
Hokkaido Mathematical Journal Vol. 38 (2009) p. 361–408

Classification of marginally trapped surfaces

of constant curvature in Lorentzian complex plane
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Abstract. A surface in the Lorentzian complex plane C2
1 is called marginally trapped

if its mean curvature vector is light-like at each point on the surface. In this article, we

classify marginally trapped surfaces of constant curvature in the Lorentzian complex

plane C2
1. Our main results state that there exist twenty-one families of marginally

trapped surfaces of constant curvature in C2
1. Conversely, up to rigid motions and

dilations, marginally trapped surfaces of constant curvature in C2
1 are locally obtained

from these twenty-one families.

Key words: Lorentz surfaces, marginally trapped surfaces, Lagrangian surfaces,

Lorentzian complex plane, surface of constant curvature.

1. Introduction

Let Cn denote the complex number n-space with complex coordinates
z1, . . . , zn. The Cn endowed with gi,n, i.e., the real part of the Hermitian
form

bi,n(z, w) = −
i∑

k=1

z̄kwk +
n∑

j=i+1

z̄jwj , z, w ∈ Cn,

defines a flat indefinite complex space form with complex index i. We simply
denote the pair (Cn, gi,n) by Cn

i . In particular, the flat indefinite complex
n-space Cn

1 with complex index i = 1 is called the Lorentzian complex
n-space.

A vector v is called space-like (respectively, time-like) if 〈v, v〉 > 0 (re-
spectively, 〈v, v〉 < 0). A vector v is called light-like if it is nonzero and it
satisfies 〈v, v〉 = 0.

The concept of trapped surfaces in 4D space-times, introduced by
R. Penrose [15] plays a very important role in general relativity. In the
theory of cosmic black holes, if there is a massive source inside the surface,
then close enough to a massive enough source, the outgoing light rays be

2000 Mathematics Subject Classification : Primary 53C40; Secondary 53C42, 53C50.



362 B.-Y. Chen

converging; a trapped surface. Everything inside is trapped within a shrink-
ing area. Nothing can escape, not even light. In between, there will be a
marginally trapped surface (up to the issue of differentiability) where the
outgoing light rays are instantaneously parallel.

This is a black hole; its surface is located by the marginally surface,
where outgoing light rays are instantaneously parallel, ingoing light rays are
converging just inside, and outgoing light rays are diverging just outside.

In terms of mean curvature vector, a spatial surface is future trapped
if its mean curvature vector is timelike and future-pointing at each point
(similarly, for passed trapped); and marginally trapped if its mean curvature
vector is light-like at each point on the surface (cf. for instance [5], [11],
[12], [13]).

Every surface in the Lorentzian complex plane C2
1 is automatically

Lorentzian if its mean curvature vector is light-like at each point. In this ar-
ticle, by a marginally trapped surface in C2

1 we mean a surface whose mean
curvature vector is light-like at each point (see, for instance, [3], [5], [8]).
Such surfaces are also known as quasi-minimal surfaces (cf. [9], [16], [17]).

In this article, we classify marginally trapped surfaces of constant curva-
ture in the Lorentzian complex plane C2

1. Our main results state that there
exist 21 families of marginally trapped surfaces of constant curvature in C2

1.
Conversely, up to rigid motions and dilations, marginally trapped surfaces
of constant curvature in C2

1 are locally obtained from these 21 families.

2. Preliminaries

2.1. Basic formulas, equation and definitions
Let M be a Lorentz surface of a Lorentzian Kähler surface M̃2

1 . Denote
by g̃ the metric on M̃2

1 and by 〈 , 〉 the inner product associated with g̃.
Let g be the the induced metric on M .

Let ∇ and ∇̃ be the Levi-Civita connection on M and M̃2
1 , respectively.

Then the formulas of Gauss and Weingarten are given respectively by (cf.
[2], [14])

∇̃XY = ∇XY + h(X, Y ), (2.1)

∇̃Xξ = −AξX + DXξ (2.2)

for vector fields X, Y tangent to M and ξ normal to M , where h,A and
D are the second fundamental form, the shape operator and the normal
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connection.
The shape operator and the second fundamental form are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉 (2.3)

for X, Y tangent to M and ξ normal to M .
For each normal vector ξ of M at x ∈ M , the shape operator Aξ is a

symmetric endomorphism of the tangent space TxM . The mean curvature
vector is defined by

H =
1
2

trace h. (2.4)

For a Lorentz surface, the equations of Gauss, Codazzi and Ricci are
given by

〈R(X, Y )Z,W 〉 = 〈R̃(X, Y )Z, W 〉+ 〈h(X, W ), h(Y, Z)〉
− 〈h(X, Z), h(Y, W )〉, (2.5)

(R̃(X, Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z), (2.6)

〈RD(X, Y )ξ, η〉 = 〈R̃(X, Y )ξ, η〉+ 〈[Aξ, Aη]X, Y 〉, (2.7)

where X, Y, Z, W are vector tangent to M , and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.8)

For Lorentz surfaces in a Lorentzian Kähler surface M̃2
1 we have the

following general result from [7].

Theorem 2.1 The equation of Ricci is a consequence of the equations
of Gauss and Codazzi for any Lorentz surface in any Lorentzian Kaehler
surface.

3. Basics results for Lorentzian surfaces

Let M be a Lorentz surface in a Lorentzian Kähler surface M̃2
1 with

almost complex structure J . For each tangent vector X of M , we put

JX = PX + FX, (3.1)
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where PX and FX are the tangential and the normal components of JX.
On M there exists a pseudo-orthonormal local frame {e1, e2} such that

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (3.2)

For a pseudo-orthonormal frame {e1, e2} satisfying (3.2), it follows from
(3.1), (3.2), and 〈JX, JY 〉 = 〈X, Y 〉 that

Pe1 = sinhαe1, P e2 = − sinhαe2 (3.3)

for some function α. This function α is called the Wirtinger angle of M .
When the Wirtinger angle α is constant, the Lorentz surface M is called a
slant surface (cf. [9], [10]). In this case, α is called the slant angle and the
surface is called α-slant. A α-slant surface is called Lagrangian if α = 0.
Slant surfaces in M̃2

1 are Lorentzian.
If we put

e3 = sech αFe1, e4 = sech θFe2, (3.4)

we find from (3.1)–(3.4) that

Je1 = sinhαe1 + cosh αe3, Je2 = − sinhαe2 + cosh αe4, (3.5)

Je3 = − cosh αe1 − sinhαe3, Je4 = − cosh αe2 + sinhαe4, (3.6)

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1. (3.7)

We call such a frame {e1, e2, e3, e4} an adapted pseudo-orthonormal frame.
We recall the following lemmas from [4], [6].

Lemma 3.1 If M is a Lorentz surface in a Lorentzian Kähler surface M̃2
1 ,

then with respect to an adapted pseudo-orthonormal frame we have

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2, (3.8)

DXe3 = Φ(X)e3, DXe4 = −Φ(X)e4 (3.9)

for some 1-forms ω, Φ on M .

For a Lorentz surface M in M̃2
1 with second fundamental form h, we

put
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h(ei, ej) = h3
ije3 + h4

ije4, (3.10)

where e1, e2, e3, e4 is an adapted pseudo-orthonormal frame.

Lemma 3.2 If M is a Lorentz surface in a Lorentzian Kähler surface M̃2
1 ,

then with respect to an adapted pseudo-orthonormal frame {e1, e2, e3, e4} we
have

Ae3ej = h4
j2e1 + h4

1je2, Ae4ej = h3
j2e1 + h3

1je2, (3.11)

ejα = (ωj − Φj) coth α− 2h3
1j , (3.12)

e1α = h4
12 − h3

11, e2α = h4
22 − h3

12, (3.13)

ωj − Φj = (h3
1j + h4

j2) tanhα, (3.14)

for j = 1, 2, where ωj = ω(ej) and Φj = Φ(ej).

4. Marginally trapped flat surfaces in C2
1

The light cone LC in C2
1 is defined by LC = {v ∈ C2

1 : 〈v, v〉 = 0}.
Theorem 4.1 There exist nine families of marginally trapped flat surfaces
in the Lorentzian complex plane C2

1 given by the following :
(1) A Lagrangian surface defined by L(x, y) = z(x)eiy, where z(x) is a

null curve lying in the light cone LC satisfying 〈iz′, z〉 = 1.
(2) A slant surface with slant angle θ 6= 0 given by L(x, y) =

z(x)y
1
2 (1−i csch θ), where z is a null curve lying in the light cone LC satisfying

〈iz, z′〉 = 2 sinh θ.
(3) A surface given by

L(x, y) = yz(x) +
∫ x i + w(x)

q(x)
z′(x)dx,

where q, w are real-valued functions and z is a null curve lying in the light
cone LC satisfying 〈z′, iz〉 = q.

(4) A surface given by

L(x, y) = z(x)(1− i sinhα(y))e
R y(i sech α(y)−tanh α(y))µ(y)dy,

where z is a null curve in LC satisfying 〈z′, iz〉 = b−1 for some real
number b 6= 0, and α, µ are real-valued functions satisfying α′ = µ +
be
R y 2µ tanh αdy sech α 6= 0.
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(5) A surface given by

L(x, y) =
(

x +
y

2
+ ip(y)− i

∫ x

sinhαdx,

x− y

2
+ ip(y)− i

∫ x

sinhαdx

)
,

where α and p are real-valued functions with αy 6= 0.
(6) A Lagrangian surface defined by

L(x, y) =
(

xeiF (y) +
∫ y

eiF (y)

(
iψ(y) +

1
2

)
dy,

xeiF (y) +
∫ y

eiF (y)

(
iψ(y)− 1

2

)
dy

)
,

where ψ is a real-valued function and F is a non-constant real-valued func-
tion.

