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Classification of marginally trapped surfaces

of constant curvature in Lorentzian complex plane
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Abstract. A surface in the Lorentzian complex plane Cf is called marginally trapped
if its mean curvature vector is light-like at each point on the surface. In this article, we
classify marginally trapped surfaces of constant curvature in the Lorentzian complex
plane Crf. Our main results state that there exist twenty-one families of marginally
trapped surfaces of constant curvature in Cf. Conversely, up to rigid motions and
dilations, marginally trapped surfaces of constant curvature in C% are locally obtained
from these twenty-one families.
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1. Introduction

Let C” denote the complex number n-space with complex coordinates
Z1y...,%n. The C" endowed with g; , i.e., the real part of the Hermitian
form

7 n
bin(z,w) =— Zikwk + E Zjw;, z,weC",
k=1 j=it1

defines a flat indefinite complex space form with complex index ¢. We simply
denote the pair (C", g;,) by CI'. In particular, the flat indefinite complex
n-space C7 with complex index ¢ = 1 is called the Lorentzian complex
n-space.

A vector v is called space-like (respectively, time-like) if (v,v) > 0 (re-
spectively, (v,v) < 0). A vector v is called light-like if it is nonzero and it
satisfies (v,v) = 0.

The concept of trapped surfaces in 4D space-times, introduced by
R. Penrose [15] plays a very important role in general relativity. In the
theory of cosmic black holes, if there is a massive source inside the surface,
then close enough to a massive enough source, the outgoing light rays be
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converging; a trapped surface. Everything inside is trapped within a shrink-
ing area. Nothing can escape, not even light. In between, there will be a
marginally trapped surface (up to the issue of differentiability) where the
outgoing light rays are instantaneously parallel.

This is a black hole; its surface is located by the marginally surface,
where outgoing light rays are instantaneously parallel, ingoing light rays are
converging just inside, and outgoing light rays are diverging just outside.

In terms of mean curvature vector, a spatial surface is future trapped
if its mean curvature vector is timelike and future-pointing at each point
(similarly, for passed trapped); and marginally trapped if its mean curvature
vector is light-like at each point on the surface (cf. for instance [5], [11],
12], [13)).

Every surface in the Lorentzian complex plane C? is automatically
Lorentzian if its mean curvature vector is light-like at each point. In this ar-
ticle, by a marginally trapped surface in C? we mean a surface whose mean
curvature vector is light-like at each point (see, for instance, [3], [5], [8]).
Such surfaces are also known as quasi-minimal surfaces (cf. [9], [16], [17]).

In this article, we classify marginally trapped surfaces of constant curva-
ture in the Lorentzian complex plane C2. Our main results state that there
exist 21 families of marginally trapped surfaces of constant curvature in C?.
Conversely, up to rigid motions and dilations, marginally trapped surfaces
of constant curvature in C? are locally obtained from these 21 families.

2. Preliminaries

2.1. Basic formulas, equation and definitions

Let M be a Lorentz surface of a Lorentzian Kéhler surface M?2. Denote
by g the metric on ]\;[12 and by ( , ) the inner product associated with g.
Let g be the the induced metric on M.

Let V and V be the Levi-Civita connection on M and MIQ, respectively.
Then the formulas of Gauss and Weingarten are given respectively by (cf.

(2], [14])
VxY =VxY 4+ h(X,Y), (2.1)

@Xg = *AgX + Dx¢& (22)

for vector fields X,Y tangent to M and & normal to M, where h, A and
D are the second fundamental form, the shape operator and the normal
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connection.
The shape operator and the second fundamental form are related by

(h(X7 Y)’§> = <A$X7 Y> (2'3)

for X,Y tangent to M and £ normal to M.

For each normal vector { of M at x € M, the shape operator A¢ is a
symmetric endomorphism of the tangent space T, M. The mean curvature
vector is defined by

1
H= 5 trace h. (2.4)

For a Lorentz surface, the equations of Gauss, Codazzi and Ricci are
given by

(R(X,Y)Z,W) = (R(X,Y)Z,W) + (h(X, W), h(Y, Z))

—(h(X, Z),h(Y,W)), (2.5)
(R(X,Y)2)" = (Vxh)(Y, Z) — (Vyh)(X, 2), (2.6)
(RP(X,Y)&, ) = (R(X,Y)&m) + ([Ae, 4] X,Y), (2.7)

where X,Y, Z, W are vector tangent to M, and Vh is defined by
(Vxh)(Y,Z) = Dxh(Y,Z) — h(VxY,Z) — h(Y,VxZ). (2.8)
For Lorentz surfaces in a Lorentzian Kahler surface Mf we have the
following general result from [7].

Theorem 2.1 The equation of Ricci is a consequence of the equations
of Gauss and Codazzi for any Lorentz surface in any Lorentzian Kaehler
surface.

3. Basics results for Lorentzian surfaces

Let M be a Lorentz surface in a Lorentzian Kahler surface M? with
almost complex structure J. For each tangent vector X of M, we put

JX = PX + FX, (3.1)
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where PX and F'X are the tangential and the normal components of JX.
On M there exists a pseudo-orthonormal local frame {ej,e2} such that

<€1,€1> = (62,€2> = 0, <€1,€2> = —1. (32)

For a pseudo-orthonormal frame {e;, e2} satisfying (3.2), it follows from
(3.1), (3.2), and (JX,JY) = (X,Y) that

Pe; =sinhae;, Pey = —sinhaes (3.3)

for some function «. This function « is called the Wirtinger angle of M.
When the Wirtinger angle « is constant, the Lorentz surface M is called a
slant surface (cf. [9], [10]). In this case, « is called the slant angle and the
surface is called a-slant. A a-slant surface is called Lagrangian if o = 0.
Slant surfaces in M? are Lorentzian.

If we put

es = sechaFe;, e4 =sechfFe,, (3.4)

we find from (3.1)—(3.4) that

Jei = sinh e + cosh aes, Jes = — sinh ey + cosh aey, (3.5)
Jez = —cosh ae; — sinh ez, Jey = — cosh aes + sinh ey, (3.6)
(e3,e3) = (eq,e4) =0, (e3g,eq) = —1. (3.7)

We call such a frame {eq, €2, e3,e4} an adapted pseudo-orthonormal frame.
We recall the following lemmas from [4], [6].

Lemma 3.1 If M is a Lorentz surface in a Lorentzian Kdahler surface ]\;[12,
then with respect to an adapted pseudo-orthonormal frame we have

Vxer = w(X)el, Vxey = —w(X)eg, (38)
DXe3 = (I)(X)eg, DXe4 = —‘I)(X)€4 (39)

for some 1-forms w,® on M.

For a Lorentz surface M in M? with second fundamental form h, we
put
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h(e;, €j) = h?jeii -+ h?j€4a (3.10)
where eq, e, €3, €4 is an adapted pseudo-orthonormal frame.

Lemma 3.2 If M is a Lorentz surface in a Lorentzian Kdahler surface M%,
then with respect to an adapted pseudo-orthonormal frame {e1,ea,e3,e4} we
have

A636j = h?gel + héllj(iQ, Ae4ej = h?Qel + h?jeg, (311)
ejo0 = (w; — ®;) cotha — 2h7, (3.12)

era = hiy —h3,, ey = h3y — 3, (3.13)

wj —®; = (hi’j + h?Q) tanh a, (3.14)

for j = 1,2, where w; = w(e;) and &; = P(e;).

4. Marginally trapped flat surfaces in Cf
The light cone £LC in C? is defined by LC = {v € C? : (v,v) = 0}.

Theorem 4.1 There exist nine families of marginally trapped flat surfaces
in the Lorentzian complex plane C? given by the following:

(1) A Lagrangian surface defined by L(x,y) = z(z)e®, where z(x) is a
null curve lying in the light cone LC satisfying (iz',z) = 1.

(2) A slant surface with slant angle 6 # 0 given by L(z,y) =
z(x)y%(k““h ) where z is a null curve lying in the light cone LC satisfying
(iz,2') = 2sinh 6.

