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Abstract. We prove the existence of standing waves to the following family of nonlinear

Schödinger equations:

i~∂tψ = −~2∆ψ + V (x)ψ − ψ|ψ|p−2, (t, x) ∈ R × Rn

provided that ~ > 0 is small, 2 < p < 2n/(n − 2) when n ≥ 3, 2 < p < ∞ when n = 1, 2

and V (x) ∈ L∞(Rn) is assumed to have a sublevel with positive and finite measure.
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In this paper we study the existence of standing waves to the following
family of nonlinear Schrödinger equations:

i~∂tψ = −~2∆ψ + V (x)ψ − ψ|ψ|p−2, (t, x) ∈ R × Rn, n ≥ 1 (0.1)

where 2 < p < 2∗ ≡ 2n/(n − 2) for n ≥ 3, 2 < p < ∞ for n = 1, 2, ~ > 0 is
a constant sufficiently small and V : Rn → R is a measurable and bounded
function that satisfies some other assumptions that will be specified in the
sequel. In recent years, starting from the paper [11], a lot of attention
has been devoted to the study of dispersive properties of the Schrödinger
groups eit(−∆+V (x)) (and also to the corresponding Cauchy problem (0.1))
under very weak regularity assumptions on V (x). Those results have been
the main motivation to analyse in this article the question of existence
of standing waves to (0.1) for rough potentials V (x). Moreover we think
that the problem of the minimal regularity assumption to be required to
V (x), in order to guarantee the existence of standing waves for (0.1), is a
mathematical question that has its own interest.

Since now on we shall look for solutions ψ(t, x) to (0.1) of the form:

ψ(t, x) ≡ e−i(Et/~)u(x), where E ∈ R (0.2)

with finite energy, i.e.
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∫
Rn

(~2|∇u|2 + |V (x) − E||u|2)dx < ∞.

Notice that the function ψ(t, x) given in (0.2) satisfies (0.1) if and only
if u(x) solves the following elliptic equation:

−~2∆u + (V (x) − E)u = u|u|p−2, E ∈ R, x ∈ Rn. (0.3)

There exists an huge literature on the field and for this reason we cannot
be exhaustive in the bibliography, however we would like to mention some
papers connected with equation (0.3).

As far as we know the first result on the existence of solutions to (0.3)
is ascribed to Floer and Weinstein in [7], where (0.3) is studied in the case
n = 1, p = 3 and V (x) is assumed to satisfy a suitable hypothesis, known
in the literature as the (V )a condition.

After the seminal paper [7] many other contributions appeared in con-
nection with equation (0.3), whose solutions are constructed by using vari-
ous methods and by assuming different hypothesis on V (x). In [1] the exis-
tence of solutions to (0.3) is treated via a Lyapunov–Schmidt finite dimen-
sional reduction, under the assumption that the potential V (x) ∈ C2(Rn)
has a non–degenerate critical point. Let us mention [8] and [9] where the
existence of solutions to (0.3) is treated via the concentration–compactness
method and by assuming that the potential V (x) is asymptotically flat in
a suitable sense. In [12] the author proves the existence of standing waves
provided that V (x) satisfies the following condition:

V (x) ∈ C1(Rn) and inf
Rn

V (x) < lim inf
x→∞

V (x). (0.4)

Finally we quote [2] and [5] where the existence of solutions to (0.3)
is treated under suitable assumptions on the potential V (x). In fact the
class of potentials analysed in [2] and [5] is very much related with the
ones considered in this article. More precisely in [5] the authors prove
the existence of a nontrivial solution u ∈ H1

0 (Ω) to the following critical
nonlinear elliptic equation:

−∆u + b(x)u = u|u|2∗−2 in Ω (0.5)

where Ω ⊂ Rn is an open set, n ≥ 5, 2∗ = 2n/(n− 2) and b(x) is such that:

b(x) ∈ C1(Ω) ∩ Ln/2(Ω) and Ω− ≡ {x ∈ Ω | b(x) < 0} 6= ∅.