(7) A slant surface with slant angle θ 6= 0 defined by

L(x, y) =
(

xe(i−sinh θ)F (y) +
i
2

cosh θ coth θ

∫ y

e(i+sinh θ)F (y)dy

+ (i sech θ − tanh θ)
∫ y (

e(i+sinh θ)F (y)

∫ y

q(y)e−2F (y) sinh θdy

)
dy,

xe(i−sinh θ)F (y) +
(

i
2

cosh θ coth θ − i sinh θ − 1
) ∫ y

e(i+sinh θ)F (y)dy

+ (i sech θ − tanh θ)
∫ y (

e(i+sinh θ)F (y)

∫ y

q(y)e−2F (y) sinh θdy

)
dy

)
,

where F and q are real-valued functions with F being non-constant.
(8) A surface given by

L(x, y) =
( ∫ y

e
R y(i+sinh α(y))f(y)dy

{
1
2

+ i
∫ y

e−2
R y f(y) sinh α(y)dyk(y)dy

}
dy

+ x(1− i sinhα(y))e
R y(i−sinh α(y))f(y)dy,
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x(1− i sinhα(y))e
R y(i−sinh α(y))f(y)dy −

∫ y

e
R y(i+sinh α(y))f(y)dy

×
{

1
2
− i

∫ y

e−2
R y f(y) sinh α(y)dyk(y)dy

}
dy

)
,

where α, f and k are real-valued functions with α′ 6= 0 and f 6= 0.
(9) A surface given by

L(x, y) =
∫ x

(1− i sinhα)z(x)e
R y(i−sinh α)f(y)dydx

+ i
∫ y { ∫ x

z(x)(αy cosh α− f(y) cosh2 α)e
R y(i−sinh α)f(y)dydx

}
dy

+
i

p(x)

∫ y

e
R y(i+sinh α)fdy

{
z(x)

∫ y

f(y)αx cosh αdy − z′(x)
}

dy,

where α, f, p are nonzero real-valued functions satisfying αxαy 6= 0 and
(4.72), and z is a null curve lying in LC with 〈z, iz′〉 = p.

Conversely, up to rigid motions and dilations, every marginally trapped
flat surface in C2

1 is locally an open portion of one of the surfaces given by
the nine families.

Proof. We show by examples that immersions given by cases (1)–(9) of
this theorem define marginally trapped flat surfaces in C2

1.
For case (1) we have Lx = z′(x)eiy, Ly = iz(x)eiy, which imply that

〈Lx, Lx〉 = 〈z′, z′〉, 〈Lx, Ly〉 = 〈z′, iz〉, 〈Ly, Ly〉 = 〈z, z〉. (4.1)

Since z(x) is a null curve lying in the light cone LC satisfying 〈iz′, z〉 = 1, it
follows from (4.1) that the metric tensor is given by

g = −(dx⊗ dy + dy ⊗ dx). (4.2)

Thus, the immersion L defines a flat Lorentz surface in C2
1. Moreover,

since Lxy = iz′(x)eiy = iLx, we also know from (2.4) and (4.2) that the
mean curvature vector is given by H = −Lxy = −iLx, which is light-like.
Therefore, L(x, y) = z(x)eiy defines a marginally trapped flat surface in C2

1.
For case (3), we get
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Lx =
(

y +
i + w(x)

q(x)

)
z′(x), Ly = z(x), (4.3)

which implies

〈Lx, Lx〉 =
((

y +
w(x)
q(x)

)2

+
1

q2(x)

)
〈z′, z′〉,

〈Lx, Ly〉 =
(

y +
w(x)
q(x)

)
〈z′, z〉+

1
q(x)

〈iz′, z〉,

〈Ly, Ly〉 = 〈z, z〉.

(4.4)

Because z is a null curve lying in the light cone LC satisfying 〈z′, iz〉 = q, it
follows from (4.4) that the induced metric is also given by (4.2). Moreover,
it follows from (4.3) that

H = −Lxy =
−q(x)

i + w(x) + q(x)y
Lx. (4.5)

Thus, the mean curvature vector is light-like. Hence, this immersion also
defines a marginally trapped flat surface.

For case (5), we know from direct computation that the induced metric
tensor is given by (4.2). Moreover, by straight-forward computation, we
have

Lxy = (tanhα− i sech α)αyLx.

Since H = −Lxy and αy is nonzero, we know that the mean curvature vector
is light-like. Hence, the immersion defines a marginally trapped flat surface
in C2

1.
Similar computations show that the remaining cases give rise to

marginally trapped flat surfaces in C2
1 as well.

Conversely, let L : M → C2
1 be a marginally trapped immersion of a flat

surface in C2
1. Then M is Lorentzian. So, we may assume that locally M

is an open portion of the xy-plane equipped with the flat Lorentzian metric
given by (4.2). Thus we have ∇ ∂

∂x

∂
∂x = ∇ ∂

∂x

∂
∂y = ∇ ∂

∂y

∂
∂y = 0. If we put

e1 = ∂
∂x , e2 = ∂

∂y , then {e1, e2} is a pseudo-orthonormal frame satisfying
(3.2).
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Let e3, e4 be the normal vector fields defined by (3.4). From (3.5) we
find

e3 = (i sech α− tanhα)Lx, e4 = (i sech α + tanhα)Ly. (4.6)

Since M is marginally trapped, in view of (2.4) and (3.2) we may assume
that

h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3, h(e2, e2) = λe3 + µe4 (4.7)

with δ 6= 0 at each point.
In view of (3.5), (3.7), and (4.7), the equation of Gauss can be expressed

as

γλ + βµ = 0. (4.8)

Using Lemma 3.2 we find

De1e3 = −β tanhαe3, De2e3 = −(δ + µ) tanhαe3,

De1e4 = β tanhαe4, De2e3 = (δ + µ) tanhαe4.
(4.9)

Hence, it follows from (4.7) and (4.9) that

(∇̄e1h)(e1, e2) = (δx − δβ tanhα)e3,

(∇̄e2h)(e1, e1) = (βy − β(δ + µ) tanhα)e3 + (γy + γ(δ + µ) tanhα)e4,

(∇̄e1h)(e2, e2) = (λx − λβ tanhα)e3 + (µx + µβ tanhα)e4, (4.10)

(∇̄e2h)(e1, e2) = (δy − δ(δ + µ) tanhα)e3.

From (4.10) and the equation of Codazzi we obtain

λx − δy = (λβ − δ2 − δµ) tanhα, (4.11)

µx = −βµ tanhα, (4.12)

βy − δx = βµ tanhα, (4.13)

γy = −γ(δ + µ) tanhα. (4.14)

Also, it follows from (4.7) and Lemma 3.2 that
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αx = −β, αy = µ− δ. (4.15)

Case (a): µ = 0. Equations (4.8) and (4.15) give

γλ = 0, β = −αx, δ = −αy. (4.16)

Case (a.1): γ = 0. From (4.11) and µ = 0 we get

λx − δy = (λβ − δ2) tanhα. (4.17)

We find from (4.16) and (4.17) that

λx + (αx tanhα)λ = −αyy − α2
y tanhα. (4.18)

Solving this equation, we give

λ = k(y) sech α− sech α

∫ x (
αyy cosh α + α2

y sinhα
)
dx. (4.19)

Therefore, we obtain from (4.2)–(4.7), (4.16), and formula (2.1) of Gauss
that

Lxx = αx(tanhα− i sech α)Lx,

Lxy = αy(tanhα− i sech α)Lx, (4.20)

Lyy = λ(i sech α− tanhα)Lx,

where λ is given by (4.19). After solving the first equation in (4.20) we
obtain

L(x, y) = A(y) + B(y)
(

x− i
∫ x

sinhαdx

)
(4.21)

for vector function A,B. Substituting this into the second equation in (4.20),
we get B′ = 0. So, B = c1 for some vector c1 ∈ C2

1. Substituting (4.21) with
B = c1 into the last equation into (4.20) we find A′′ = ic1k. Consequently,
L is congruent to

L(x, y) = c1x + c2y + ic1

∫ y ( ∫ y

k(y)dy

)
dy − ic1

∫ x

sinhαdx
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for some vectors c1, c2. Hence, after choosing suitable initial conditions, we
obtain case (5) of the theorem with p(y) = y +

∫ y ( ∫ y
k(y)dy

)
dy.

Case (a.2): γ 6= 0 and λ = 0. In this case, (4.7), (4.11) and (4.14) reduce
to

h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3, h(e2, e2) = 0, (4.22)

(ln δ)y = −αy tanhα, (ln γ)y = αy tanhα. (4.23)

Solving the two equations in (4.23), we see that

γ = p(x) cosh α, δ = −q(x) sech α (4.24)

for some real-valued functions p, q. After substituting this into the second
equation in (4.15), we get αy cosh α = q(x). Hence we have

α = sinh−1(q(x)y + w(x)) (4.25)

for some function w. Consequently, the immersion L satisfies

Lxx =
q′(x)y + w′(x)

i + q(x)y + w(x)
Lx + (i + q(x)y + w(x))p(x)Ly,

Lxy =
q(x)

i + q(x)y + w(x)
Lx, Lyy = 0.

(4.26)

Solving the last two equations in (4.26) gives

L(x, y) =
∫ x i + w(x)

q(x)
z′(x)dx + z(x)y (4.27)

for a vector function z. Substituting this into the first equation in (4.26),
we have

q(x)z′′(x)− q′(x)z′(x)− p(x)q2(x)z(x) = 0. (4.28)

By applying (4.2) and (4.27), we find 〈z, z〉 = 〈z′, z′〉 = 0 and 〈z′, iz〉 = q.
Therefore, we obtain case (3) of the theorem.