(3) A surface given by

Titw(z) ,
Loy =)+ [ i @y
where q,w are real-valued functions and z is a null curve lying in the light
cone LC satisfying (z',iz) = q.
(4) A surface given by

L(z,y) = z(z)(1 — iSinha(y))efy(isecha(y)—tanha(y))u(y)dy7

where z is a null curve in LC satisfying (2',iz) = b~! for some real

number b # 0, and o, are real-valued functions satisfying o' = p +
bel” 2utanhady goch o £ (),
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(5) A surface given by

L(z,y) = <$ + % +ip(y) — i/ sinh adz,

x — % +ip(y) — i/ sinhadw),

where o and p are real-valued functions with o, # 0.
(6) A Lagrangian surface defined by

. L 1
Liz,y) = (xeﬂw + [ erw (iwy) n 2>dy,

Yy
zelf®) 4 / W) (iz/}(y) —;)dy>,

where V¥ is a real-valued function and F' is a non-constant real-valued func-
tion.
(7) A slant surface with slant angle @ # 0 defined by

L(J},y) =

(xe(i_smh OFw) 4 %coshﬁco‘ch@ /y liAsinh ) F (W) g,
Y L Y .
+ (isech # — tanh 9)/ (e(‘+51nh9)F(y) / q(y)e_QF(y) Smhedy) dy,
. . 1 y . .
gel—smhO)F(y) 4 (; cosh 6 cothf —isinhf — 1> / eli+sinh O)F (W) gy,

Y L Y .
+ (isech # — tanh 9)/ <e(‘+smh9)F(y) / q(y)e 2FW) Smhedy) dy),

where F' and q are real-valued functions with F' being non-constant.
(8) A surface given by

L(z,y) =
Y rvGrsinna@) i@y [ L [ o v p(y) sinhagy)d
/ e i+sinh a(y y)dy 2+1/ e y) sinh a(y yk(y)dy dy

+ (1 — isinh a(y))el  (-sinha@)F@)dy
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2(1 — isinh ay))el " (-sinh a0y _ / Y I (sink a(y)) £ (v)dy

X {; - i/y e 2" f) Sinha(y)dyk(y)dy}dy>’

where a, f and k are real-valued functions with o # 0 and f # 0.
(9) A surface given by

L(x,y) = / (1 _ iSinha)z(m)efy(i—sinha)f(y)dydx

Yy T o
+i/ {/ z(x)(ay cosh o — f(y) cosh? a)efy(lsmha)f(y)dydx}dy

: Y Yoy s Y
+p(1m) / efy<l+smha>fdy{z<x) / f(y)axcoshady—z’(w)}dya

where a, f,p are nonzero real-valued functions satisfying oz, # 0 and
(4.72), and z is a null curve lying in LC with (z,iz") = p.

Conversely, up to rigid motions and dilations, every marginally trapped
flat surface in C? is locally an open portion of one of the surfaces given by
the nine families.

Proof. We show by examples that immersions given by cases (1)—(9) of
this theorem define marginally trapped flat surfaces in C2.
For case (1) we have L, = 2'(z)e®, L, = iz(z)e, which imply that

(Ly, L)y = (2,2"), (L, Ly) = (2,12), (Ly, Ly) = (2, 2). (4.1)

Since z(x) is a null curve lying in the light cone £C satisfying (iz’, z) = 1, it
follows from (4.1) that the metric tensor is given by

g=—(dr®dy+dy @ dx). (4.2)

Thus, the immersion L defines a flat Lorentz surface in C2. Moreover,

since L, = iz/(z)e¥ = iL,, we also know from (2.4) and (4.2) that the

mean curvature vector is given by H = —L,, = —iL,, which is light-like.

Therefore, L(x,y) = 2(z)e! defines a marginally trapped flat surface in C3.
For case (3), we get
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L, = (y + ”M>z'(x), L, = 2(x), (4.3)

which implies

o= (52 s )

(Lo, Ly) = <y+

(Ly, Ly) = (2, 2)-

Because z is a null curve lying in the light cone L£C satisfying (2/,iz) = ¢, it
follows from (4.4) that the induced metric is also given by (4.2). Moreover,
it follows from (4.3) that

—q(z)

Vit w(x) +q(a)y

L. (4.5)

Thus, the mean curvature vector is light-like. Hence, this immersion also
defines a marginally trapped flat surface.

For case (5), we know from direct computation that the induced metric
tensor is given by (4.2). Moreover, by straight-forward computation, we
have

L,, = (tanh o — isech a)oy, L.

Since H = —L,, and «,, is nonzero, we know that the mean curvature vector
is light-like. Hence, the immersion defines a marginally trapped flat surface
in C%.

Similar computations show that the remaining cases give rise to
marginally trapped flat surfaces in C? as well.

Conversely, let L : M — C? be a marginally trapped immersion of a flat
surface in C2. Then M is Lorentzian. So, we may assume that locally M
is an open portion of the zy-plane equipped with the flat Lorentzian metric
given by (4.2). Thus we have V%% = V%a% = Va%a% = 0. If we put
e1 = %, ey = 8%, then {e, ez} is a pseudo-orthonormal frame satisfying
(3.2).
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Let es,e4 be the normal vector fields defined by (3.4). From (3.5) we
find

es = (isecha —tanha)L,, es4 = (isecha + tanh«)L,,. (4.6)

Since M is marginally trapped, in view of (2.4) and (3.2) we may assume
that

h(el, 61) = 563 + Y€4q, h(el, 62) = 563, h(eg, 62) = )\63 + Heq (47)

with § # 0 at each point.
In view of (3.5), (3.7), and (4.7), the equation of Gauss can be expressed
as

YA+ Bp = 0. (4.8)
Using Lemma 3.2 we find

D.,e3 = —(@tanhaes, D.,es = —(J+ p)tanh aes,

4.9
D., ey = Btanh aey, D.,e3 = (0 + p) tanh aey. (4.9)
Hence, it follows from (4.7) and (4.9) that
(Ve h)(e1,e2) = (6, — dB3tanh a)es,
(Feah)erse1) = (B, — B(6 + o) tanh a)es + (3, + (6 + 1) tanh a)es,
(Ve h)(e2,e2) = (A, — ABtanh a)es + (pz + pBtanh a)ey, (4.10)
(Ve,h)(e1,e2) = (6, — (8 + p) tanh a)es.
From (4.10) and the equation of Codazzi we obtain
Ae — 0y = (AB — 6% — Sp) tanh o, (4.11)
ty = —(ptanh a, (4.12)
By — 64 = Butanh e, (4.13)
Yy = —(6 + p) tanh o (4.14)

Also, it follows from (4.7) and Lemma 3.2 that



370 B.-Y. Chen

ay =B, ay=pu—2. (4.15)
Case (a): p = 0. Equations (4.8) and (4.15) give
YA=0, B=—a,, §=—a,. (4.16)
Case (a.1): v =0. From (4.11) and p = 0 we get
Az — 0y = (A3 — &%) tanh a. (4.17)
We find from (4.16) and (4.17) that
Az + (0 tanh a) A = —ay, — o tanh a. (4.18)

Solving this equation, we give
A = k(y)sech o — secha/ (ovyy cosha + af/ sinh o) dx. (4.19)

Therefore, we obtain from (4.2)-(4.7), (4.16), and formula (2.1) of Gauss
that

L., = a;(tanh o —isech ) L,
L, = ay(tanh a — isech o) Ly, (4.20)
L,, = Aisecha — tanh o) L,

where X is given by (4.19). After solving the first equation in (4.20) we
obtain

L(z,y) = A(y) + B(y) <:c —i / " inh ozdx) (4.21)

for vector function A, B. Substituting this into the second equation in (4.20),
we get B’ = 0. So, B = ¢; for some vector ¢; € C?. Substituting (4.21) with
B = ¢; into the last equation into (4.20) we find A” = ic;k. Consequently,
L is congruent to

Y Yy T
L(z,y) :Clx-i-czy—i-iq/ </ k(y)dy)dy—icl/ sinh adx
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for some vectors ¢, co. Hence, after choosing suitable initial conditions, we
obtain case (5) of the theorem with p(y) =y + [ ( [? k(y)dy)dy.

Case (a.2): v# 0 and A = 0. In this case, (4.7), (4.11) and (4.14) reduce
to

h(ei,e1) = Pes +ves, hler,e2) =des, h(ez,e2) =0, (4.22)
(Ind), = —ay tanhe, (Invy), = o, tanha. (4.23)

Solving the two equations in (4.23), we see that
v =p(x)cosha, &= —q(z)secha (4.24)

for some real-valued functions p,q. After substituting this into the second
equation in (4.15), we get a,, cosha = ¢(x). Hence we have

o = sinh ™! (g(x)y + w(z)) (4.25)
for some function w. Consequently, the immersion L satisfies

¢ (x)y + w'(x)

Lxm = Lw i L )
() |
Ly = - wi Ly, =0.
it g(a)y +w(z) Y
Solving the last two equations in (4.26) gives
L(z,y) = / 1—;(ug;()x)z'(ac)dav + z(z)y (4.27)

for a vector function z. Substituting this into the first equation in (4.26),
we have

q(2)2" (x) — ¢'(2)2' () — p(z)g*(2)2(x) = 0. (4.28)
By applying (4.2) and (4.27), we find (z,2) = (2/,2') = 0 and (2/,iz) = q.
Therefore, we obtain case (3) of the theorem.