Let us recall that in [10] the equation (0.5) is studied without any continuity
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assumption on b(x).
In [2] it is studied the existence and multiplicity of solutions to the

following family of subcritical elliptic equations, that are strictly related
with (0.3):

−∆u + (λb(x) + 1)u = u|u|p−2 on Rn, (0.6)

for λ > 0 large and 1 < p < 2n/(n − 2). Moreover in [2] the following
assumptions are done on b(x):

b(x) ∈ C(Rn) and b(x) ≥ 0,

the interior part of the set {x ∈ Rn | b(x) = 0} is non-empty,
there is M0 > 0 such that {x ∈ Rn | b(x) < M0} has finite
measure.

The main novelty in our paper is that we prove the existence of solutions
to (0.3) provided that V (x) ∈ L∞(Rn) and V (x) has a sublevel with finite
and positive measure. Notice that comparing our hypothesis with the ones
in [2], [5] and [12], we assume neither the continuity of V (x) nor the existence
of a sublevel of V (x) with finite measure and nontrivial interior part.

Let us underline that our approach bases on the one developed in [4],
where (0.3) is studied on bounded domains and for critical nonlinearities,
i.e. p ≡ 2∗. Neverthless, as it will be clear in the sequel, some modifications
have to be done in order to show that the scheme developed in [4] still works
for the general class of potentials treated in this paper.

As far as we know the class of potentials studied in this article has not
been treated elsewhere.

In order to state more precisely our results let us fix some notations.

Notations
( i ) For every 2 < p < 2n/(n − 2) when n ≥ 3, and for every 2 < p < ∞

when n = 1, 2, we shall denote by Mp the following set:

Mp ≡
{

u ∈ W 1,2(Rn)
∣∣∣ ∫

Rn

|u|p dx = 1
}

; (0.7)

( ii ) for every measurable set A ⊂ Rn, we shall denote by meas(A) its
Lebesgue measure;

(iii) given b(x) ∈ L∞(Rn) we shall denote by inf − essb and sup − essb the
essential infimum and the essential supremum of b(x).

Next we present the basic theorem of the paper. In fact it will allow us
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to prove existence of solutions to (0.3) when p is subcritical under suitable
assumptions on V (x). Let us underline that in next theorem in order to
simplify the notations we shall denote by a(x) the potential V (x)−E that
appears in (0.3). In fact in Theorem 0.2 we shall go back to the original
potential V (x) that appears in (0.1) and (0.3).

Theorem 0.1 Assume that a(x) : Rn → R is a measurable function that
satisfies the following conditions:
(0.8) there exist m, M > 0 such that m ≤ a(x) ≤ M ∀x ∈ Rn.
(0.9) there exists m0 > 0 such that

0 < meas{x ∈ Rn | a(x) < m0} < ∞.

Then then there exists a minimizer for

I~,a,p ≡ inf
u∈Mp

∫
Rn

(~2|∇u|2 + a(x)|u|2)dx, (0.10)

provided that 2 < p < 2n/(n − 2) when n ≥ 3, 2 < p < ∞ when n = 1, 2
and 0 < ~ < ~0 where ~0 = ~0(a(x), p) > 0 is a small number.
In particular there exists a nontrivial solution to

−~2∆u + a(x)u = u|u|p−2, u ∈ W 1,2(Rn) (0.11)

provided that ~ > 0 is small enough.

Remark 0.1 Let us emphasize that the homogeneity of the pure power
nonlinearity f(u) ≡ u|u|p−2 appearing in r.h.s. of (0.11), plays a crucial
role in order to deduce the existence of a non trivial solution to (0.11)
once the existence of a minimizer to (0.10) is proved. However, we think
that our argument can be useful also to treat (0.11) with more general
nonlinearities f(u). Of course in this case the existence of solutions has to
be deduced via the mountain-pass theorem, following the approach in [12].
In fact the argument involved in the proof of lemma 3.1 (that is essentially a
comparison result for the minima of suitable funtionals), can be adapted in
order to prove a comparison result for the mountain–pass values of suitable
functionals, that is one of the key points in [12].

As a consequence of the previous theorem we deduce an existence result
of standing waves to (0.1) under suitable assumptions on V (x) and for
subcritical nonlinearities.
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Theorem 0.2 Assume that V (x) ∈ L∞(Rn) satisfies the following condi-
tion:
(0.12) there exists k0 ∈ R such that

0 < meas{x ∈ Rn | V (x) < k0} < ∞.