Case (b): µ 6= 0 and λ = 0. Equation (4.8) gives β = 0. Thus, the first
equation in (4.15) implies α = α(y). So, we find from (4.7) and (4.11)–(4.14)
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that

h(e1, e1) = γe4, h(e1, e2) = δe3, h(e2, e2) = µe4, µ = µ(y), (4.29)

(ln δ)y = (δ + µ) tanhα, (ln γ)y = −(δ + µ) tanhα, (4.30)

δ = µ(y)− α′(y). (4.31)

It follows from (4.30) and (4.31) that

γ =
v(x)

µ(y)− α′(y)
(4.32)

for some real-valued function v(x) 6= 0. Therefore, the immersion L of M

satisfies

Lxx =
v(x)(i sech α− tanhα)

µ(y)− α′(y)
Ly,

Lxy = (µ(y)− α′(y))(i sech α− tanhα)Lx,

Lyy = µ(y)(i sech α + tanhα)Ly.

(4.33)

By substituting (4.31) and (4.32) into the second equation in (4.30), we
have

µ′ = (2µ2 − 3α′µ + α′2) tanhα + α′′. (4.34)

Case (b.1): α = 0. In this case, M is Lagrangian. It follows from (4.34)
that µ is a nonzero real number, say c. By applying a suitable dilation, we
have µ = 1. Thus, (4.31) and (4.32) yields δ = 1 and γ = v(x). Hence,
(4.33) reduces to

Lxx = iv(x)Ly, Lxy = iLx, Lyy = iLy. (4.35)

Solving this system, we give

L(x, y) = z(x)eiy. (4.36)

It now follows from (4.2) and (4.36) that z is null curve lying in the light
cone LC satisfying 〈iz′, z〉 = 1. Consequently, we obtain case (1) of the
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theorem.
Case (b.2): α is a nonzero real number. In this case, M is α-slant. Thus,

(4.34) reduces to µ′ = 2µ2 tanhα. After solving this equation we have

µ(y) =
1

2b− 2y tanhα
(4.37)

for some real number b. Thus, system (4.33) becomes

Lxx = 2v(x)(i sech α− tanhα)(b− y tanhα)Ly,

Lxy =
i sech α− tanhα

2b− 2y tanhα
Lx,

Lyy =
i sech α + tanhα

2b− 2y tanhα
Ly.

(4.38)

Solving the second equation in (4.38), we give

L(x, y) = A(y) + B(x)(y tanhα− b)
1
2 (1−i csch α) (4.39)

for vector functions A,B. Substituting this into the last equation in (4.38),
we find that

2(b− y tanhα)A′′(y) = (i sechα + tanhα)A′(y).

After solving this equation we get

A(y) = c1(y tanhα− b)
1
2 (1−i csch α) + c2

with c1, c2 ∈ C2
1. Hence, it follows from (4.39) that L is congruent to

L(x, y) = z(x)(y − b coth α)
1
2 (1−i csch α), (4.40)

where z(x) = (c1 + B(x))(tanhα)
1
2 (1−i csch α). By substituting this into the

first equation in (4.38), we find that

z′′(x) = (tanhα− i sech α)2v(x)z(x). (4.41)

After applying a suitable translation in y, we obtain from (4.40) that
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L(x, y) = z(x)y
1
2 (1−i csch α). (4.42)

Now, by applying (4.2) and (4.42) we find 〈z, z〉 = 〈z′, z′〉 = 0, 〈z′, iz〉 =
2 sinh α. Therefore, we obtain case (2) of the theorem.

Case (b.3): α is non-constant. Solving the second equation in (4.33),
we give

L = A(y) + B(x)(1− i sinhα)e
R y µ(y)(i sech α−tanh α)dy (4.43)

for some vector functions A,B. So, after substituting (4.43) info the first
equation in (4.33) we find

B′′(x)
v(x)

+ B(x) =
ie
R y µ(y)(tanh α−i sech α)dy

µ(y)− α′(y)
sech α(y)A′(y).

Hence, there exists a vector c1 ∈ C2
1 such that

B′′(x) + v(x)(B(x)− c1) = 0, (4.44)

A′(y) = ic1(α′(y)− µ(y))(cosh α)e
R y(i sech α−tanh α)µdy. (4.45)

By applying (4.43) and (4.45) we know that the immersion is congruent to

L(x, y) = (z(x) + c1)(1− i sinhα)e
R y(i sech α−tanh α)µdy

+ ic1

∫ y

(α′(y)− µ(y))(cosh α)e
R y(i sech α−tanh α)µdydy, (4.46)

where z = B − c1 is a vector function satisfying z′′ + vz = 0. From (4.46)
we find

Lx = (1− i sinhα)e
R y(i sech α−tanh α)µdyz′(x),

Ly = i(µ− α′) cosh αe
R y(i sech α−tanh α)µdyz(x).

(4.47)

It follows from (4.2) and (4.47) that 〈z, z〉 = 〈z′, z′〉 = 0 and

−1 = 〈Lx, Ly〉 = (µ− α′)(cosh α)e−
R y 2µ tanh αdy〈iz, z′〉. (4.48)
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On the other hand, it follows from (4.34) that

d

dy

{
(α′(y)− µ(y)) cosh α(y)e−2

R y µ(y) tanh α(y)dy
}

= 0.

Hence, there exist a nonzero real number b such that

(α′(y)− µ(y)) cosh α(y) = be2
R y µ(y) tanh α(y)dy. (4.49)

Substituting this into (4.46), we give

L(x, y) =
(1− i sinhα)(z(x) + c1)

e
R y(tanh α−i sech α)µdy

+ ibc1

∫ y

e
R y(i sech α+tanh α)µdydy (4.50)

and 〈z′, iz〉 = b−1. Therefore, after replacing z(x) + c1 simply by z(x), we
obtain

L(x, y) = z(x)(1− i sinhα)e
R y(i sech α−tanh α)µdy. (4.51)

Consequently, we obtain case (4) of the theorem.

Case (c): λ, µ 6= 0. In this case, we find from (4.12) and (4.15) that

(lnµ)x = αx tanhα. (4.52)

Thus, by using the second equation in (4.15) we have

β = −αx, µ = f(y) cosh α, δ = f(y) cosh α− αy (4.53)

for some nonzero real-valued function f(y).
Case (c.1): γ = 0. From (4.8) we get β = 0. Thus, α = α(y) according

to (4.15).
Case (c.1.i): α′(y) = 0. In this case, the surface is slant. From (4.53)

we get

µ = δ = f(y) cosh α. (4.54)

Hence, (4.11) becomes λx = f ′(y) cosh α− f2(y) sinh 2α, which implies that

λ = x(f ′(y) cosh α− f2(y) sinh 2α) + q(y) (4.55)
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for some real-valued function q. Thus, by (4.2)–(4.7), (4.54), and (4.55), we
have

Lxx = 0, Lxy = f(y)(i− sinhα)Lx,

Lyy =
{
xf ′(y) cosh α− xf2(y) sinh 2α + q(y)

}
(i sech α− tanhα)Lx

+ f(y)(i + sinhα)Ly.

(4.56)

Solving the first two equations in (4.56), we give

L(x, y) = B(y) + c1xe(i−sinh α)
R y fdy (4.57)

for some vector c1 and vector-valued function B. Substituting this into the
last equation in (4.56), we know that

B′′ − (i + sinhα)f(y)B′ = c1(i sech α− tanhα)q(y)e(i−sinh α)F (4.58)

with F (y) =
∫ y

f(y)dy. After solving this differential equation we have

B(y) = c3 + c2

∫ y

e(i+sinh α)F dy

+ c1(i sech α− tanhα)
∫ y (

e(i+sinh α)F

∫ y

qe−2F sinh αdy

)
dy

(4.59)

for some vectors c2, c3. Hence, up to translations, the immersion is given by

L(x, y) = c1xe(i−sinh α)F + c2

∫ y

e(i+sinh α)F dy

+ c1(i sech α− tanhα)
∫ y (

e(i+sinh α)F

∫ y

qe−2F sinh αdy

)
dy.

(4.60)

From (4.60) we find

Lx = c1e
(i−sinh α)F ,
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Ly = e(i+sinh α)F

{
c2 + c1(i sech α− tanhα)

∫ y

qe−2F sinh αdy

}

+ c1x(i− sinhα)f(y)e(i−sinh α)F . (4.61)

If α = 0, then (4.60) and (4.61) reduces to

L = c1xeiF + c2

∫ y

eiF dy + ic1

∫ y

eiF ψ(y)dy, (4.62)

Lx = c1e
iF , Ly = eiF (c2 + ic1(xF ′ + ψ(y)), ψ(y) =

∫ y

q(y)dy. (4.63)

By applying (4.2) and (4.63), we obtain 〈c1, c1〉 = 〈c2, c2〉 = 〈ic1, c2〉 = 0
and 〈c1, c2〉 = −1. After choosing suitable initial condition, we conclude that
the surface is congruent to the one given by case (6) of the theorem.

If α 6= 0, we find from (4.2) and (4.61) that cschα〈ic1, c2〉 = 〈c1, c2〉 =
−1 and 〈c1, c1〉 = 〈c2, c2〉 = 0. Thus, we obtain case (7) of the theorem.