Case (b): 1 # 0 and A = 0. Equation (4.8) gives § = 0. Thus, the first
equation in (4.15) implies @ = a(y). So, we find from (4.7) and (4.11)—(4.14)
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that
h(ei,e1) =es, hler,ez) =des, hlez e2) = pes, p=ply), (4.29)
(Ind)y = (0 + p) tanh v, (Invy), = —(6 + p) tanh ey, (4.30)
5 = uly) — o'(y) (431)
It follows from (4.30) and (4.31) that
(4.32)
for some real-valued function v(z) # 0. Therefore, the immersion L of M

satisfies

v(z)(isech @ — tanh o)
ply) = a'(y)
Lyy = (u(y) — &/ (y))(isech o — tanh ) L,

Lmz = L

Y

(4.33)
Ly, = pn(y)(isech o + tanh o) L,,.

By substituting (4.31) and (4.32) into the second equation in (4.30), we
have

/

p = (2u® —3a/pu+ o/?) tanh o + . (4.34)

Case (b.1): « = 0. In this case, M is Lagrangian. It follows from (4.34)
that u is a nonzero real number, say c. By applying a suitable dilation, we
have yp = 1. Thus, (4.31) and (4.32) yields § = 1 and v = v(x). Hence,
(4.33) reduces to

Lye =iv(x)Ly, Lgy =1Ly, Ly, =1iL,. (4.35)
Solving this system, we give
L(z,y) = z(x)e'. (4.36)

It now follows from (4.2) and (4.36) that z is null curve lying in the light
cone LC satisfying (iz’,z) = 1. Consequently, we obtain case (1) of the
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theorem.
Case (b.2): « is a nonzero real number. In this case, M is a-slant. Thus,
(4.34) reduces to ¢/ = 2u? tanh a. After solving this equation we have

1
= — 4.37
Hy) 2b — 2y tanh ( )
for some real number b. Thus, system (4.33) becomes
Ly, =2v(z)(isecha — tanha)(b — ytanha)L,,
I isecha —tanh o
U 2b—2ytanha 7 (4.38)
I isecha + tanh o
Y9 2b —2ytanha Y
Solving the second equation in (4.38), we give
L(z,y) = A(y) + B(z)(y tanh o — b)z (11 esche) (4.39)

for vector functions A, B. Substituting this into the last equation in (4.38),
we find that

2(b — ytanh ) A” (y) = (isech @ + tanh a) A’ (y).
After solving this equation we get
A(y) = c1(ytanh o — p)z(1-iescha) 4 ()
with ¢1, co € C2. Hence, it follows from (4.39) that L is congruent to
L(z,y) = z(z)(y — beoth )z (1 —iescha) (4.40)

where z(z) = (¢; + B(x))(tanh ) z(1-iesche) By substituting this into the
first equation in (4.38), we find that

2"(x) = (tanh o — isech a)?v(z)z(x). (4.41)

After applying a suitable translation in y, we obtain from (4.40) that
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L(z,y) = z(a)y> i), (4.42)

Now, by applying (4.2) and (4.42) we find (z,2z) = (2/,2') =0, (2/,iz) =
2sinh . Therefore, we obtain case (2) of the theorem.

Case (b.3): «a is non-constant. Solving the second equation in (4.33),
we give

L = A(y) + B(x)(1 — isinh ar)eJ " #(v)(isecha—tanh a)dy (4.43)

for some vector functions A, B. So, after substituting (4.43) info the first
equation in (4.33) we find

B oY 1(y)(tanh a—isech o) dy
(z) + Bx) = ie ,
v(@) ply) — o/ (y)

Hence, there exists a vector ¢; € C?% such that

sech a(y) A (y).

B"(z) +v(z)(B(z) — 1) =0, (4.44)

A'(y) = ier(0’(y) — n(y))(cosh a)el " (sechatanhajudy, (4.45)

By applying (4.43) and (4.45) we know that the immersion is congruent to
L(z,y) = (2(z) + ¢1)(1 — isinh a)efy(iSCCha_tanh o)y

Yy .
tien [ (@) = plw)eosha)el " (oechetahemtvgy,  (1.46)

where z = B — ¢; is a vector function satisfying z” + vz = 0. From (4.46)
we find

_ (1 —isinh Oé)efy (isech a—tanh cv)y,dyzl(m)7
(4.47)

Ly
Ly 1(M_O/) COShaefy(isecha—tanha)udyz(x).
It follows from (4.2) and (4.47) that (z,z) = (2/,2’) = 0 and

—1=(Lg,Ly) = (p— ') (cosha)e™ J¥2utanhady (, ory (4.48)
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On the other hand, it follows from (4.34) that

T (0) =~ o) coshafy)e I 1 wibeiny o,
Hence, there exist a nonzero real number b such that

(o () — u(y)) coshaly) = be? /" #w) tanbalv)dy, (4.49)
Substituting this into (4.46), we give

(1 —isinha)(z(x) + ¢1)
eJ ¥ (tanh a—isech a)udy

y .
L(x,y) = + ibcl/ e/ (isecha+tanh Ay gy, (4.50)

and (z/,iz) = b~!. Therefore, after replacing z(z) + ¢1 simply by z(x), we
obtain

L(z,y) = z(z)(1 — isinh a)efy(iseChO‘_tanh ayudy. (4.51)
Consequently, we obtain case (4) of the theorem.
Case (c): A, v # 0. In this case, we find from (4.12) and (4.15) that
(Inp), = oy tanh a. (4.52)
Thus, by using the second equation in (4.15) we have
B=—ay, p=f(y)cosha, &= f(y)cosha —a, (4.53)

for some nonzero real-valued function f(y).

Case (c.1): v =0. From (4.8) we get # = 0. Thus, o = a(y) according
to (4.15).

Case (c.1.i): o/(y) = 0. In this case, the surface is slant. From (4.53)
we get

p=20= f(y)cosha. (4.54)
Hence, (4.11) becomes A, = f’(y) cosh a — f?(y) sinh 2cr, which implies that

A = z(f'(y) cosha — f2(y) sinh 2a) + q(y) (4.55)
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for some real-valued function ¢. Thus, by (4.2)—(4.7), (4.54), and (4.55), we
have

L.y =0, L;cy = f(y)(l — sinh Oé)Lx,
Ly, = {er’(y) cosha — xf2(y) sinh 2ar + q(y)}(1 secha — tanh )L, (4.56)
+ f(y)(i+ sinha)L,.

Solving the first two equations in (4.56), we give
L(z,y) = B(y) + cizeli—snhe) J7 fdy (4.57)

for some vector ¢; and vector-valued function B. Substituting this into the
last equation in (4.56), we know that

B" — (i+sinh ) f(y)B' = c1(isech a — tanh o)q(y)ei=smh I (4 58)

with F(y) = [ Y f(y)dy. After solving this differential equation we have
y . .
B(y) =c3+ Cg/ e(l—l-smha)de

y /o y .
+ ¢1(isech o — tanh ) / <e(‘+smh ) F / ge ¥ Smhady) dy
(4.59)

for some vectors co, c3. Hence, up to translations, the immersion is given by

L. vy
L(z,y) = cypelisinho)F 4 Cg/ elitsinh ) I g,

y . . y .
+ c1(isech o — tanh a)/ (e(‘“mha)F/ ge 2F Smhady) dy.
(4.60)

From (4.60) we find

i—sinh ) F
L, = cle( ) ,
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L Y .
L, = elitsinh a)F{CQ + c1(isech o — tanh a)/ qe_ZFS‘nhady}
+ c12(i — sinh a) f (y)e(—simh ) F, (4.61)

If o =0, then (4.60) and (4.61) reduces to
. y . y .
L =cize™ + 02/ ey + icl/ ey (y)dy, (4.62)
iF iF Y
Li=ed’, L= (e +iaGr + o). vw)= [ dd. 163)

By applying (4.2) and (4.63), we obtain (c1,c1) = (c2,c2) = (ic1,c2) =0
and (c1, ca) = —1. After choosing suitable initial condition, we conclude that
the surface is congruent to the one given by case (6) of the theorem.

If @ # 0, we find from (4.2) and (4.61) that csch a(icy, co) = (c1,c2) =
—1 and (c1,¢1) = {(c2,c2) = 0. Thus, we obtain case (7) of the theorem.

Case (c.1.ii): o/(y) # 0. Substituting § = v = 0 and (4.53) into (4.11),
we give

Ae = f'(y) cosha—a' — f?(y) sinh(2a) +4f(y)a’ sinh a—a’? tanh o, (4.64)
which implies
A =z(f cosha —a” — f?sinh(2a) + 4fa’ sinh o — o/* tanh at)
+ k(y) sech « (4.65)

for some function k(y). Hence, we obtain from (4.2)—(4.7), (4.53) and (4.65)
that

Lyz =0, Ly, = (f(y)cosha —a'(y))(isecha — tanh o) L,
Ly, = (isecha — tanh ) {z(f’ cosha — o — f?sinh(2a) + 4fa’ sinh

— o/*tanha) + k(y) secha} L, + f(y)(i+ sinha) L.
(4.66)

Solving the first two equations in (4.66), we give

L(z,y) = B(y) + c12(1 — isinh a)el " (=sinh )/ ()dy (4.67)
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Substituting this into the last equation in (4.66), we have
B"(y) — (i +sinha) f(y)B'(y) = ierk(y)e! " (-smh /W)y,

Solving this differential equation, we obtain

Y L Y " .
B(y) _ C3+/ efy(l-l—smha)fdy{CQ +i01/ e—f 2fsmhadyk(y)dy}dy
(4.68)

for some vector c3. Consequently, the immersion is congruent to

y
L(z,y) = c12(1 — isinh o)el "(=sinh ) fwdy o ¢ / el (iHsinha)fdy g,

+ic yefy(i—i—sinha)fdy ye—fy 2fsinhadyk du Sdu. 4.69
1 (y)dy pdy. (4.69)

It follows from (4.2) and (4.69) that (c1,c1) = (c2,c2) = (c1,ice) = 0,
(c1,c9) = —1. Thus, after choosing suitable initial condition, we obtain case
(8) of the theorem.