Then for every E ∈ (−∞, inf − essV (x)) and 2 < p < 2n/(n−2), there
exists ~0 = ~0(E, p) > 0 such that

−~2∆u + (V (x) − E)u = u|u|p−2, u ∈ W 1,2(Rn)

has a nontrivial solution, for 0 < ~ < ~0. In particular

ψ(t, x) = e−iEt/~u(x)

is a standing wave solution to (0.1) for 2 < p < 2n/(n − 2) when n ≥ 3,
2 < p < ∞ when n = 1, 2.

Remark 0.2 Notice that Theorem 0.2 follows trivially from Theorem 0.1,
where we choose a(x) ≡ V (x) − E. In fact this function satisfies all the as-
sumptions of Theorem 0.1, provided that V (x) and E are as in Theorem 0.2.

Remark 0.3 Notice that if V (x) is any bounded function that satisfies
(0.4), then V (x) satisfies also the assumptions of Theorem 0.2. In fact in
this case the hypothesis (0.12) is fulfilled by any real number k0 such that

inf
Rn

V (x) < k0 < lim inf
x→∞

V (x).

Remark 0.4 Notice that there exist potentials V (x) ∈ C∞(Rn) that are
bounded, satisfy condition (0.12), but (0.4) is not fulfilled by V (x). For ex-
ample consider any regular and bounded function V (x) whose range belongs
to [−1, 1] and such that:

V (x) ≡ −1 for x ∈ ∪∞
k=1B(xk, 2−(k+2))

V (x) ≡ 1 for x ∈ Rn \ ∪∞
k=1B(xk, 2−(k+1))

where xk = (k, 0, . . . , 0) ∈ Rn. Hence the hypothesis done on V (x) in
Theorem 0.2 is weaker than (0.4), also in the case that V (x) is bounded
and regular.

The paper is organized as follows: Section 1 is devoted to present in an
abstract and generalized version a fundamental result contained in [4]. In
fact this generalization will be a basic tool for the proof of Theorem 0.1;
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in Section 2 we shall recall some well–known facts connected with the best
constant in the Sobolev embedding on Rn and finally in Section 3 we shall
prove Theorem 0.1.

1. The abstract approach

In this section we present a suitable version of a Lemma proved in [4],
that will be very useful along the proof of Theorem 0.1.

Next we fix some notations and we give some definitions.
We shall denote by H a generic Hilbert space endowed with the norm

‖ · ‖H and we shall assume that there exists a continuous and dense inclusion

H ⊂ X, (1.1)

where X is a Banach space endowed with the norm ‖ · ‖X .
We assume also that the following property is satisfied:

(1.2) if hk ∈ H is such that hk ⇀ h̄ in H, then up to a subsequence

‖hk‖2
X ≤ ‖hk − h̄‖2

X + ‖h̄‖2
X + o(1),

where limk→∞ o(1) = 0.
A typical example of spaces H and X that satisfy (1.2) are the spaces

W 1,2(Rn) and Lp(Rn) for 2 ≤ p ≤ 2n/(n−2). The proof of this fact follows
from the Brézis and Lieb lemma, see [3].

Next we give a definition.

Definition 1.1 Let T : H → R be a map (possibly nonlinear). We shall
say that T is weakly continuous if for every sequence hk ∈ H the following
implication is satisfied:

hk ⇀ h̄ in H ⇒ lim
k→∞

T (hk) = T (h̄).

Let us give an explicit example of operator that is weakly compact in
the sense of Definition 1.1.

Proposition 1.1 Let K ⊂ Rn, with n ≥ 1, be a measurable subset such
that meas(K) < ∞ and a(x) ∈ L∞(Rn). Then the operator

T : W 1,2(Rn) →
∫

K
a(x)|u|2dx ∈ R

is weakly continuous.
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Proof. Let uk ∈ W 1,2(Rn) be such that uk ⇀ ū in W 1,2(Rn). Then due
to the compactness of the Sobolev embedding on bounded sets we get:

uk → ū in L2(BR(0)) ∀ 0 < R < ∞.