Case (c.1.ii): α′(y) 6= 0. Substituting β = γ = 0 and (4.53) into (4.11),
we give

λx = f ′(y) cosh α−α′′−f2(y) sinh(2α)+4f(y)α′ sinhα−α′2 tanhα, (4.64)

which implies

λ = x
(
f ′ cosh α− α′′ − f2 sinh(2α) + 4fα′ sinhα− α′2 tanhα

)

+ k(y) sech α (4.65)

for some function k(y). Hence, we obtain from (4.2)–(4.7), (4.53) and (4.65)
that

Lxx = 0, Lxy = (f(y) cosh α− α′(y))(i sech α− tanhα)Lx,

Lyy = (i sech α− tanhα)
{
x(f ′ cosh α− α′′ − f2 sinh(2α) + 4fα′ sinhα

− α′2 tanhα) + k(y) sech α
}
Lx + f(y)(i + sinhα)Ly.

(4.66)

Solving the first two equations in (4.66), we give

L(x, y) = B(y) + c1x(1− i sinhα)e
R y(i−sinh α)f(y)dy. (4.67)
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Substituting this into the last equation in (4.66), we have

B′′(y)− (i + sinhα)f(y)B′(y) = ic1k(y)e
R y(i−sinh α)f(y)dy.

Solving this differential equation, we obtain

B(y) = c3 +
∫ y

e
R y(i+sinh α)fdy

{
c2 + ic1

∫ y

e−
R y 2f sinh αdyk(y)dy

}
dy

(4.68)

for some vector c3. Consequently, the immersion is congruent to

L(x, y) = c1x(1− i sinhα)e
R y(i−sinh α)f(y)dy + c2

∫ y

e
R y(i+sinh α)fdydy

+ ic1

∫ y

e
R y(i+sinh α)fdy

{ ∫ y

e−
R y 2f sinh αdyk(y)dy

}
dy. (4.69)

It follows from (4.2) and (4.69) that 〈c1, c1〉 = 〈c2, c2〉 = 〈c1, ic2〉 = 0,
〈c1, c2〉 = −1. Thus, after choosing suitable initial condition, we obtain case
(8) of the theorem.

Case (c.2): γ 6= 0. We find from (4.8) that β = −αx 6= 0. Also, it follows
from (4.14), (4.15) and (4.53) that (ln γ)y = αy tanhα−2f(y) sinhα. So we
have

γ = p(x)(cosh α)e−
R y 2f(y) sinh αdy (4.70)

for some nonzero function p(x). Substituting (4.53) and (4.70) into (4.8),
we give

λ =
fαx

p(x)
e
R y 2f(y) sinh αdy. (4.71)

From (4.11), (4.53), (4.70) and (4.71), we obtain

fpe
R y 2f sinh αdy

(
αxx + α2

x tanhα
)

+ p2
(
αyy + α2

y tanhα
)

− fe
R y 2f sinh αdy

(
p′ − 2p

∫ y

fαx cosh αdy

)
αx − 4fp2(sinhα)αy

= (f ′ − 2f2 sinhα)p2 cosh α, (4.72)
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which implies that

G = k(x) (4.73)

for some function k(x), where G is a real-valued function defined by

G =
( ∫ y

fαx cosh αdy

)2

− p′(x)
p(x)

∫ y

fαx cosh αdy

+
p(x)(αy cosh α− f cosh2 α)

e
R y 2f sinh αdy

+
∫ y

f(α2
x sinhα + αxx cosh α)dy.

(4.74)

On the other hand, from (4.2)–(4.7), (4.53), (4.70), and (4.71) we have

Lxx = αx(tanhα− i sech α)Lx + (i + sinhα)p(x)e−
R y 2f(y) sinh αdyLy,

Lxy = (f(y) cosh α− αy)(i sech α− tanhα)Lx, (4.75)

Lyy =
αxf(y)
p(x)

(i sech α− tanhα)e
R y 2f(y) sinh αdyLx + f(y)(i + sinhα)Ly.

Solving the second equation in (4.75), we see that

L(x, y) = w(y) +
∫ x

(1− i sinhα)z(x)e
R y(i−sinh α)f(y)dydx (4.76)

for some C2
1-valued functions z, w. From (4.76) we get

Lx = (1− i sinhα)z(x)e
R y(i−sinh α)fdy. (4.77)

Substituting (4.76) into the first equation in (4.75), we get

w′(y) = iH, (4.78)

where H is a C2
1-valued function defined by

H =
∫ x

z(x)(αy cosh α− f cosh2 α)e
R y(i−sinh α)f(y)dydx

+
e
R y(i+sinh α)fdy

p(x)

(
z(x)

∫ y

fαx cosh αdy − z′(x)
)

. (4.79)
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A direct computation shows that the function G in (4.74) and H are related
by

p(x)
∂H

∂x
= e

R y(i+sinh α)fdy

(
Gz(x) +

p′(x)
p(x)

z′(x)− z′′(x)
)

. (4.80)

Thus, in view of (4.73) and (4.79), we obtain

p(x)z′′(x) = p′(x)z′(x) + k(x)p(x)z(x). (4.81)

Notice that, for a curve z satisfying (4.81) and with functions α, f, p satis-
fying (4.72), the vector function H in (4.79) is independent of x.

Combining (4.76), (4.78) and (4.79), we show that the immersion is
congruent to

L(x, y) =
∫ x

(1− i sinhα)z(x)e
R y(i−sinh α)f(y)dydx

+ i
∫ y { ∫ x

z(x)(αy cosh α− f cosh2 α)e
R y(i−sinh α)f(y)dydx

}
dy

+
i

p(x)

∫ y

e
R y(i+sinh α)fdy

(
z(x)

∫ y

fαx cosh αdy − z′(x)
)

dy.

(4.82)

It follows from (4.82) that

Ly =
ie
R y(i+sinh α)fdy

p(x)

(
z(x)

∫ y

fαx cosh αdy − z′(x)
)

. (4.83)

We find from (4.2), (4.77) and (4.83) that 〈z, z〉 = 〈z′, z′〉 = 0, 〈z, iz′〉 = p.
Thus, z is a null curve lying in LC satisfying 〈z, iz′〉 = p. Notice that, for
such a null curve, equation (4.81) holds automatically for some function
k(x). Consequently, we obtain case (9) of the theorem. ¤

5. Marginally trapped surfaces of constant positive curvature

Theorem 5.1 There exist six families of marginally trapped surfaces of
constant curvature one in C2

1 given by the following :
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(1) A surface defined by

L(x, y) =
(

x +
ibx2

√
2

+
√

2i− 2b(2x + y)
2b(x + y)2

, x− ibx2

√
2

+
√

2i + 2b(2x + y)
2b(x + y)2

)
,

where b is a nonzero real number.
(2) A surface defined by

L =
((

i−√2b(x + y)√
2b(x + y)2

+
√

2 ib
a2

)
cosh(ax)

+
(

1
a
− 1

a(x + y)2
+

√
2ia

2b(x + y)

)
sinh(ax),

(
i +

√
2b(x + y)√

2b(x + y)2
−
√

2 ib
a2

)
cosh(ax)

+
(

1
a

+
1

a(x + y)2
+

√
2ia

2b(x + y)

)
sinh(ax)

)
,

where a, b are nonzero real numbers.
(3) A surface defined by

L =
((

i−√2b(x + y)√
2b(x + y)2

−
√

2 ib
a2

)
cos(ax)

+
(

(x + y)2 − 1
a(x + y)2

− ia√
2b(x + y)

)
sin(ax),

(
i +

√
2b(x + y)√

2b(x + y)2
+
√

2 ib
a2

)
cos(ax)

+
(

(x + y)2 + 1
a(x + y)2

− ia√
2b(x + y)

)
sin(ax)

)
,

where a, b are nonzero real numbers.
(4) A surface defined by
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L(x, y) =
iz(x) + i(x + y)z′(x)√

2p(x)(x + y)2
−

∫ x

(1 + ik(x))z(x)dx

+
i√
2

∫ x (
f(x)
x + y

− 2p(x) + (x + y)p′(x)
(x + y)3p2(x)

)
z(x)dx

+
i√
2

∫ y ( ∫ x {
f(x)

(x + y)2
− 6p(x) + 2(x + y)p′(x)

(x + y)4p2(x)

}
z(x)dx

)
dy,

where z is a null curve lying in LC satisfying z′′− (ln p)′z′ = fz, and p, f, k

are real valued functions with p 6= 0.
(5) A surface defined by

L(x, y) = z(y) +
ic1(1 + (x + y)(i + p(y))q(y))

(x + y)2q(y)
e
R y(i−p(y))q(y)dy

for some real-valued functions q 6= 0 and p, where c1 is a null vector, z

is a null curve satisfying 〈c1, z
′〉 = −2e

R y pqdy cos(
∫ y

qdy) and 〈c1, iz′〉 =
2e
R y pqdy sin(

∫ y
qdy).

(6) A surface defined by

L(x, y) =
∫ x 1− i sinhα

e
R y q(y)(sinh α−i)dy

z(x)dx− iz′(x)√
2p(x)

∫ y e
R y q(y)(i+sinh α)dy

(x + y)2
dy

+
z(x)√
2 ip(x)

∫ y e
R y q(y)(i+sinh α)dy

(x + y)2

(
2

x + y
−

∫ y

q(y)(sinhα)xdy

)
dy

− i
∫ y ∫ x (q(y) cosh α− αy)z(x)

e
R y q(y)(sinh α−i)dy sech α

dxdy,

where α, p, q are real-valued functions with q 6= 0 and αy 6= q cosh α, and z

is a null curve lying in the light cone LC satisfying 〈z, iz′〉 = 2
√

2p.
Conversely, up to rigid motions and dilations, every marginally trapped

surface of constant positive curvature in C2
1 is locally an open portion of one

of the surfaces given by the six families.