Case (c.2): v # 0. We find from (4.8) that § = —a, # 0. Also, it follows
from (4.14), (4.15) and (4.53) that (Invy), = a, tanh o —2f(y) sinh a. So we
have

v = p(z)(cosh e~ /" 2f (W) sinhady (4.70)

for some nonzero function p(x). Substituting (4.53) and (4.70) into (4.8),
we give

)\ = pf(a:ﬁz) efy 2f(y) sinh ady' (471)

From (4.11), (4.53), (4.70) and (4.71), we obtain
fpefy 2f sinh ady (Oé;m + O‘i tanh a) + p2 (ayy + 0432/ tanh Oé)
. Y
_ fefy 2f sinh ady <p/ _ 2p/ faa: cosh ady> y — 4fp2(SiIlh Oé)Oéy

= (f' — 2f%sinh a)p® cosh a, (4.72)
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which implies that
G = k(x) (4.73)
for some function k(x), where G is a real-valued function defined by
v Lop@) [
G= (/ fag cosh ady> — / fag cosh ady
p(x)

p(x) (v, cosha — fcosh® o
efy 2f sinh ady

y
) + / f(a? sinh o + ., cosh a)dy.
(4.74)

On the other hand, from (4.2)—(4.7), (4.53), (4.70), and (4.71) we have
Lye = ag(tanh a — isech @)Ly + (i + sinh a)p(z)e~ J* 2 (W) sinh adyr,,
L,y = (f(y) cosha — o)) (isech oo — tanh o) L, (4.75)

. O‘xf(@/)
Lo = =)

(isech a — tanh av)el 2/ W)sinhady 4 £(4) (i 4 sinh @) L.

Solving the second equation in (4.75), we see that
L(z,y) = w(y) + /x(l — isinha)z(z)el " (—sinhe) f)dy g, (4.76)
for some C2-valued functions z,w. From (4.76) we get
L, = (1 —isinha)z(z)el " (-sinha)fdy, (4.77)
Substituting (4.76) into the first equation in (4.75), we get
w'(y) = iH, (4.78)
where H is a C?-valued function defined by

H= / 2(z) (v cosha — f cosh? a)efy(i—sinh ) f(W)dy g,

efy(i—l—sinh o) fdy Y h aud / 4.79
+— . — . .
b (@ [ sty —@). )
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A direct computation shows that the function G in (4.74) and H are related
by

or
ox

p(x) = /" (i4sinh o) fdy <Gz(x) + P(z) 2 (z) — z"(w)). (4.80)

Thus, in view of (4.73) and (4.79), we obtain

p(x)z"(z) = p'(2) (x) + k(z)p(z)2(x). (4.81)
Notice that, for a curve z satisfying (4.81) and with functions «, f, p satis-
fying (4.72), the vector function H in (4.79) is independent of x.

Combining (4.76), (4.78) and (4.79), we show that the immersion is
congruent to

x
L(x,y) = / (1 —isinh a)z(m)efy(i_smh a) f(W)dy g,

y @ _
+i/ {/ 2(x) (v cosha — f cosh? a)efy(l_smha)f(y)dyda?}dy

; Yoo ’
N / ef' (1+s1nha)fdy<z(m)/ fazcoshady—z’(x)>dy.

p(z)
(4.82)
It follows from (4.82) that
b= ) [ poscoshaty @) s
= z(z a, coshady — 2'(z) ). .
! p(x)

We find from (4.2), (4.77) and (4.83) that (z,z) = (2, 2/) =0, (2,iz) = p.
Thus, z is a null curve lying in £C satisfying (z,iz’) = p. Notice that, for
such a null curve, equation (4.81) holds automatically for some function
k(x). Consequently, we obtain case (9) of the theorem. O

5. Marginally trapped surfaces of constant positive curvature

Theorem 5.1 There exist sixz families of marginally trapped surfaces of
constant curvature one in C? given by the following:
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(1) A surface defined by

Liz.y) = (H iba? N V21— 2b(2z + y) . iba? \/§i+2b(2x+y)>
Y V2 ety T VR By )
where b is a nonzero real number.
(2) A surface defined by
B i— \/ib(x +v) V2ib b
= V3 + ) 3 ) cos (ax)

(1 B 1 N V2ia
a alx+y? 2b(x+y)

i+ V2(x+y)  V2ib coshlag
( \/§b(l‘—l—y)2 a2 > h( )

+<1+ L Ve )>sinh(ax)),

a alr+y)? 2(z+y

) sinh(az),

where a,b are nonzero real numbers.
(3) A surface defined by

= i—\@b(x—i—y)i\/ﬁib cos(ax
= (e~ ) et
(z+y)? -1 ia
*(a@+yv VI + )
i4+v2b(z+y)  V2ib
(\/ib(x—ky)? + 2 )cos(ax)

" ((Z(J;zfy;l - \/§b(i§+ y)> Sin(ax))’

) sintao)

where a,b are nonzero real numbers.
(4) A surface defined by
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iz(x) +i(z +y)' (z)
V2p(x)(z + y)?

A (S 2@+ @ty @)
+\@/ <ﬂ:+y (z +y)3p?(z) >()d

i f@) 6p(x) + 2(x +y)p' () } >
+ — — z(x)dz |dy,
MR e o e S
where z is a null curve lying in LC satisfying 2" — (Inp)'z" = fz, and p, f, k

are real valued functions with p # 0.

(5) A surface defined by

L(z,y) = - /I(l +ik(x))z(x)dx

ier(L+ (@ +y) (A +p¥)aW) v -p))atdy
(z +y)%q(y)

L(z,y) = z(y) +

for some real-valued functions q # 0 and p, where ¢ is a null vector, z
is a null curve satisfying (c1,2') = —2el"P1% cos( [ qdy) and (c1,iz’) =
2ed” Pt sin( [V qdy).

(6) A surface defined by

¥ 1—isinha i2/(z) [V el a)(tsinha)dy
L.y = / e a(y)(sinh a—1i)dy #(w)dr — \/ﬁp(x) / (z +y)2 dy

z(x) Y ¥ a(y)(i+sinh a)dy 2 y .
" Vip(a) / (z+y) <x+y _/ a(y)(sinh )z dy | dy

- i/y /ac e(fqy(y) cosha — ) z(x) drdy.

q(y)(sinh a—i)dy sech o

where a,p,q are real-valued functions with ¢ # 0 and oy # gcosha, and z
is a null curve lying in the light cone LC satisfying (z,iz') = 2v/2p.

Conversely, up to rigid motions and dilations, every marginally trapped
surface of constant positive curvature in C? is locally an open portion of one
of the surfaces given by the siz families.

Proof.  As for Theorem 4.1, we show by examples that immersions (1)—(6)
give marginally trapped surfaces of constant curvature one in C%.

For case (1) we find from direct computation that the induced metric
tensor of the immersion is given by
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—2
= (de®dy+dy® dz). 5.1
g (m+y)2(x® Yy +dy ® dz) (5.1)

Thus, the immersion L defines a Lorentz surface of constant curvature one
in C2. Moreover, by straight-forward computation, we have

2
Ly, = (tanha —isecha)ay,L,, o =sinh™' (W)

which is light-like. Therefore, the immersion defines a marginally trapped
surface of constant curvature one in C?.
Cases (2)—(6) can be proved in similar way.

Conversely, if L : M — C? is a marginally trapped immersion of a sur-
face of constant positive curvature K in C%, then M is Lorentzian. More-
over, after applying a suitable dilation, we have K = 1. Thus, we may
assume that locally M is an open portion of the zy-plane equipped with the
Lorentzian metric (5.1). Hence, we have

0 2 0 0 va 2 0

Vo—=-— —, — =0, 9 — =— —.
% O T+ yox 0%83/ 6§z8y x+ydy

(5.2)

If we put

. ::r—l—yg . _az+yﬁ
1 \/§ 8:[,'7 2 \/§ ay)

then {e1,e2} is a pseudo-orthonormal frame in M satisfying (3.2) and

(5.3)

‘1 ‘1 C2 C2

Let es,eq be the normal vector fields defined by (3.4). From (3.5) we
find

Velel = — V82€1 = Veleg == Vegeg = — (54)

e3 = Ty (isecha — tanh o) L,

V2

A (5.5)
€4 = ? y(isechoz + tanh o) L,,.