In particular this implies that

lim
k→∞

∫
K∩BR(0)

a(x)|uk|2dx =
∫

K∩BR(0)
a(x)|ū|2dx, (1.3)

for every 0 < R < ∞.
Since meas(K) < ∞ we deduce that

lim
R→∞

meas(K ∩ (Rn \ BR(0)) = 0. (1.4)

On the other hand the Sobolev embedding implies:

‖uk‖Lp(n)(Rn) < C ∀k ∈ N, (1.5)

where p(n) > 2 and 0 < C < ∞.
By using the Hölder inequality we get:∫

K∩(Rn\BR(0))
|a(x)||uk|2dx

≤ ‖a‖L∞(Rn)‖uk‖2
Lp(n)(Rn)

|meas(K ∩ (Rn \ BR(0))|1/qn ,

where 2/pn + 1/qn = 1. By combining this inequality with (1.4) and (1.5)
we deduce:

lim
R→∞

(
sup
k∈N

∫
K∩(Rn\BR(0))

a(x)|uk|2dx
)

= 0, (1.6)

that in conjunction with (1.3) implies:

lim
k→∞

∫
K

a(x)|uk|2dx =
∫

K
a(x)|ū|2.

¤

Next we state an abstract result whose proof follows step by step an
argument used in [4]. However this abstract formulation will be useful for
our purpose in the sequel.

We shall denote by BX the following set:

BX ≡ {x ∈ X | ‖x‖X = 1}.
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Proposition 1.2 Let H and X be an Hilbert space and a Banach space
that satisfy (1.1) and (1.2).
Let T : H → R be a map such that:
(1.7) T is weakly continuous (see definition (1.1));
(1.8) T (λh) = λ2T (h) ∀λ ≥ 0, h ∈ H;
(1.9) there exists C > 0 such that

|T (h)| ≤ C ∀h ∈ H ∩ BX .

Then there exists a minimizer h0 ∈ H∩BX for the following minimiza-
tion problem:

IT ≡ inf
h∈H∩BX

(‖h‖2
H + T (h)),

provided that

IT < I0 ≡ inf
h∈H∩BX

‖h‖2
H. (1.10)

Proof. Notice that due to (1.9) we have IT > −∞, hence there exists hk ∈
H such that:

‖hk‖X = 1 and ‖hk‖2
H + T (hk) = IT + o(1). (1.11)

Due again to (1.9) it is easy to deduce that hk is bounded in H and
then up to a subsequence we can assume that hk ⇀ h̄ in H and then

‖hk‖2
H = ‖h̄‖2

H + ‖hk − h̄‖2
H + o(1). (1.12)

Moreover we are assuming that T is weakly continuous and then

T (hk) = T (h̄) + o(1). (1.13)

First step: h̄ 6= 0
Due to the definition of I0, (1.11) and (1.13) we get

I0 + T (h̄) ≤ ‖hk‖2
H + T (hk) + o(1) ≤ IT + o(1)

and this chain of inequalities clearly mplies T (h̄) ≤ IT − I0 < 0.
In particular T (h̄) < 0 and since by (1.8) we have T (0) = 0, we deduce

that h̄ 6= 0.
Second step: h̄/‖h̄‖X is minimizer for IT

By combining (1.2), (1.11), (1.12), (1.13) with the definition of I0 we
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get:

I0‖hk − h̄‖2
X + ‖h̄‖2

H + T (h̄) ≤ ‖hk − h̄‖2
H + ‖h̄‖2

H + T (h̄)

= ‖hk‖2
H + T (hk) + o(1) = IT = IT ‖hk‖2

X

≤ IT ‖hk − h̄‖2
X + IT ‖h̄‖2

X + o(1) ≤ I0‖hk − h̄‖2
X + IT ‖h̄‖2

X + o(1)

where at the last step we have used the assumption IT < I0.
Since limk→∞ o(1) = 0 it is easy to deduce that the previous chain of

inequalities imply:

‖h̄‖2
H + T (h̄) ≤ IT ‖h̄‖2

X

and then due to (1.8) we can deduce that h̄/‖h̄‖X is a minimizer for IT .
¤

2. Some preliminary facts

For every λ > 0, ~ > 0, 2 < p < 2n/(n− 2) when n ≥ 3 and 2 < p < ∞
when n = 1, 2, we introduce the numbers m~,λ,p defined as follows:

m~,λ,p ≡ inf
u∈Mp

∫
Rn

(~2|∇u|2 + λ|u|2)dx, (2.1)

(recall that Mp is defined in (0.7)).
Following the notation of Theorem 0.1 we have

m~,λ,p = I~,a,p where a(x) ≡ λ.