Proof. As for Theorem 4.1, we show by examples that immersions (1)–(6)
give marginally trapped surfaces of constant curvature one in C2

1.
For case (1) we find from direct computation that the induced metric

tensor of the immersion is given by



Marginally trapped surfaces of constant curvature 383

g =
−2

(x + y)2
(dx⊗ dy + dy ⊗ dx). (5.1)

Thus, the immersion L defines a Lorentz surface of constant curvature one
in C2

1. Moreover, by straight-forward computation, we have

Lxy = (tanhα− i sech α)αyLx, α = sinh−1

(
2

b(x + y)3

)

which is light-like. Therefore, the immersion defines a marginally trapped
surface of constant curvature one in C2

1.
Cases (2)–(6) can be proved in similar way.

Conversely, if L : M → C2
1 is a marginally trapped immersion of a sur-

face of constant positive curvature K in C2
1, then M is Lorentzian. More-

over, after applying a suitable dilation, we have K = 1. Thus, we may
assume that locally M is an open portion of the xy-plane equipped with the
Lorentzian metric (5.1). Hence, we have

∇ ∂
∂x

∂

∂x
= − 2

x + y

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂yx

∂

∂y
= − 2

x + y

∂

∂y
. (5.2)

If we put

e1 =
x + y√

2
∂

∂x
, e2 =

x + y√
2

∂

∂y
, (5.3)

then {e1, e2} is a pseudo-orthonormal frame in M satisfying (3.2) and

∇e1e1 = − e1√
2
, ∇e2e1 =

e1√
2
, ∇e1e2 =

e2√
2
, ∇e2e2 = − e2√

2
. (5.4)

Let e3, e4 be the normal vector fields defined by (3.4). From (3.5) we
find

e3 =
x + y√

2
(i sech α− tanhα)Lx,

e4 =
x + y√

2
(i sech α + tanhα)Ly.

(5.5)

Since M is marginally trapped, we may assume as in section 4 that
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h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3, h(e2, e2) = λe3 + µe4 (5.6)

with δ 6= 0 on M . From (5.3), (5.6) and Lemma 3.2 we obtain

αx = −
√

2β

x + y
, αy =

√
2(µ− δ)
x + y

. (5.7)

It follows from (5.3), (5.4), (5.6), Lemma 3.2, and the equation of Co-
dazzi that

λx − δy =
3λ + δ

x + y
+
√

2(βλ− δ2 − δµ)
x + y

tanhα, (5.8)

µx =
µ

x + y
+ µαx tanhα, (5.9)

γy =
3γ

x + y
−
√

2γ(δ + µ)
x + y

tanhα. (5.10)

In view of (3.5), (3.7), and (5.5), equation (2.5) of Gauss can be ex-
pressed as

γλ + βµ = 1. (5.11)

Case (a): µ = 0. In this case, (5.7), (5.8), (5.10) and (5.11) reduce to

αx = −
√

2β

x + y
, αy = −

√
2δ

x + y
, (5.12)

λx − δy =
3λ + δ

x + y
+
√

2(βλ− δ2)
x + y

tanhα, (5.13)

γy =
3γ

x + y
+ γαy tanhα (5.14)

with λ = γ−1 6= 0. Since δ 6= 0, we get αy 6= 0. It follows from (5.14) that

γ = p(x)(x + y)3 cosh α, λ =
sech α

p(x)(x + y)3
(5.15)

for some nonzero real-valued function p.
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Case (a.1): δ = β. From (5.12) we get αx = αy. Thus, we have

β = δ =
x + y√

2
αx = −x + y√

2
αy. (5.16)

Substituting (5.15) and (5.16) into (5.13) yields

α′′ + α′2 tanhα +
2α′

u
=
√

2(6p(x) + up′(x)) sech α

u5p2(x)
(5.17)

with α = α(u), u = x + y. By differentiating (5.17) with respect to x we
find

p′′(x) = 2
(

3
u

+
p′(x)
p(x)

)
p′(x),

which is impossible unless p′ = 0. Thus, we get p = b for some nonzero real
number b. Hence, (5.17) reduces to

α′′ + α′2 tanhα +
2α′

u
=

6
√

2 sech α

bu5
. (5.18)

By combining p = b with (5.15) and (5.16) we have

β = δ = − u√
2
α′, γ = bu3 cosh α, λ =

sech α

bu3
. (5.19)

Therefore, the immersion satisfies

Lxx = (tanhα− i sech α)αxLx − 2Lx

x + y
+
√

2b(x + y)2(i + sinhα)Ly,

Lxy = (tanhα− i sech α)αyLx, (5.20)

Lyy =
√

2 sech α(i sech α− tanhα)
b(x + y)4

Lx − 2
x + y

Ly.

Solving the second equation in (5.20) gives

L(x, y) = A(y) +
∫ x

z(x)(1− i sinhα)dx (5.21)
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for vector functions A, z. Substituting this into the first equation in (5.20),
we get

A′(y) = i
{ ∫ x

z(x)αx cosh αdx− 2z(x) + (x + y)z′(x)√
2b(x + y)3

}
. (5.22)

By differentiating (5.22) with respect to x we find

z′′(x) =
(

6
u2

+
√

2bu2α′(u) cosh α(u)
)

z(x), u = x + y,

which is impossible unless we have

z′′(x) = cz(x), (5.23)
√

2bu6α′(u) cosh α(u) = cu2 − 6 (5.24)

for a real number c. Solving (5.24) shows that up to suitable translation,
we have

α = sinh−1

(
2− cu2

√
2bu3

)
. (5.25)

Combining this with (5.21) yields

L(x, y) = A(y) +
∫ x (

1− i(2− c(x + y)2)√
2b(x + y)3

)
z(x)dx. (5.26)

Case (a.1.i): c = 0. From (5.23) we have z(x) = c1 + 2c2x for some
vectors c1, c2. Thus, (5.26) becomes

L(x, y) = A(y) + c1

(
x +

i√
2b(x + y)2

)
+ c2

(
x2 +

i
√

2(2x + y)
b(x + y)2

)
. (5.27)

substituting this into the first equation in (5.21) gives A′ = 0. Thus, the
immersion of the surface is congruent to

L(x, y) = c1

(
x +

i√
2b(x + y)2

)
+ c2

(
x2 +

i
√

2(2x + y)
b(x + y)2

)
. (5.28)

From (5.1) and (5.28) we have 〈c1, c1〉 = 〈c1, c2〉 = 〈c2, c2〉 = 0, 〈c1, ic2〉 =
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√
2b. Thus, after choosing suitable initial conditions, we obtain case (1) of

the theorem.
Case (a.1.ii): c = a2 > 0. From (5.23) we get z(x) = c1 cosh(ax) +

c2 sinh(ax) for some vectors c1, c2. Thus, (5.26) becomes

L(x, y) = A(y) +
(

ic1√
2b(x + y)2

+
c2

a
+

iac2√
2b(x + y)

)
cosh(ax)

+
(

c1

a
+

iac1√
2b(x + y)

+
ic2√

2b(x + y)2

)
sinh(ax).

Substituting this into the first equation in (5.20), we get A′ = 0. Therefore,
the immersion is congruent to

L(x, y) =
(

ic1√
2b(x + y)2

+
c2

a
+

iac2√
2b(x + y)

)
cosh(ax)

+
(

c1

a
+

iac1√
2b(x + y)

+
ic2√

2b(x + y)2

)
sinh(ax).

Thus, by using (5.1) we find 〈c1, c1〉 = 〈c1, c2〉 = 〈c2, c2〉 = 0, 〈c1, ic2〉 =
2
√

2b/a. Consequently, after choosing suitable initial conditions, we obtain
case (2).

Case (a.1.iii): c = −a2 < 0. From (5.23) we have z(x) = c1 cos(ax) +
c2 sin(ax). Thus, (5.26) becomes

L(x, y) = A(y) +
(

ic1√
2b(x + y)2

− c2

a
+

iac2√
2b(x + y)

)
cos(ax)

+
(

c1

a
− iac1√

2b(x + y)
+

ic2√
2b(x + y)2

)
sin(ax).

Substituting this into the first equation in (5.20), we find A′ = 0. Therefore,
the immersion is congruent to

L(x, y) =
(

ic1√
2b(x + y)2

− c2

a
+

iac2√
2b(x + y)

)
cos(ax)

+
(

c1

a
− iac1√

2b(x + y)
+

ic2√
2b(x + y)2

)
sin(ax).
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After choosing suitable initial conditions, we obtain case (3) of the theorem.
Case (a.2): δ 6= β. From (5.12) and (5.15) we have

β = −x + y√
2

αx, δ = −x + y√
2

αy, αx 6= αy, (5.29)

γ = p(x)(x + y)3 cosh α, λ =
sech α

p(x)(x + y)3
. (5.30)

Substituting (5.29) and (5.30) into (5.13), we get

p′ +
6p

x + y
− (x + y)3√

2

{
(x + y)α2

y sinhα + ((x + y)αyy + 2αy) cosh α
}
p2

= 0,

which implies that

∂

∂y

(
6p + 2(x + y)p′

(x + y)2
+
√

2p2(x + y)2αy cosh α

)
= 0.

Hence, there exists a real-valued function f such that

6p + 2(x + y)p′ +
√

2p2(x + y)4(sinhα)y = f(x)p2(x)(x + y)2. (5.31)

Solving this equation for (sinhα)y, we have

(sinhα)y =
(x + y)2f(x)p2(x)− 2(x + y)p′(x)− 6p(x)√

2(x + y)4p2(x)
.