V2

Since M is marginally trapped, we may assume as in section 4 that
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h(el, 61) = Beg + yeéq, h(el, 62) = (563, h(eg, 62) = )\63 + pey (56)
with 0 # 0 on M. From (5.3), (5.6) and Lemma 3.2 we obtain

Qp = _@’ ay, = M (5.7)
T +y r+y

It follows from (5.3), (5.4), (5.6), Lemma 3.2, and the equation of Co-
dazzi that

U 3A+6 V2(BA—6%—bp)

Ay — 0y = + tanh o, (5.8)
Tty Tty
Mo =~ i ; + pay tanh a (5.9)
2
Yy = v V2904 1) tanh a. (5.10)
T+y Tty

In view of (3.5), (3.7), and (5.5), equation (2.5) of Gauss can be ex-
pressed as

YA+ Bu = 1. (5.11)

Case (a): p = 0. In this case, (5.7), (5.8), (5.10) and (5.11) reduce to

2 20
ax:—\[ﬁ, ay:—f , (5.12)
T +y Tty
D) _ 52
Ay — 0y = AR + V20X — %) tanh «, (5.13)
T4y r+y
W= ; + yoy, tanh o (5.14)

with A =~71 £ 0. Since § # 0, we get a,, # 0. It follows from (5.14) that

sech a
v =p(x)(r+y)*cosha, = @)@+ )P (5.15)

for some nonzero real-valued function p.
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Case (a.1): 6 = 3. From (5.12) we get o, = . Thus, we have

Ty Tty

ﬂzéziﬂax: NG

Substituting (5.15) and (5.16) into (5.13) yields

Qy. (5.16)

o +a'*tanha + 2—(1/ = V2(6p(x) + up/(x)) sech a

- @) (5.17)

with a = a(u), v = x +y. By differentiating (5.17) with respect to = we

find
po =22+ 2 o)

which is impossible unless p’ = 0. Thus, we get p = b for some nonzero real
number b. Hence, (5.17) reduces to

20/ 6/2 sech «v

" /2 tanh e 1
o’ + o tanha + — b (5.18)
By combining p = b with (5.15) and (5.16) we have
B=b=-"Ca/ y=bdcosha, A= ChC (5.19)
= = \/5 : ’}/ = y = bu3 . .

Therefore, the immersion satisfies

2L,
L., = (tanha —isecha)a, L, — Ty +V2b(z 4+ y)2(i + sinh )L,
L, = (tanh o — isech o) oy, Ly, (5.20)
Lo v/2sech a(isech o — tanh ) I 2 I
W b(z +y)* oty

Solving the second equation in (5.20) gives

L(z,y) = A(y) + /x z(z)(1 —isinh a)dz (5.21)
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for vector functions A, z. Substituting this into the first equation in (5.20),
we get

1N * _ 22(2) + (z +y)< (o)
A(y) = 1{ / z(x)a, cosh adx Vbt o) } (5.22)

By differentiating (5.22) with respect to z we find
" 6 2 7
2 (x)=| 5+ V2bu2a/ (u) cosh a(u) | 2(x), u=z+1y,
U

which is impossible unless we have

2"(z) = cz(x), (5.23)
V2bub o/ (u) cosh a(u) = cu® — 6 (5.24)
for a real number c. Solving (5.24) shows that up to suitable translation,
we have
2 — cu?
o =sinh™! : 5.25
( V2bu? ) (5:25)

Combining this with (5.21) yields

r i(2—c(z 2
L(z,y) = A(y) + / <1 _ (2\@)(; :;;1 )>z(az)d:c. (5.26)

Case (a.1.i): ¢ = 0. From (5.23) we have z(z) = ¢1 + 2cox for some
vectors c¢i, ca. Thus, (5.26) becomes

L) = A+ ea(o+ ot

> + e (:,;2 + W) (5.27)

substituting this into the first equation in (5.21) gives A’ = 0. Thus, the
immersion of the surface is congruent to

L(z,y) = c1 <:c + \/M> + co <x2 + m> (5.28)

From (5.1) and (5.28) we have (c1,¢1) = (c1,¢2) = {(ca,¢c2) = 0, {(c1,ic) =
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v/2b. Thus, after choosing suitable initial conditions, we obtain case (1) of
the theorem.

Case (a.1.ii): ¢ = a® > 0. From (5.23) we get z(x) = c; cosh(azx) +
¢ sinh(ax) for some vectors cq, co. Thus, (5.26) becomes

icy Co iacs
L AN+ | ——— + = +
(w,y) (y) (\/ib(% y)2 a

N y)) cosh(ax)

iacy icy

+ <a T Vb ty) Vbt y)2> sinh(ar).

Substituting this into the first equation in (5.20), we get A’ = 0. Therefore,
the immersion is congruent to

(e e, e cosh(az
o = (T + 5 T ) e

iacy icy

+ <a * V2b(z +y) " V2b(z + y)2> snhlar).

Thus, by using (5.1) we find (c1,¢1) = (c1,¢2) = (c2,c2) = 0, (c1,ic2) =
2v/2b/a. Consequently, after choosing suitable initial conditions, we obtain
case (2).

Case (a.1.ii): ¢ = —a® < 0. From (5.23) we have z(x) = ¢; cos(ax) +
cosin(ax). Thus, (5.26) becomes

icy Co iacy

ozt g)? @ Vb +y)

" (a T bz +y) | v+ y)Q) snfar):

Liz,y) = A(y) + ( ) cos(az)

Substituting this into the first equation in (5.20), we find A’ = 0. Therefore,
the immersion is congruent to

icy Co iacy

L(z,y) = <\/§b(x T a + Tooe 4 7)

> cos(az)

iacy ico

i ( T bz +y) | bty

) snao).
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After choosing suitable initial conditions, we obtain case (3) of the theorem.
Case (a.2): 6 # (. From (5.12) and (5.15) we have

ﬂ:_x;‘iyam 5=—x;§yay, aw#ay’ (5.29)
h
v =p(x)(x+y)*cosha, \= _seeas (5.30)

p)(z +y)*

Substituting (5.29) and (5.30) into (5.13), we get

o (z +y)*
Tty V2

=0,

{(:n + y)az sinh o + ((z + y) oy + 2ay) cosh a}p2

which implies that

) <6p +2(z + y)p’

dy (z +y)?

+V2p%(x + y)*a, cosh a) =0.
Hence, there exists a real-valued function f such that
6p +2(z + y)p’ + V20’ (¢ +y)!(sinha), = f(o)p*(2)(z +y)%.  (5.31)

Solving this equation for (sinh «),,, we have

(z+y)*f(2)p* () — 2(z + y)p'(x) — 6p(x)
V2(z + y)*p*(x)

(sinha), =

So, we have

= sinh ™! ) — f(z) 2p(x) + (x + y)p' (x)
o = sinh (k( ) V2(z +y) * V2(z + y)3p2(2) ) (5.32)

for some function k. In views of (5.1)—(5.6), (5.29) and (5.30) we obtain

2L,
r+y

L., = (tanh o — isech ) oy, Ly, (5.33)

+V2p(z)(z + y)?(i + sinh @) Ly,

L., = (tanha — isech o), L, —
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v2sech a(isech o — tanh o) 2L,
Ly, = 1 = .
p(@)(z +y) z+y

Solving the second equation in (5.33), we obtain
L(z,y) = A(y) —|—/ z(z)(1 — isinh a)dx (5.34)

for some vector functions A, z. From (5.34) we have
L, = z(z)(1 —isinha). (5.35)

It follows from (5.1) and (5.35) that (z,z) = 0. So, z is a curve lying
in the light cone £LC C C2. By substituting (5.34) into the first equation in
(5.33) we find

[T 9+ (@) @)
Ay) = 1/ z(z)(sinh a) dx @) @t 0P

(5.36)

Differentiating (5.36) with respect to z, we have

6p + 2(x +y)p’
(z +y)?

p —p'2 = z(a:)( + V2p%(z + y)?*(sinh a)y). (5.37)

Combining this with (5.31), we get
p()2"(x) = p'(x)2(z) = f(2)p(x)2(x). (5.38)

Now, by applying (z, z) = (2/, z) = 0, we derive from (5.38) that (2", z) = 0.
On the other hand, it follows from (z,2z’) = 0 that (2/,2") = —(2", 2).
Hence, we get (2/,2') = 0. Therefore, z is a null curve lying in £LC.
From (5.34) and (5.36) we conclude that the immersion is congruent to

i(z(2) + (= + y)2'(
V2p(@) (2 +y)?

+ i/y /I(sinh a)yz(z)dxdy.