The minimization problem (2.1) has been extensively studied in [8].
As a consequence of the results proved in [8] we can state the following
proposition that will be useful in the sequel.

Proposition 2.1 Let λ > 0 and 2 < p < 2n/(n− 2) when n ≥ 3, 2 < p <

∞ when n = 1, 2, then there exists ωλ,p ∈ Mp such that∫
Rn

(|∇ωλ,p|2 + λ|ωλ,p|2)dx = m1,λ,p > 0. (2.2)

For every ~ > 0 we have∫
Rn

(~2|∇ω~,λ,p|2 + λ|ω~,λ,p|2)dx = m~,λ,p, (2.3)
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where ω~,λ,p = ~−n/pωλ,p(x/~) ∈ Mp, and in particular

m~,λ,p = ~n(1−2/p)m1,λ,p. (2.4)

Moreover the following inequality holds for every ~ > 0:

m~,λ1,p < m~,λ2,p when 0 < λ1 < λ2 < ∞. (2.5)

Proof. The proof of (2.2) can be found in [8]. The identities (2.3) and (2.4)
follow from an easy rescaling argument.

In order to prove (2.5) notice that due to the definition of m~,λ1,p and
due to the assumption λ1 < λ2 we get:

m~,λ1,p ≤
∫
Rn

(~2|∇ω~,λ2,p|2 + λ1|ω~,λ2,p|2)dx

<

∫
Rn

(~2|∇ω~,λ2,p|2 + λ2|ω~,λ2,p|2)dx = m~,λ2,p,

where ω~,λ2,p is the function that appears in (2.3) for λ = λ2. ¤

3. Proof of Theorem 0.1

Along this section the numbers m0,m,M > 0 are the ones that appear
in the assumptions of Theorem 0.1. Recall also that Mp is the manifold
defined in (0.7), while I~,a,p and m(~, λ, p) are the quantities introduced in
(0.10) and (2.1).

For each ~ > 0 we introduce the Hilbert space H~ ≡ W 1,2(Rn) endowed
with the norm:

‖u‖2
H~ ≡

∫
Rn

(~2|∇u|2dx + max{m0, a(x)}|u|2)dx, (3.1)

and the operator T

T : H~ 3 u →
∫
{a(x)<m0}

(a(x) − m0)|u|2dx ∈ R. (3.2)

Notice that we have the following identity:∫
Rn

(~2|∇u|2 + a(x)|u|2)dx = ‖u‖2
H~ + T (u).

Next we shall verify that the assumptions of Proposition 1.2 are fulfilled
for the choice:
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(3.3) H ≡ H~, X ≡ Lp(Rn)
with 2 < p < 2n/(n − 2), n ≥ 3, 2 < p < ∞ when n = 1, 2 and T as
in (3.2).

In fact condition (1.8) is trivially satisfied, while (1.9) follows from the
following computation:

|T (u)| ≤ 2 sup
Rn

|a(x)|(meas{x ∈ Rn | a(x) < m0})1/q‖u‖2
Lp(Rn)

where 2/p + 1/q = 1, and then, due to the assumption (0.9), we get

|T (u)| < C ∀u ∈ Mp =
{

u ∈ H~

∣∣∣ ∫
Rn

|u|pdx = 1
}

.

On the other hand the operator T is weakly continuous due to Propo-
sition 1.1, while the Brézis and Lieb lemma (see [3]) implies that condition
(1.2) is satisfied for the choice of H and X done in (3.3).

We are then in position to apply Proposition 1.2 and to deduce that
Theorem 0.1 will follow from the next lemma.

Lemma 3.1 Let a(x), n, p be as in Theorem 0.1. Then there exists a
constant ~0 = ~0(a(x), p, n) > 0 such that

I~,a,p < inf
u∈Mp

‖u‖2
H~

when 0 < ~ < ~0.