So, we have

α = sinh−1

(
k(x)− f(x)√

2(x + y)
+

2p(x) + (x + y)p′(x)√
2(x + y)3p2(x)

)
(5.32)

for some function k. In views of (5.1)–(5.6), (5.29) and (5.30) we obtain

Lxx = (tanhα− i sech α)αxLx − 2Lx

x + y
+
√

2p(x)(x + y)2(i + sinhα)Ly,

Lxy = (tanhα− i sech α)αyLx, (5.33)
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Lyy =
√

2 sech α(i sech α− tanhα)
p(x)(x + y)4

Lx − 2Ly

x + y
.

Solving the second equation in (5.33), we obtain

L(x, y) = A(y) +
∫ x

z(x)(1− i sinhα)dx (5.34)

for some vector functions A, z. From (5.34) we have

Lx = z(x)(1− i sinhα). (5.35)

It follows from (5.1) and (5.35) that 〈z, z〉 = 0. So, z is a curve lying
in the light cone LC ⊂ C2

1. By substituting (5.34) into the first equation in
(5.33) we find

A′(y) = i
∫ x

z(x)(sinhα)ydx− i
2z(x) + (x + y)z′(x)√

2p(x)(x + y)3
. (5.36)

Differentiating (5.36) with respect to x, we have

pz′′ − p′z′ = z(x)
(

6p + 2(x + y)p′

(x + y)2
+
√

2p2(x + y)2(sinhα)y

)
. (5.37)

Combining this with (5.31), we get

p(x)z′′(x)− p′(x)z(x) = f(x)p(x)z(x). (5.38)

Now, by applying 〈z, z〉 = 〈z′, z〉 = 0, we derive from (5.38) that 〈z′′, z〉 = 0.
On the other hand, it follows from 〈z, z′〉 = 0 that 〈z′, z′〉 = −〈z′′, z〉.

Hence, we get 〈z′, z′〉 = 0. Therefore, z is a null curve lying in LC.
From (5.34) and (5.36) we conclude that the immersion is congruent to

L(x, y) =
i(z(x) + (x + y)z′(x))√

2p(x)(x + y)2
+

∫ x

z(x)(1− i sinhα)dx

+ i
∫ y ∫ x

(sinhα)yz(x)dxdy.

Consequently, by applying (5.32) we obtain case (4) of the theorem.
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Case (b): µ 6= 0. It follows from (5.9) that

µ =
u√
2
q(y) cosh α, u = x + y (5.39)

for a real-valued nonzero function q. Hence, we find from (5.7) that

β = − u√
2
αx, δ =

u√
2
(q(y) cosh α− αy) 6= 0. (5.40)

Case (b.1): γ = 0. It follows from (5.11), (5.39) and (5.40) that

αx cosh α = − 2
u2q(y)

,

which implies

α = sinh−1

(
p(y) +

2
uq(y)

)
, u = x + y, (5.41)

for some function p. Substituting this into (5.39) and (5.40), we get

µ =

√
u2q2 + (2 + upq)2√

2
β =

√
2√

u2q2 + (2 + upq)2
,

δ =
6q + u2q2((1 + p2)q − p′) + 2u(2pq2 + q′)√

2q
√

u2q2 + (2 + upq)2
.

(5.42)

It follows from (5.1)–(5.3), (5.5), (5.6), (5.41) and (5.42) that

Lxx = − 2
u

Lx − 4 + 2u(p− i)q
u(u2q2 + (2 + upq)2)

Lx,

Lxy = −6q + u2q2((1 + p2)q − p′) + 2u(2pq2 + q′)
uq(2 + u(i + p)q)

Lx,

Lyy =
√

2{(i− p)qu− 2}λ
u
√

u2q2 + (2 + upq)2
Lx + (i + p)qLy.

(5.43)

Solving the second equation in (5.43), we obtain
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L(x, y) = z(y)− 2ie
R y(i−p)qdy

q(y)

∫ x w(x)dx

(x + y)3
+

(1− ip(y))
e
R y(p−i)qdy

∫ x w(x)dx

(x + y)2

(5.44)

for vector functions z, w. By substituting this into the first equation in
(5.43), we get w′(x) = 0. Thus, w = c1 for a constant vector c1. Hence,
(5.44) reduces to

L(x, y) = z(y) +
ic1(1 + (x + y)(i + p(y))q(y))

(x + y)2q(y)
e
R y(i−p(y))q(y)dy. (5.45)

From (5.45), we get

Lx =
c1e

i
R y qdy((x + y)q(y)− i((x + y)p(y)q(y) + 2)

(x + y)3q(y)e
R y pqdy

,

Ly = z′(y)− ic1e
i
R y q(y)dy

(x + y)3q2(y)e
R y pqdy

{
(x + y)2(1 + p2)q3

+ (x + y)(2p− (x + y)p′)q2 + 2q + (x + y)q′
}
.

(5.46)

Now, it follows from (5.1) and (5.46) that

〈c1, c1〉 = 〈z′, z′〉 = 0, (sinF )〈c1, z
′〉 = (cos F )〈ic1, z

′〉,
{
(x + y)q cos F + ((x + y)pq + 2) sin F )

}〈c1, z
′〉

+
{
(x + y)q sinF − ((x + y)pq + 2) cos F )

}〈ic1, z
′〉

= −2(x + y)qe
R y pqdy

(5.47)

with F =
∫ y

q(y)dy. Solving the last two equations in (5.47), we find

〈c1, z
′〉 = −2e

R y pqdy cos
( ∫ y

qdy

)
, 〈ic1, z

′〉 = −2e
R y pqdy sin

( ∫ y

qdy

)
.

Consequently, we obtain case (5) of the theorem.
Case (b.2): γ 6= 0. It follows from (5.10), (5.39) and (5.40) that

(ln γ)y =
3

x + y
+ αy tanhα− 2q(y) sinhα. (5.48)
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From (5.11), (5.40) and (5.48) we have

γ =
p(x)(x + y)3 cosh α

e2
R y q(y) sinh αdy

, λ =
2 sech α + (x + y)2q(y)αx

2p(x)(x + y)3e−2
R y q(y) sinh αdy

(5.49)

for some real-valued nonzero function p(x).
In views of (5.1)–(5.6), (5.39), (5.40) and (5.49) we obtain

Lxx = (tanhα− i sech α)αxLx − 2Lx

x + y
+
√

2p(x)(x + y)2(i + sinhα)
e2
R y q(y) sinh αdy

Ly,

Lxy = (q(y) cosh α− αy)(i sech α− tanhα)Lx, (5.50)

Lyy =
(i sech α− tanhα)(2 sech α + (x + y)2q(y)αx)√

2p(x)(x + y)4e−2
R y q(y) sinh αdy

Lx − 2Ly

x + y

+ (i + sinhα)q(y)Ly.

Solving the second equation in (5.50), we get

L(x, y) = A(y) +
∫ x 1− i sinhα

e
R y q(sinh α−i)dy

z(x)dx (5.51)

for some vector functions A(y), z(x). Thus, we have

Lx = (1− i sinhα)e
R y q(y)(i−sinh α)dyz(x),

Ly = A′(y) + i
∫ x (q(y) cosh α− αy) cosh α

e
R y q(sinh α−i)dy

z(x)dx.
(5.52)

By substituting (5.51) into the first equation in (5.50), we have

A′(y) =
e
R y q(i+sinh α)dy

√
2 i(x + y)2p(x)

(
z′(x) +

2z(x)
x + y

− z(x)
∫ y

q(y)(sinhα)xdy

)

− i
∫ x (q(y) cosh α− αy)z(x)

e
R y q(sinh α−i)dy sech α

dx. (5.53)

By combining (5.51) and (5.53) we know that the immersion is congruent
to
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L(x, y) =
∫ x 1− i sinhα

e
R y q(sinh α−i)dy

z(x)dx

+
z(x)√
2 ip(x)

∫ y e
R y q(i+sinh α)dy

(x + y)2

(
2

x + y
−

∫ y

q(y)(sinhα)xdy

)
dy

− i
∫ y ∫ x (q(y) cosh α− αy)z(x)

e
R y q(sinh α−i)dy sech α

dxdy

− iz′(x)√
2p(x)

∫ y e
R y q(i+sinh α)dy

(x + y)2
dy. (5.54)

Also, substituting (5.53) into (5.52), we find

Ly =
ie
R y q(i+sinh α)dy

√
2(x + y)2p(x)

{
z(x)

∫ y

q(y)(sinhα)xdy − z′(x)− 2z(x)
x + y

}
. (5.55)

It follows from (5.39), (5.52) and (5.55) that 〈z, z〉 = 〈z′, z′〉 = 0, 〈z, iz′〉 =
2
√

2p. Consequently, we obtain case (6) of the theorem. ¤

6. Marginally trapped surfaces of constant negative curvature

Theorem 6.1 There exist six families of marginally trapped surfaces of
constant curvature −1 in C2

1 given by the following :
(1) A surface defined by

L(x, y) =
(

(i + k)(bx2 − 4ix)
4

+
4i− 2bx +

√
2b sinh

(√
2(x + y)

)

4b
sech2

(
x + y√

2

)
,

− (i + k)(bx2 + 4ix)
4

+
4i + 2bx−√2b sinh

(√
2(x + y)

)

4b
sech2

(
x + y√

2

))
,

where b is a nonzero real number and k is an arbitrary real number.
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(2) A surface defined by

L(x, y) =

1

2a2b

„
a

„
2b(1− ik)− b sech2

„
x + y√

2

«
− 2

√
2i tanh

„
x + y√

2

««
sinh(ax)