L(z,y) = z)) + /I z(x)(1 —isinh a)dz

Consequently, by applying (5.32) we obtain case (4) of the theorem.
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Case (b): u # 0. It follows from (5.9) that

u
= — cosha, u=z+ 5.39
7 \/§Q(y) y (5.39)
for a real-valued nonzero function ¢q. Hence, we find from (5.7) that
ﬁ*—ia 5*i(()cosha—a)7é0 (5.40)
\/§ T \/5 q y Yy : .
Case (b.1): v = 0. It follows from (5.11), (5.39) and (5.40) that
2
oy cosha = —— ,
u?q(y)
which implies
o =sinh ™" (p(y)—i— 2 ) u=x+vy (5.41)
uq(y) )’ ’ '

for some function p. Substituting this into (5.39) and (5.40), we get

VP + 24 upg)? V2
V2 \/u2q2 + (2 + upq)? ’

_ 6g+uq*((1+p°)q —p') + 2u(2pg® + ')
V2qy/u?q? + (2 + upq)?

It follows from (5.1)—(5.3), (5.5), (5.6), (5.41) and (5.42) that

(5.42)

4]

2 44 2u(p —1i)q
me:_* - x

u " w(u2g? + (2 4 upq)?)
6g+ U ((1+p*)g —p') +2u(2pg® + ¢)
uq(2 +u(i+p)q)
_ V2{(i—p)qu— 2}
u\/u2q? + (2 + upq)?

Lyy

Ly + (i+p)qLy.

Solving the second equation in (5.43), we obtain
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eV (=p)ady T () i * (Ve
Lz,y) = 2(y) - / (x)dz (1 mw>/ (2)d

q(y) (+y)?  e'Dady | (x4 y)?
(5.44)

for vector functions z,w. By substituting this into the first equation in
(5.43), we get w'(z) = 0. Thus, w = ¢; for a constant vector ¢;. Hence,

(5.44) reduces to

L(z,y) = z(y) + ier(L+ (@ +y)(+p(y)ay) el (i=p(W)a(y)dy

(= +y)2a(y) (545)
From (5.45), we get
;e (@ +y)a(y) —i((@ +y)p(v)ay) +2)
’ (x +y)3q(y)el” pady ’
o iciel S a)dy ) o 3 (5.46)
=2 (z +y)3q2(y)el " paty {490+
+(@+y)2p— (x+y)p)e® +2¢+ ( +y)d'}.
Now, it follows from (5.1) and (5.46) that
{e1,e1) = (2,2") =0, (sin F){ey,2") = (cos F)({icy, 2},
{(z +y)gcos F + ((x + y)pg + 2)sin F) } (c1, 2") (5.47)

+ {(z +y)gsin F — ((z + y)pq + 2) cos F) } (icy, 2)
— 2+ y)gel o

with F' = [Y q(y)dy. Solving the last two equations in (5.47), we find

y y
(c1,2") = —2¢/ " P9 ¢os </ qdy>, (icy, ') = —2¢J " P9 gin (/ qdy).

Consequently, we obtain case (5) of the theorem.
Case (b.2): v # 0. It follows from (5.10), (5.39) and (5.40) that

3
(Invy), = pra + a, tanh o — 2¢(y) sinh av. (5.48)
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From (5.11), (5.40) and (5.48) we have

_p@)(@+y)cosha | 2secha+ (z+y)°q(y)as (5.49)
7= e2 ¥ q(y)sinhady ~’ o QP(SC)(ZL‘ + y)3€—2 JY q(y) sinh ady ’

for some real-valued nonzero function p(x).
In views of (5.1)—(5.6), (5.39), (5.40) and (5.49) we obtain

2L, V2p(@)(@ + y)*(i + sinha)
rT+y €2fy q(y) sinh ady Yo

Ly = (q(y) cosha — o) (isech @ — tanh o) L, (5.50)

L., = (tanha —isecha)a, L, —

(isech a — tanh a)(2sech o + (z + y)?q(y) o) I 2L,

€T

V2p(z)(z + y)te—2J" a(y) sinh ady e
+ (i+sinha)q(y)Ly.

Ly, =

Solving the second equation in (5.50), we get

1 —isinha

for some vector functions A(y), z(x). Thus, we have

L, = (1—1isinh a)efy a(y)(i—sinh a)dyz(a:),

- [* (q(y) cosh a — ;) cosh
L, = A'(y) +1/ (g )efy q(sinha_yi))dy 2(x)dz.

By substituting (5.51) into the first equation in (5.50), we have

Ally) =

eJ ¥ ali+sinh a)dy ( , 2z(x)
V2i(z + y)2p(z) Ty

B i/x (q(y) cosha — ay)z(x)dx

eV a(sinh a—1)dy gaoch o

~ =) [y a>zdy)

(5.53)

By combining (5.51) and (5.53) we know that the immersion is congruent
to
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¥ 1 —isinha
L(.ﬁﬂ,y) = / efy q(sinha—i)dyz(x)dx
Z(.CU) /y efy q(i-l-sinha)dy( 2 /y ) >
+ — sinh o) ,.dy |d
VZin(@) CESNE p—y q(y)( )edy | dy

- i/y /:v (:f(g) cosha — ay)z(x)dxdy

q(sinh a—1)dy gach o

iz'(z) /y eV a(i+sinh a)dy ; (5.54)
Y. i

B V2p(x) (z +y)?
Also, substituting (5.53) into (5.52), we find

iefy q(i+sinh a)dy

= z(x ’ sinh « —2'(z) — 22(x)
L= L) [ atisinbo)dy - 2w - ZE L 5

It follows from (5.39), (5.52) and (5.55) that (z,z) = (¢/,2') =0, (z,1z') =
2v/2p. Consequently, we obtain case (6) of the theorem. O

6. Marginally trapped surfaces of constant negative curvature

Theorem 6.1 There exist six families of marginally trapped surfaces of
constant curvature —1 in C? given by the following:

(1) A surface defined by

L(iU,y) =
(i+k)(ba? — 4ix)  4i—2bz +2bsinh (V2(z+y)) o z+y
(T i wat (7).
(i+ k) (ba? +4iv)  4i+2bx —2bsinh (V2(z+y)) [z +y
_ T 4 yrA sech ( NG >>,

where b is a nonzero real number and k is an arbitrary real number.
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(2) A surface defined by

L(z,y) =

2;21) <a (zb(l — ik) — bsech? (””\%y) _ 9/3itanh ( ;iy)) sinh(az)
+ (bz(i + k) + 2ia® sech® <m+y) + V2a2btanh <w+y)) cosh(az),

V2 V2
a(bsech2 ( jiy) +2b(1 — ik) — 2v/Zia tanh( ﬁy» sinh(az)
~ <b2(1+ k) — 2ia® sech? < jiy) +V2a’btanh < ﬁy)) cosh(aw)),

where a,b are nonzero real numbers and k is an arbitrary real number.
(3) A surface defined by

L(‘T’y) =

2a12b ((b cos(ax) + 2iasin(ar)) (\/5&2 tanh <x +2y> —b(i+ k))
2ia? cos(ax) — absin(ax)
cost®((z + 1)/V2)

2ia? cos(az) + absin(ax)

cosh?((« + 9)/V2)

X (b(i + k) — v2a* tanh (”C\gy)))

where a,b are nonzero real numbers and k is an arbitrary real number.

(4) A surface defined by

+ (beos(ax) — 2iasin(az))

L(x,y):/ (1 —isinha)z dm—i—l/ / (sinh @), z(x)dzdy

o )
where z is a null curve in L£C satisfying 2" (z) — (Inp)(z)2'(z) = (2 +
f(@))z(2),
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V2(2 + f(2))
p(@) coth((z +y)/V2)
P'(w) + v2p(x) tanh((x + y)/\@)
p? (@) cosh?((z +y)/v2) ’

o =sinh™* <k(az) +

—+

and f,p,k are real-valued functions with p # 0.
(5) A surface defined by

Lay) = +(y) + L2l i) oy (2y) | lased” (@4 v)/v2)
= AT e et dy V2 () el "D Dawdy

where p,q are real-valued functions with q # 0, ¢1 is a null vector, and z
is a null curve satisfying (c1,2') = —el"PI% cos (fy qdy) and {(c1,iz') =
el Pady gin ([Y qdy).

(6) A surface defined by

r 1 —isinh« i2/(x) /y eJ? a(y)(i+sinh a)dy
L 5 = v - - dr — d
(x,y) / eJ¥ a(y)(sinh a—i)dy #(z)dz p(x) cosh? ((UC + y)/\@) ’

iz(x) /y oJ ¥ a(y)(i+sinh a)dy
+

p(x) cosh® ((z +y)/V2)

X /  4(y)(sinh a)ady — V2 tanh (%))dy

- i/y /ac e(fqy(y) cosha — ) z(x) ddy.

q(y)(sinh a—i)dy sech av

where o, p, q are real-valued functions with ¢ # 0 and oy # qcosha, and z
is a null curve lying in the light cone LC satisfying (z,iz") = p.

