B 1) )
<9 Z ( )263 1B 0N (00) [ + my [ B )

+ 2a1(a1 — D[|B V|| + 4aq||0:BY V| g -

Multiplying this inequality by A%/a! and taking a sum over a > 0 we get

d

A° N . .
@Z o 0B () lar + 110:8%u; (8) |l + m1B%u; (t) [[12)

a>0
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AP & (2A)8 -
<23 AT S~ CAV g 9u)llgn + mj 1B Pl

AafZ'y
12425 2 1By
1 o;) (a0 — 29)! JIIH
Ao o
+44,) WII&CB g

a>0

By Lemma 2.2 the norm

AOC (6% (67
> — 1 U0eB%u; () llar + 11058 (t)]|12)
a>0

is equivalent to the norm [|0u(t)||ga (1) Therefore we have
[0u; ()l gasmry + millu ()] ga@an
< Ol N + Ol e
+0 [ N0 lansaey + Il loa s
+ 10zu(7) |l ga s ) dT

We now use Lemma 2.3 to estimate the nonlinearity
¢
| @0l waydr

< € [ (00 sgzn + 100 s
Therefore we get
190 (8) ety + sl () o
< I8y llgagsam + Cly Nl
+0 [ It lasaeydr + CFT

P
< THCT suwp lu(t)llauz) + Cp’T,
te[0, T]
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o(l o(2
provided that C’||u§ )||GA(B;H2) + C’||u§ )HGA(B;HI) < p/4 and

sup ([|0w(7)[lgammn) + [v(7T)llcamw?) < p-
0<t<T

Therefore for some time 7" such that {1/(1—CT)}(1/44 CpT) < 1 we find

sup ([|0wu(t)l|gapm + [u()lgaBm2) < p- (3.2)
0<t<T

Therefore the mapping M defined by u = M(v) transforms

X = {u e C([0, T]; L?);

sup ([[0cu(t)llga ) + l[u(t)llgasmz) < oo}
0<t<T

into itself if T" > 0 is sufficiently small. In the same way we can prove that

sup ([|0(M(v1) = M(v2))llga@mn + [M(v1) = M(v2)llgasmz)

0<t<T

1
<5 sup ([|9:(v1(t) —va(t))lgasmr) +vi(t) —v2(t)llgasmz)-
0<t<T

Therefore M is a contraction mapping and we have the first result of The-
orem 1.1.
Let us prove the following estimate

1B*0fu(t) |l < pA™" 1 (|a] + k)! (3-3)
for all &« > 0 and k£ > 0. For k = 0,1 estimate (3.3) follows from (3.2) and
Lemma 2.2. By equation (3.1) we have

OF ;= 0y~ 02u;j + (9N (0v) — m3of ).
By induction we assume that (3.3) holds for some k, then

1BYOF  u(t) g < 180y OFullga + ClIB0F |

+ B0 TN (00) [l
< CpA~ 1Rl (o] + k + 1),

Therefore (3.3) is true for all £ > 0 and a > 0. Then since (|a|+k)!/(alk!) <
4lal+k

o0

B> B
lullge @, smy =YY JFHBQ&UHW
k=0a>0
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Blel+k

<Cpd Y. T A~F=lel (o] 4 k)

k=0 a>0

<oy Y ()M < e

k=0 a>0

if B< A/4.

In the same manner we prove the estimate
1B Z5u(t) g < pA™F 1 (Ja] + k). (3.4)

For k = 0, 1 estimate (3.4) follows from (3.2) and Lemma 2.2. Applying
the identity Z2? = Y2 + (22 — t2)0 we find

Z%uj = Y?u; + (2 — %) (N;(0v) — m?uj).

Therefore we have

ZkHuj = Zk_lyzuj —(t? - xQ)(Zk_lj\/j(av) - m?Zk_luj)
for £k > 1. Also we have z0; = Z — t0, and 20, = Y — to;

l
xzj\/j(au) = Z Ajpg((Zup)Yug — (Zug)Yup) — tQ/\/}' (Ou)

p,g=1

l
-t Z Ajpg((Zup)Orug — (Zug)Orup)

p,g=1

l
-t Z Ajpq(Ozup)Yug — (Ouq) Vup).

p,g=1

By induction we assume that (3.4) holds for some k, then

1B 25 g < B Y22l + (1B (2 — 2?) 24 |
+[1B(#? = 2*) ZF N (90) |
< CpA~tk=ld(a) 4 k4 1)1
Therefore (3.4) is true for all & > 0 and o > 0. As above since (|a| +
E)!/alk! < 4leltk wwe find

o0

B° B*
HUHGB(Z,B;Hl) = Z Z ?FHBQZ’CUHHI
k=0a>0 =
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[e’¢) B‘aH—k‘ ko]
< CPZZ T A (o) + k)!

k=0 a>0

< CPZZ(4B>Ial+k <cp

k=0 a>0

if B < A/4. From which it follows that there exists a constant vector a
such that

lu())llGa(z, 0,0, v, z:12) < Cp-
Theorem 1.1 is proved. ([l

4. Proof of Theorem 1.2

As stated in the introduction we have

l
Z ipa((Orup)Opuig — (Oyup)Opug)

g
1 l
ZZ g ((Orup) Zuq — (Zup)Orug).