+

„
b2(i + k) + 2ia2 sech2

„
x + y√

2

«
+
√

2a2b tanh

„
x + y√

2

««
cosh(ax),

a

„
b sech2

„
x + y√

2

«
+ 2b(1− ik)− 2

√
2ia2 tanh

„
x + y√

2

««
sinh(ax)

−
„

b2(i + k)− 2ia2 sech2

„
x + y√

2

«
+
√

2a2b tanh

„
x + y√

2

««
cosh(ax)

«
,

where a, b are nonzero real numbers and k is an arbitrary real number.
(3) A surface defined by

L(x, y) =

1
2a2b

(
(b cos(ax) + 2ia sin(ax))

(√
2a2 tanh

(
x + y√

2

)
− b(i + k)

)

+
2ia2 cos(ax)− ab sin(ax)

cosh2((x + y)/
√

2)
,

2ia2 cos(ax) + ab sin(ax)
cosh2((x + y)/

√
2)

+ (b cos(ax)− 2ia sin(ax))

×
(

b(i + k)−
√

2a2 tanh
(

x + y√
2

)))
,

where a, b are nonzero real numbers and k is an arbitrary real number.
(4) A surface defined by

L(x, y) =
∫ x

(1− i sinhα)z(x)dx + i
∫ y ∫ x

(sinhα)y z(x)dxdy

− i
p(x)

(√
2 tanh

(
x + y√

2

)
z′(x)− sech2

(
x + y√

2

)
z(x)

)
,

where z is a null curve in LC satisfying z′′(x) − (ln p)′(x)z′(x) = (2 +
f(x))z(x),
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α = sinh−1

(
k(x) +

√
2(2 + f(x))

p(x) coth((x + y)/
√

2)

+
p′(x) +

√
2p(x) tanh((x + y)/

√
2)

p2(x) cosh2((x + y)/
√

2)

)
,

and f, p, k are real-valued functions with p 6= 0.
(5) A surface defined by

L(x, y) = z(y) +
√

2c1(1− ip(y))
e
R y(p(y)−i)q(y)dy

tanh
(

x + y√
2

)
+

ic1 sech2
(
(x + y)/

√
2
)

q(y)e
R y(p(y)−i)q(y)dy

,

where p, q are real-valued functions with q 6= 0, c1 is a null vector, and z

is a null curve satisfying 〈c1, z
′〉 = −e

R y pqdy cos
( ∫ y

qdy
)

and 〈c1, iz′〉 =
e
R y pqdy sin

( ∫ y
qdy

)
.

(6) A surface defined by

L(x, y) =
∫ x 1− i sinhα

e
R y q(y)(sinh α−i)dy

z(x)dx− iz′(x)
p(x)

∫ y e
R y q(y)(i+sinh α)dy

cosh2
(
(x + y)/

√
2
)dy

+
iz(x)
p(x)

∫ y e
R y q(y)(i+sinh α)dy

cosh2
(
(x + y)/

√
2
)

×
( ∫ y

q(y)(sinhα)xdy −
√

2 tanh
(

x + y√
2

))
dy

− i
∫ y ∫ x (q(y) cosh α− αy)z(x)

e
R y q(y)(sinh α−i)dy sech α

dxdy,

where α, p, q are real-valued functions with q 6= 0 and αy 6= q cosh α, and z

is a null curve lying in the light cone LC satisfying 〈z, iz′〉 = p.
Conversely, up to rigid motions and dilations, every marginally trapped

surface of constant negative curvature in C2
1 is locally an open portion of

one of the surfaces given by the six families.

Proof. For case (1), we know from direct computation that the induced
metric tensor is given by

g = − sech2

(
x + y√

2

)
(dx⊗ dy + dy ⊗ dx). (6.1)
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Thus, the immersion defines a Lorentz surface of constant curvature −1 in
C2

1. Moreover, by straight-forward computation, we have

Lxy = (tanhα− i sech α)αyLx

with

α = sinh−1

(
k +

√
2

b
tanh

(
x + y√

2

)
sech2

(
x + y√

2

))
.

This implies that the mean curvature vector of the immersion is light-like.
Thus, the immersion defines a marginally trapped surface of constant cur-
vature −1.

Similar computations show that the remaining cases give rise to
marginally trapped surfaces of constant curvature −1 in C2

1 as well.
Conversely, if L : M → C2

1 is a marginally trapped immersion of a
surface of constant negative curvature, then M is Lorentzian. Moreover,
after applying a suitable dilation, we have K = −1. Thus, we may assume
that locally M is an open portion of the xy-plane with the Lorentzian metric
given by (6.1). Hence, we have

∇ ∂
∂x

∂

∂x
= −

√
2 tanh

(
x + y√

2

)
∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0,

∇ ∂
∂yx

∂

∂y
= −

√
2 tanh

(
x + y√

2

)
∂

∂y
.

(6.2)

If we put

e1 = cosh
(

x + y√
2

)
∂

∂x
, e2 = cosh

(
x + y√

2

)
∂

∂y
, (6.3)

then {e1, e2} is a pseudo-orthonormal frame in M satisfying (3.2) and

∇e1e1 = − sinh
(√

2(x + y)
)

2
√

2
e1, ∇e2e1 =

sinh
(√

2(x + y)
)

2
√

2
e1,

∇e1e2 =
sinh

(√
2(x + y)

)

2
√

2
e2, ∇e2e2 = − sinh

(√
2(x + y)

)

2
√

2
e2.

(6.4)
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Let e3, e4 be the normal vector fields defined by (3.4). From (3.5) we
find

e3 = cosh
(

x + y√
2

)
(i sech α− tanhα)Lx,

e4 = cosh
(

x + y√
2

)
(i sech α + tanhα)Ly.

(6.5)

Since M is marginally trapped, we may assume as in section 4 that

h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3, h(e2, e2) = λe3 + µe4 (6.6)

with δ 6= 0 on M . From (6.4), (6.6) and Lemma 3.2 we obtain

αx = −β sech
(

x + y√
2

)
, αy = (µ− δ) sech

(
x + y√

2

)
. (6.7)

By using (6.4), (6.6), (6.7), Lemma 3.2 and the equation of Codazzi, we
find

λx − δy =
3λ + δ√

2
tanh

(
x + y√

2

)
+ (βλ− δ2 − δµ) sech

(
x + y√

2

)
tanhα,

(6.8)

µx =
µ√
2

tanh
(

x + y√
2

)
+ µαx tanhα, (6.9)

γy =
3γ√

2
tanh

(
x + y√

2

)
− γ(δ + µ) sech

(
x + y√

2

)
tanhα. (6.10)

In view of (3.7) and (6.6), equation (2.5) of Gauss can be expressed as

γλ + βµ = −1. (6.11)

Case (a): µ = 0. In this case, (6.7), (6.8), (6.10), and (6.11) reduce to

αx = −β sech
(

x + y√
2

)
, αy = −δ sech

(
x + y√

2

)
6= 0, (6.12)

λx − δy =
3λ + δ√

2
tanh

(
x + y√

2

)
+ (βλ− δ2) sech

(
x + y√

2

)
tanhα, (6.13)
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γy =
3γ√

2
tanh

(
x + y√

2

)
+ γαy tanhα, γ = − 1

λ
6= 0. (6.14)

It follows from (6.14) that

γ = p(x) cosh3

(
x + y√

2

)
cosh α, λ = − sech α

p(x)
sech3

(
x + y√

2

)
(6.15)

for some nonzero real-valued function p.
Case (a.1): δ = β. From (6.12) we get αx = αy. Thus, we have

β = δ = −α′(u) cosh
(

u√
2

)
, u = x + y. (6.16)

Substituting (6.15) and (6.16) into (6.13), we get

0 = α′′(u) + α′2(u) tanhα(u) +
√

2 tanh
(

u√
2

)
α′(u)

+
sech α

p2(x)
sech4

(
u√
2

)(
p′(x) + 3

√
2p tanh

(
u√
2

))
. (6.17)

By regarding x and u as independent variables and by taking partial differ-
entiation of (6.17) with respect to x, we obtain

p(x)p′′(x) = 2p′2(x) + 3
√

2 tanh
(

u√
2

)
p(x)p′(x),

which is impossible unless p′(x) = 0. Thus, (6.15) reduces to

γ = b cosh3

(
x + y√

2

)
cosh α, λ = − sech α

b
sech3

(
x + y√

2

)

for some nonzero real number b. Hence, the immersion satisfies

Lxx = (tanhα− i sech α)αxLx −
√

2 tanh
(

x + y√
2

)
Lx

+ b(i + sinhα) cosh2

(
x + y√

2

)
Ly,
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Lxy = (tanhα− i sech α)αyLx, (6.18)

Lyy =
sech4

(
(x + y)/

√
2
)

b(i + sinhα)
Lx −

√
2 tanh

(
x + y√

2

)
Ly.

Solving the second equation in (6.18), we get

L(x, y) = A(y) +
∫ x

z(x)(1− i sinhα)dx. (6.19)

Substituting this into the first equation in (6.18), we find

A′(y) = i
∫ x

z(x)αx cosh αdx− 2i(z′(x) +
√

2 tanh((x + y)/
√

2)z(x)
b(1 + cosh(

√
2(x + y))

.

(6.20)

By differentiating (6.20) with respect to x, we obtain

z′′(x) =
(

2− 3 sech2

(
x + y√

2

)
+ b cosh2

(
x + y√

2

)
α′ cosh α

)
z(x),

which is impossible unless we have

z′′(x) = cz(x), (6.21)

2− 3 sech2

(
x + y√

2

)
+ b cosh2

(
x + y√

2

)
α′ cosh α = c (6.22)

for a real number c. Solving (6.22) shows that up to suitable translation,
we have

α = sinh−1

(
k +

√
2

b
tanh

(
x + y√

2

)(
c + sech2

(
x + y√

2

)))
(6.23)

for a real number k. Combining this with (6.19), we obtain

L = A(y) +
∫ x {

1− i−
√

2i
b

tanh
(

x + y√
2

)(
c + sech2

(
x + y√

2

))}
z(x)dx.