Conversely, up to rigid motions and dilations, every marginally trapped
surface of constant negative curvature in C? is locally an open portion of
one of the surfaces given by the sixz families.

Proof.  For case (1), we know from direct computation that the induced
metric tensor is given by

g = —sech® (%)(dm@dy—i—dy@dm). (6.1)
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Thus, the immersion defines a Lorentz surface of constant curvature —1 in
C?. Moreover, by straight-forward computation, we have

L;, = (tanh o — isech a)oy, L,

_ \/5 T +y T4y
—sinh ! (k4 Y2 h() h<>)
o = sin ( 5 an \/5 sec \/5

This implies that the mean curvature vector of the immersion is light-like.
Thus, the immersion defines a marginally trapped surface of constant cur-

with

vature —1.

Similar computations show that the remaining cases give rise to
marginally trapped surfaces of constant curvature —1 in C? as well.

Conversely, if L : M — C? is a marginally trapped immersion of a
surface of constant negative curvature, then M is Lorentzian. Moreover,
after applying a suitable dilation, we have K = —1. Thus, we may assume
that locally M is an open portion of the zy-plane with the Lorentzian metric
given by (6.1). Hence, we have

0 0 0
Vaaza:z——\[tanh< >8 V%%_07
5 (6.2)
Vaiway:—\ftanh< 5 >8y
If we put
e1 = cosh (%) Bacv’ eo = cosh <:U\%/—§y> aay, (6.3)

then {ei,e2} is a pseudo-orthonormal frame in M satisfying (3.2) and

sinh (V2(z + y))

2V2
sinh (V2(z + y))
2v2

sinh (V2(z + y)) .
2\/§ 1,
sinh (V2(z + y)) .
212 .

velel - - €1, V62€1 ==

(6.4)

Vel €y =

€2, Ve,0 = —
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Let es,e4 be the normal vector fields defined by (3.4). From (3.5) we
find

es = cosh (W) (isecha — tanh o) L,

V2

x—i—y .
eq = cosh | —== | (isech o + tanh o) L,,.
! < V2 >( ML

Since M is marginally trapped, we may assume as in section 4 that

(6.5)

h(el, 61) = ﬁeg + Y€4q, h(el, 62) = 563, h(eg, 62) = )\63 + Heq (66)

with § # 0 on M. From (6.4), (6.6) and Lemma 3.2 we obtain

ﬂsech( \j;) —(u— 6)sech< \%y> (6.7)

By using (6.4), (6.6), (6.7), Lemma 3.2 and the equation of Codazzi, we
find

NS h(

) (BN — 52 _ o) sech (a;\—/;y) tanh o,

Y

(6.8)
o = 7 ([ + pucg tanh a, (6.9)
y = 77 ( THYN 6+ ) sech< \—/gy>tanhoz. (6.10)

In view of (3.7) and (6.6), equation (2.5) of Gauss can be expressed as
YA+ B = —1. (6.11)

Case (a): p=0. In this case, (6.7), (6.8), (6.10), and (6.11) reduce to

— _fsech < ;ﬁy) = —5sech< 7 ) £ 0, (6.12)

Ay — 0y = 3)‘\/—;5 tanh <$\%y> + (B — 6%) sech <x\—/k§y> tanha, (6.13)
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3y <1:+y

= — tanh
VoA

It follows from (6.14) that

h
v = p(z) cosh® (x\—/gy) cosha, A= R eeh® <:c\—/k§y) (6.15)

for some nonzero real-valued function p.
Case (a.1): 6 = 3. From (6.12) we get ay = a,. Thus, we have

1
> + oy tanho, = DY # 0. (6.14)

=6 = —d/(u) cosh u), u=zx+uy. 6.16
5 (w)cosh (7 y (6.16)
Substituting (6.15) and (6.16) into (6.13), we get

0 = a"(u) + o/%(u) tanh () + V2 tanh <\/u§>o/(u)

By regarding x and u as independent variables and by taking partial differ-
entiation of (6.17) with respect to x, we obtain

u

V2

which is impossible unless p’(z) = 0. Thus, (6.15) reduces to

+y sech a 3(x+y
= bcosh? :C) cosha, A=-— sech ( )
! ( V2 b V2

for some nonzero real number b. Hence, the immersion satisfies

p(a)p"(z) = 2 (x) + 3v/2 tamh ( >p<x>p’<x>,

L., = (tanha —isecha)a, L, — V2 tanh (gg\—/kﬁy)Lx

. . r+y
+ b(i + sinh &) cosh? <>L,
( ) 7 )l
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L,y = (tanh o —isech a)ay, Ly, (6.18)
secti (2 + 4)/v2) vty
= L, —+v2tanh (| —= | L,.
v b(i 4 sinh a) V2tan < V2 > Y

Solving the second equation in (6.18), we get
L(z,y) = A(y) + / z(x)(1 —isinh a)dz. (6.19)

Substituting this into the first equation in (6.18), we find

Ally) =

i/m z(x)ay cosh adx — 2i(2'(z) + V2 tanh((z +y)/V2)z(2) .

b(1 + cosh(v2(z 4+ v))
(6.20)

By differentiating (6.20) with respect to x, we obtain

+y 2o THYYN
2(x) = <2 — 3sech? <ﬂj + bcosh® [ —= |a/ cosha | z(x)
V2 V2 ’

which is impossible unless we have

2" (z) = cz(x), (6.21)

+y 2Tty
2 — 3sech? x> -+ bcosh < > "cosha = 6.22
< V2 J2 ) emae e (6.22)

for a real number c. Solving (6.22) shows that up to suitable translation,
we have

o = sinh~? (k + \f tanh (%) <c + sech? (””\gy))) (6.23)

for a real number k. Combining this with (6.19), we obtain

L= Ady) + / {1 i \fitanh (”5}29) <c+ sech? (‘”;;’)) }z(m)dw.
(6.24)

Case (a.1.i): ¢ =0. From (6.21) and (6.23) we obtain z(x) = ¢1 + 2cox
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and

o = sinh~! (k + ‘f tanh (”“’\;%y) sech? (CU\J/;/)) (6.25)

for some vectors ¢y, c2. Hence, we find from (6.24) that
L(z,y) = A(y) + (1 —ik)(z + y)(c1 + ca(z — y))

+ % <(cl + 2¢9) sech? <”J§y> — 2v/2¢; tanh (V2(z + y))).

Substituting this into the first equation in (6.18) and by using (6.25), we
find A'(y) = (1 — ik)(2¢c2y — ¢1). Therefore, the immersion is congruent to

L(z,y) = (1 = ik)(c2y® — cxy) + (1 = ik) (z + y) (1 + ca(z — y))

+ % <(cl + 2¢y) sech? <$\j§y> — 2V/2¢y tanh (V2(x + y))).

(6.26)

From (6.1) and (6.26) we have (c1,c1) = (c1,c2) = (ca,¢c2) = 0, (ic1, c2)
= —b/2. Thus, after choosing suitable initial conditions, we obtain case (1)
of the theorem.

Case (a.1.ii): ¢ = a®> > 0. From (6.21) we get z(x) = c¢; cosh(ax) +
¢o sinh(az) for some vectors ¢y, co. Thus, (6.24) becomes

_f1—ik | 2c1—2csinh (V2(z + 7))
L(z,y) = { 0 2 + 2b cosh? ((a: + y)/\/i)

N {1 —ik . 2cy —V/2¢rsinh (V2(z 4 y))

} cosh(az)

C1

a * 2b cosh? ((1‘ + y)/\/ﬁ) } sinh(ax) + A(y).

Substituting this into the first equation in (6.18), we get A’ = 0. Therefore,
after choosing suitable initial conditions, we obtain case (2) of the theorem.