Denote (i0z)m; = 1/m? — 02, mj > 0. We translate the original equation
to a system of evolution equations

Lo, wj = <i8x);éFj(0w), (t, x) € [T, o0) x R, (4.1)
w;j(t, x):ﬁ)j, x €R, .

where the vector-functions

( > 1 (uj + (i 8tuj>
w; = - ,
T 2 u] (102 )m; 8tu]
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and the linear operator

oo (Ot i{i0u)m 0
" 0 Oy — i(i0y)m)

We use the free Klein-Gordon evolution group

e—it(i81»>m 0
Un(t) = ( 0 eit@af)m)

introduced in Lemma 2.4. Note that the operator

TIm = (10 mumtxl/l( )

T+ 0
= (9z)m x—t(i@z)mlﬁx>
_ (x(i0p)m — (10, ) L0, + itd,
N 0 {10y Ym

0
— i(i0,) 10, —uea>
(4.2)

is useful for obtaining the time decay estimates of solutions as stated in

Lemma 2.4, where we applied the commutator relations

(2, (10:)5] = F ' [ide, (€3] = A(id,) 3720,

(4.3)

By a direct calculation we see that [L,,, Jn] = 0. However the operator J,,
does not act as the first order differential operator on the power nonlinearity.

Therefore we use the first order differential operator

Z 0
2B = <O Z)
which is related to J,, by

(1 0
ZE—me—z<0 _1>Jm

and it almost commutes with £,,

(Lo, ZE] = B0, — i <é _01> 2, (i02)ml0;
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Now we construct the solution for all ¢ > T'. Denote Q = (0, 05, Z). Since
[07 — 0% + m?, Q] = 0, applying the operator Q% to equation (1.1) we get

(67 — 02 + m2)Q%u; = QN (9u), (4.6)
where

QN (9u) = Z A 3 (i)

pq 1 0<B<a
X ((Qa_ﬁ&gup) QﬁZuq - (QO‘_BZUP) Qﬁatuq).
Therefore we have

<<at+z< 2)m,) Q% w

— {10, QO F (0w),
(0 — (102 )m;) Qw (2)>_<a>m‘7Q F;(0w)

(t, ) € [T, o0) x R,
Qw;(t, r) = Q%w;(x), z € R.

(4.7)

Note that by Theorem 1.1, we may assume that

sup Hw(t>”(}b(t)(Q;X5)
te[0, 77

o(1) o(2)
< O)([luy [lgarazas @0, wo,m2) + 145 lgara24s (4.0, 20,81))

< Ckg,

where b(t) = (b(t), b(t), b(t)) and b(t) = a(1 + t~%) for some small a. We
consider now problem (4.7) with the nonlinearities replaced by
<Z'6w>;n§- Q“F;(0v), where v is in the space

X =qv; sup |v(t)||lavwiox-
{ 20l @)

+ aa/ t—]_—(s”Q’U(t)HGb(t)(Q7X5)dt S 206}
T

We multiply both sides of equation (4.7) by the vector

1)

)

Qa
Qw

Ab/—\

200 (1) (o)~ (

<.
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Then integrating in space and taking the real part of the result, we obtain
for all o] > 1

d 1
dt o

\a\

U ON1Qw; ()2 — b O (D] Qw; ()] e

al

~ 2bl0l(4)[| Qo w; (1) 1.2
1 A =1 A 1 o
x Re(ab'“‘(t)@ax)miQ Fj(0v), ab' (t)Q “’J’)'

Hence using the fact that
4
dt

and using the norm

1
lw;(®)llLz < 5[1£5(0v) L2

l
lwllgvo oixs) = szb'a' NQ%w; ()%
i=1a>0

we get

d —1-6
ailvlaroexy +adt70 > Q%o o)
I81=1

< C|Ki0z) ) F3 (90)ll b (0x)-
Applying Lemma 2.3, time decay estimate of Lemma 2.4 and (4.4) we get

102}l P (00) gmio 0x,)
< Ot Qull g oixs) + 10l bio (0x,)

[e.9]

1. o
(30 2690 3 1, @ ol + lolloroesxs)

laj=0 |3]<4

< Ot Qull g oixs) + 10l bio (0x,)

=1, a
x (Z ) D L, QP + IlvHGb<t><Q;Xs>>'

laj=0 |3]<4

Since by (4.7) and the strong null condition we get

o0

S —blt) 3 ek, @l < Cllvllgo oy
laj=0 |B1<4
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from which it follows that

d _1—
@”wHGb(t)(Q;xs) +ad(1+1)7" 5||Qch;b(t)(g;x5)
< OF 2| Qg iy + ¥l o) 08 oo o0

Thus we have the a-priori estimate

sup ||w(t)HGb(t)(Q;X5) + aé/ tilitsHQw(t)HGb(t)(Q;Xs)dt
te[T, o) T
< 2Ce.

Therefore we find that the mapping M defined by w = M(v) transforms
X into itself. In the same way we can prove

sup || M(v1) — M(U2)”Gb(t)(g;x5)
te[T, 00)

+ad /T°° QM (v1) () — M(v2) (1)) lapo (@ixs)dt

1
< 3 Sup [v1(t) — v2(t) g (0:x5)
te[T, o0)

4300 [ TH101Qu(0) - Qut)laveax,
which means that there exists a unique global solution
w; € C([0, 00); G*(Q; X5))
to the Cauchy problem (4.7) satisfying the estimate
[w; ()| Ge om0y < C (1)

forallt>0,1<j<I.
We next consider the asymptotic behavior of solutions. By the integral
equation we have

¢
[Un; (—t)w; (1) — Unn; (—8)wj(s)]|Ga(a,12) < 052/ (7)" 171247

S

< Ce?s™1/? (4.8)

for all t > s > 1 with some 6 > 0. We let t — o0, then there exist unique
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final states wj+ € G%(0y; L?) such that
[w] = U, (—5)w;(s)llga(a, 2y < Cp*s 2.

The asymptotic behavior stated in the theorem follows from the relations

uj = wj(-l) + w](.2), (z’@@%@tuj = wj(.l) - wj(?). Theorem 1.2 is proved. O
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