Proof. Since a(x) is bounded by assumption, we also have a(x) ∈ L1
loc(R

n).
We can then use the Lebesgue derivation theorem (see [6]) in order to de-
duce:

lim
δ→0

∫
Bδ(x0) |a(x) − a(x0)|dx

δn
= 0 ∀x0 ∈ Rn \ N ,

where measN = 0. On the other hand by assumption we have

meas{x ∈ Rn | m ≤ a(x) < m0} > 0,

and in particular it implies that

{x ∈ Rn | m ≤ a(x) < m0} ∩ (Rn \ N ) 6= ∅,

or equivalently there exists x̄ ∈ Rn such that:

lim
δ→0

∫
Bδ(x̄) |a(x) − a(x̄)|dx

δn
= 0 with m ≤ a(x̄) < m0.
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Up to a traslation we can assume that x̄ = 0, then

lim
δ→0

∫
Bδ(0) |a(x) − m1|dx

δn
= 0 with m ≤ m1 < m0, (3.4)

where we have used the notation m1 = a(0).
Next we shall need the function ωm1,p ∈ Mp defined in Proposition 2.1

and associated to the value λ = m1, together with the rescaled functions

ω~,m1,p = ~−n/pωm1,p

(x

~

)
∈ Mp.

Notice that by using Proposition 2.1 and the definition of I~,a,p we have:

I~,a,p ≤
∫
Rn

(~2|∇ω~,m1,p|2 + a(x)|ω~,m1,p|2)dx (3.5)

=
∫
Rn

(~2|∇ω~,m1,p|2 + m1|ω~,m1,p|2 + (a(x) − m1)|ω~,m1,p|2)dx

= ~n(1−2/p)

∫
Rn

(|∇ωm1,p|2 + m1|ωm1,p|2 + (a(~x) − m1)|ωm1,p|2)dx

= ~n(1−2/p)m1,m1,p + ~n(1−2/p)R(~),

where

R(~) ≡
∫
Rn

(a(~x) − m1)|ωm1,p|2dx

and m1 > 0 is the number that appears in (3.4).
Estimate for R(~)

Let us fix R > 0 such that∫
|x|>R

|ωm1,p|2dx <
1

4M
(m1,m0,p − m1,m1,p) (3.6)

where M, m0 > 0 are the constants that appear in the assumptions of
Theorem 0.1.

Notice that combination of the trivial inequality m1 < m0 with (2.5) in
Proposition 2.1 implies:

m1,m1,p < m1,m0,p. (3.7)

On the other hand the function ωm1,p is solution of an elliptic equation
and then an easy bootstrap argument implies that

ωm1,p ∈ L∞(Rn).
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Then we can can perform the following estimates, where R > 0 is the
number given in (3.6):

|R(~)|≤
∫
|x|<R

|a(~x)−m1||ωm1,p|2dx

+
∫
|x|>R

|a(~x)−m1||ωm1,p|2dx

≤
(∫

|x|<R
|a(~x)−m1|dx

)
‖ωm1,p‖2

L∞(Rn) +2M‖ωm1,p‖2
L2(|x|>R)

=
Rn

Rn~n

(∫
|x|<R~

|a(x)−m1|dx
)
‖ωm1,p‖2

L∞(Rn) +2M‖ωm1,p‖2
L2(|x|>R).

By combining this chain of inequalities with (3.4) and (3.6) we get

|R(~)| ≤ Rno(1) +
1
2
(m1,m0,p − m1,m1,p) (3.8)

where

lim
~→0

o(1) = 0.

By combining (3.5) with (3.8) we deduce:

I~,a,p ≤ ~n(1−2/p)m1,m1,p + ~n(1−2/p)Rno(1) (3.9)

+
1
2

~n(1−2/p)(m1,m0,p − m1,m1,p).

On the other hand (3.7) implies that for ~ > 0 small enough we have:

~n(1−2/p)m1,m1,p +~n(1−2/p)Rno(1)+
1
2

~n(1−2/p)(m1,m0,p −m1,m1,p)

<~n(1−2/p)m1,m0,p =m~,m0,p,

that in conjunction with (3.9) implies:

I~,a,p < m~,m0,p. (3.10)

On the other hand looking at the definition of ‖ · ‖~ in (3.1) we have∫
Rn

(~2|∇u|2 + m0|u|2)dx ≤ ‖u‖2
Hh

∀u ∈ Mp

and then

m~,m0,p ≤ inf
Mp

‖u‖2
Hh
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that can be combined with (3.10) in order to give the desired result. ¤
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