Case (a.l.ii): ¢ = —a? < 0. From (6.22) we get z(x) = ¢ cos(ax) +
co sin(ax) for some vectors ¢y, co. Thus, (6.24) becomes
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L(z,y) = A(y) + ib(cl cos(ax) + ¢g sin(ax)) sech? (x\—/{—;)

Lo cos(ax)a; c1 sin(az)) <b(i + k) — v2a? tanh <x}2f‘/>>

Substituting this into the first equation in (6.18), we find A’ = 0. Hence,
after choosing suitable initial conditions, we obtain case (3) of the theorem.
Case (a.2): 6 # . From (6.12) and (6.15) we have

_ T+y
6= amcosh< 7 ),

0 = —ay, cosh (W), Qg 7 Qy,

V2
(6.27)
Tty
= p(z) cosh® [ =——=2 ) cosh a,
v = p(x) < 7 >
sech a 3 <a: + y>
A=— sech .

p(z) V2
In views of (6.1)—(6.3), (6.5), (6.6), and (6.27), we obtain
Ly = (tanh a — isech o), Ly — v/2p(z) tanh (W) L,

V2
ofTHY\,. .
+ p(z) cosh <> (i+sinha)L,,

V2 (6.28)

L,y = (tanh o —isech a)ay, Ly,
sech a(tanh o — isech ) r+y
= L, — V2p(z) tanh <)L .
"= ) costtt ((o 1 9)/V2) v )
Solving the second equation in (6.28), we get
L(z,y) = A(y) —I—/ z(z)(1 —isinh a)dz (6.29)

for some vector functions A, z. From (6.29) we have
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L, = z(z)(1 —isinh ). (6.30)

Thus, it follows from (6.1) and (6.30) that z is a curve lying in £C C C2.
Next, by substituting (6.29) into the first equation in (6.28), we find

(2) + VZ2() tanh((z + y)/V2)
p(a) cosh ((x + )/V2)

Ally) =i / wz(m)(sinha)ydx—iZ/ . (6.31)

By differentiating (6.31) with respect to z, we obtain the following

e () (40 i (720

+ p(x) cosh? <x\%y>ay cosha}z(x). (6.32)

On the other hand, by substituting (6.27) into (6.13), we find

p + 3v2tanh <I+y>p(x) + 9 (@) cost? <W>

V2 V2
X {\/iay cosh a sinh (%) + ozz cosh (%) sinh «

r+y
+ ayyy cosh (\/§> cosha} =0,
which implies that
0 P’ T+y T+y TR
—{VoZ tanh< —3sech? | =—Z ) +pcosh? | =—2 | (sinh « =0.
3y{ p V2 v2 )7 V2 ( v

Hence, there exists a real-valued function f(z) such that

fla) = \/57;/ tanh (x\gﬂ — 3sech? <x\J/F§y> + peosh? <x;§y> (sinha),.
(6.33)

Combining this with (6.32), we get

p2" = p'2' =2+ f(z))p(x)2(2). (6.34)
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Also, by solving (6.33) for (sinh «),, we find
(sinha), =

p(z) f(x) + 3p(x) sech? ((z + y)/v2) — V2p/(x) tanh ((z + y)/V2)
P(z) cost® (@ + 9)/V3) |

Thus, we obtain

V22 + f(x))
coth(m+y/\f)

p(z )+fp<x>tan ((rc+y>/f)>
z) cosh® ((z +y)/V2)

o =sinh ™! <k‘(a:) +

_l’_

for some function k. By applying (z, z) = (2/, z) = 0, we get (2", z) = 0 from
(6.34). On the other hand, since (z, z’) = 0, we have (z/, ) = — (2", 2). So,
we also have (z’,2’) = 0. Thus, z is a null curve lying in LC.

It follows from (6.29) and (6.31) that the immersion is congruent to

L(a:,y):/ (1 —isinha)z d:E—I—l/ / (sinh @), z(z)dxdy

T )(\ftanh (fE\J/riy) () — sech? (m\jﬁy>z(m)> (6.35)

Consequently, we obtain case (4) of the theorem.

Case (b): u # 0. It follows from (6.9) that

11 = q(y) cosh a cosh <“’”}2y> (6.36)

for a real-valued nonzero function ¢q. Hence, (6.7) yields

_ Tty
8 = —ay, cosh <\@ ),

(6.37)
>(Q(y) cosha — ay) # 0.

ty

5—cosh< 7
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Case (b.1): v = 0. From (6.11), (6.36) and (6.37) we find

(sinha), — q(ly) sech? <x\j§y>

which implies that

a = sinh ™! (p(y) + q(\/j) tanh (”7;)) (6.38)

for some function p. Substituting (6.38) into (6.36) and (6.37), we get

,u—\/q + (pg + V2 tanh((z + ) /v2) COSh( \J/%y)

sech ((z +y)/v2)
\/qz + (pg + V2 tanh ((z + y)/\/i))Q

5—\/(] + ( pq—i-\[tanh(x—i—y)/\[) cosh( \—/gy>

7p/q—|—sech ((z +y)/v2) — vV2(Ing)’ tanh ((z + y)/v2) sl <x+y)
\/q + (pg + V2 tanh ((z +y/V2) V2

ﬂ:_

Hence, the immersion satisfies

L. — <(p —1i)g + V2tanh (%y)) coch2 <?%,> . <x
q? + (pq + /2 tanh ((;1; 4 y)/\/?)
— _\/§<(p —i)q + v/2tanh <%)>
Y@ (pg + V2tanh ((x +y)/v2)?

X {\/§(2pq + (Ing)’) tanh (xf/;/)

424 (1+p*)g® — plg — 3sech’ <x+y>}Lx, (6.39)

+
2‘”)%
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L

_ Mg+ V2tanh (@ +y)/v2)} <x+y

yy = —— | Ly + (i+p)gLy.
\/q2+ (pg + v2tanh ((z + ) /v/2)’ vz >

Solving the second equation in (6.39), we have

L = z(y)+el"(-Pady / m(1 —ip— “q/é tanh (x\;%y >> sech? <””\J/r§y> B((;Z;

for some vector functions z and B. By substituting this into the first equa-
tion in (6.39), we get B’ = 0. Thus, B = ¢; for some ¢; € C%. Hence, (6.40)
reduces to

V21 (1 —i T+ icy sech? (((z 4+ y)/V2
L,y) = =(y) + e;'l’((p—i)tft)ig;y)) tanh ( \@y> + q(y)e(fy(p—i)idy ) '
(6.41)

From (6.41), we get

L= <1 —ip(y) — ;(f) tanh <x\%y>)efy(i_p)qdy sech? (:E\%/—;/)’

L,= iCleg;((iy_)p)qdy{\@qQ(y)((l +p°(y))a(y) — p'(y)) tanh (x\—/i—iy>
- <2p(y)q2(y) +4'(y) + V2q(y) tanh (fc\}%y» sech” (x\%y> }
+2'(y). (042

It follows from (6.1) and (6.42) that (c1,¢1) = (/,2') =0 and

y y
(c1,2') = —el " P cog </ qdy>, (icy, 2"y = —eJ " P4 gin (/ qdy).

Consequently, we obtain case (5) of the theorem.
Case (b.2): v # 0. It follows from (6.10), (6.36) and (6.37) that

(Invy)y = 3 tanh (m il y> + o tanh o — 2¢(y) sinh a.

V2 V2
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After solving this equation, we get

p(z) cosh a cosh <x + y)

e2 JY q(y) sinh ady

V2

R el A 7))

’}/ =
(6.43)

for some real-valued nonzero function p. Hence, it follows from (6.1), (6.2),
(6.3), (6.5) (6.36), (6.37) and (6.43) that

L., = (tanha —isecha)a, L, — V2 tanh (WJ)LQC

V2

p(z)(i+ sinh a) afT+y
e2 /¥ a(y) sinh ady cosh ﬂ Ly’

Ly = (q(y) cosha — o) (isech o — tanh o) L, (6.44)

Ly, = (i +sinha)q(y) L, — V2tanh <x\—/i_§y>Ly

(tanh a — isech o) sech? ( Z¥
+ - ( v2 ) sech o sech? THYY q(y)as | Ly
p<1.)e—2 J¥ q(y) sinh ady \/i

After solving the second equation in (6.44), we find

T 1—1isinha

— i[Yq(y)dy
Liz,y) = Aly) +e [ e i 649)
for some vector functions A and z. Thus, we have

L, = (1 —isinha)el " 9@)(i=sinha)dy ()

efy g sinh ady

By substituting (6.45) into the first equation in (6.44), we obtain
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- he — . [Y q(i+sinh a)dy
A= / gjcosha —ay g, e 7
ef q(sinh a—i)dy sech o p(m) cosh ((l' + y)/ﬂ)

« {z(w) / ? g(sinh 0)dy — v32(x) tanh <x;§y> _ z'(m)}. (6.47)

By combining this with (6.45), we show that the immersion is congruent
to
L(z,y) =

i vy [ 1—isinha p iz(x) (Y e’ aW)(itsinha)dy
€ J¥ q(y) sinh ady 2(x)dz + 2 V2
e p(x) cosh” ((z +y)/V?2)

y

g </ q(y)(sinh @)z dy — V2 tanh <$+\/§y>)dy

_ 1/34/9” (fqy(y) cosh a — Oéy>2(37) drd i/ (z) /y oI a(y)(i+sinh a)dy
e

9(y)(sinh a—D)dy goch o ~ p(@) J cosh? ((z+y)/V2)
(6.48)

dy.

Also, by substituting (6.47) into (6.46), we find

iefy q(i+sinh a)dy

p(x) cosh? ((z +y)/V2)

x {z(m)</yq(sinh o)ody — V2 tanh <9”\J/r§y>) - z/(x)}.

This, together with (6.1) and (6.46), implies that (z,z) = (2/,2') = 0,
(z,12") = p. Consequently, we obtain case (6) of the theorem. O

L, =
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