(6.24)

Case (a.1.i): c = 0. From (6.21) and (6.23) we obtain z(x) = c1 + 2c2x
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and

α = sinh−1

(
k +

√
2

b
tanh

(
x + y√

2

)
sech2

(
x + y√

2

))
(6.25)

for some vectors c1, c2. Hence, we find from (6.24) that

L(x, y) = A(y) + (1− ik)(x + y)(c1 + c2(x− y))

+
i
b

(
(c1 + 2c2x) sech2

(
x + y√

2

)
− 2

√
2c2 tanh

(√
2(x + y)

))
.

Substituting this into the first equation in (6.18) and by using (6.25), we
find A′(y) = (1− ik)(2c2y − c1). Therefore, the immersion is congruent to

L(x, y) = (1− ik)(c2y
2 − c1y) + (1− ik)(x + y)(c1 + c2(x− y))

+
i
b

(
(c1 + 2c2x) sech2

(
x + y√

2

)
− 2

√
2c2 tanh

(√
2(x + y)

))
.

(6.26)

From (6.1) and (6.26) we have 〈c1, c1〉 = 〈c1, c2〉 = 〈c2, c2〉 = 0, 〈ic1, c2〉
= −b/2. Thus, after choosing suitable initial conditions, we obtain case (1)
of the theorem.

Case (a.1.ii): c = a2 > 0. From (6.21) we get z(x) = c1 cosh(ax) +
c2 sinh(ax) for some vectors c1, c2. Thus, (6.24) becomes

L(x, y) =
{

1− ik
a

c2 +
2c1 −

√
2c2 sinh

(√
2(x + y)

)

2b cosh2
(
(x + y)/

√
2
)

}
cosh(ax)

+
{

1− ik
a

c1 +
2c2 −

√
2c1 sinh

(√
2(x + y)

)

2b cosh2
(
(x + y)/

√
2
)

}
sinh(ax) + A(y).

Substituting this into the first equation in (6.18), we get A′ = 0. Therefore,
after choosing suitable initial conditions, we obtain case (2) of the theorem.

Case (a.1.iii): c = −a2 < 0. From (6.22) we get z(x) = c1 cos(ax) +
c2 sin(ax) for some vectors c1, c2. Thus, (6.24) becomes
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L(x, y) = A(y) +
i
b
(c1 cos(ax) + c2 sin(ax)) sech2

(
x + y√

2

)

+
i(c2 cos(ax)− c1 sin(ax))

ab

(
b(i + k)−

√
2a2 tanh

(
x + y√

2

))
.

Substituting this into the first equation in (6.18), we find A′ = 0. Hence,
after choosing suitable initial conditions, we obtain case (3) of the theorem.

Case (a.2): δ 6= β. From (6.12) and (6.15) we have

β = −αx cosh
(

x + y√
2

)
,

δ = −αy cosh
(

x + y√
2

)
, αx 6= αy,

γ = p(x) cosh3

(
x + y√

2

)
cosh α,

λ = − sech α

p(x)
sech3

(
x + y√

2

)
.

(6.27)

In views of (6.1)–(6.3), (6.5), (6.6), and (6.27), we obtain

Lxx = (tanhα− i sech α)αxLx −
√

2p(x) tanh
(

x + y√
2

)
Lx

+ p(x) cosh2

(
x + y√

2

)
(i + sinhα)Ly,

Lxy = (tanhα− i sech α)αyLx,

Lyy =
sech α(tanhα− i sech α)
p(x) cosh4

(
(x + y)/

√
2
) Lx −

√
2p(x) tanh

(
x + y√

2

)
Ly.

(6.28)

Solving the second equation in (6.28), we get

L(x, y) = A(y) +
∫ x

z(x)(1− i sinhα)dx (6.29)

for some vector functions A, z. From (6.29) we have
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Lx = z(x)(1− i sinhα). (6.30)

Thus, it follows from (6.1) and (6.30) that z is a curve lying in LC ⊂ C2
1.

Next, by substituting (6.29) into the first equation in (6.28), we find

A′(y) = i
∫ x

z(x)(sinhα)ydx− i
z′(x) +

√
2z(x) tanh((x + y)/

√
2)

p(x) cosh2
(
(x + y)/

√
2
) . (6.31)

By differentiating (6.31) with respect to x, we obtain the following

z′′ − p′

p
z′ − 2z =

{√
2
p′(x)
p(x)

tanh
(

x + y√
2

)
− 3 sech2

(
x + y√

2

)

+ p(x) cosh2

(
x + y√

2

)
αy cosh α

}
z(x). (6.32)

On the other hand, by substituting (6.27) into (6.13), we find

p′ + 3
√

2 tanh
(

x + y√
2

)
p(x) + p2(x) cosh3

(
x + y√

2

)

×
{√

2αy cosh α sinh
(

x + y

2
√

2

)
+ α2

y cosh
(

x + y√
2

)
sinhα

+ αyy cosh
(

x + y√
2

)
cosh α

}
= 0,

which implies that

∂

∂y

{√
2
p′

p
tanh

(
x + y√

2

)
−3 sech2

(
x + y√

2

)
+p cosh2

(
x + y√

2

)
(sinhα)y

}
= 0.

Hence, there exists a real-valued function f(x) such that

f(x) =
√

2
p′

p
tanh

(
x + y√

2

)
− 3 sech2

(
x + y√

2

)
+ p cosh2

(
x + y√

2

)
(sinhα)y.

(6.33)

Combining this with (6.32), we get

pz′′ − p′z′ = (2 + f(x))p(x)z(x). (6.34)
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Also, by solving (6.33) for (sinhα)y, we find

(sinhα)y =

p(x)f(x) + 3p(x) sech2
(
(x + y)/

√
2
)−√2p′(x) tanh

(
(x + y)/

√
2
)

p2(x) cosh2
(
(x + y)/

√
2
) .

Thus, we obtain

α = sinh−1

(
k(x) +

√
2(2 + f(x))

p(x) coth
(
(x + y)/

√
2
)

+
p′(x) +

√
2p(x) tanh((x + y)/

√
2)

p2(x) cosh2
(
(x + y)/

√
2
)

)

for some function k. By applying 〈z, z〉 = 〈z′, z〉 = 0, we get 〈z′′, z〉 = 0 from
(6.34). On the other hand, since 〈z, z′〉 = 0, we have 〈z′, z′〉 = −〈z′′, z〉. So,
we also have 〈z′, z′〉 = 0. Thus, z is a null curve lying in LC.

It follows from (6.29) and (6.31) that the immersion is congruent to

L(x, y) =
∫ x

(1− i sinhα)z(x)dx + i
∫ y ∫ x

(sinhα)yz(x)dxdy

− i
p(x)

(√
2 tanh

(
x + y√

2

)
z′(x)− sech2

(
x + y√

2

)
z(x)

)
. (6.35)

Consequently, we obtain case (4) of the theorem.

Case (b): µ 6= 0. It follows from (6.9) that

µ = q(y) cosh α cosh
(

x + y√
2

)
(6.36)

for a real-valued nonzero function q. Hence, (6.7) yields

β = −αx cosh
(

x + y√
2

)
,

δ = cosh
(

x + y√
2

)
(q(y) cosh α− αy) 6= 0.

(6.37)
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Case (b.1): γ = 0. From (6.11), (6.36) and (6.37) we find

(sinhα)x =
1

q(y)
sech2

(
x + y√

2

)
,

which implies that

α = sinh−1

(
p(y) +

√
2

q(y)
tanh

(
x + y√

2

))
(6.38)

for some function p. Substituting (6.38) into (6.36) and (6.37), we get

µ =
√

q2 +
(
pq +

√
2 tanh((x + y)/

√
2
)2 cosh

(
x + y√

2

)
,

β = − sech
(
(x + y)/

√
2
)

√
q2 +

(
pq +

√
2 tanh

(
(x + y)/

√
2
))2

,

δ =
√

q2 +
(
pq +

√
2 tanh

(
(x + y)/

√
2
)2 cosh

(
x + y√

2

)

− p′q + sech2
(
(x + y)/

√
2
)−√2(ln q)′ tanh

(
(x + y)/

√
2
)

√
q2 +

(
pq +

√
2 tanh

(
(x + y/

√
2
)2

cosh
(

x + y√
2

)
.

Hence, the immersion satisfies

Lxx =

(
(p− i)q +

√
2 tanh

(
x+y√

2

))
sech2

(
x+y√

2

)

q2 +
(
pq +

√
2 tanh

(
(x + y)/

√
2
)2 Lx −

√
2 tanh

(
x + y√

2

)
Lx,

Lxy =
−√2

(
(p− i)q +

√
2 tanh

(
x+y√

2

))

q2 +
(
pq +

√
2 tanh

(
(x + y)/

√
2
)2

×
{√

2(2pq + (ln q)′) tanh
(

x + y√
2

)

+ 2 + (1 + p2)q2 − p′q − 3 sech2

(
x + y√

2

)}
Lx, (6.39)
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Lyy =
λ
{
(p− i)q +

√
2 tanh

(
(x + y)/

√
2
)}

√
q2 +

(
pq +

√
2 tanh

(
(x + y)/

√
2
)2

sech
(

x + y√
2

)
Lx + (i + p)qLy.

Solving the second equation in (6.39), we have

L = z(y)+e
R y(i−p)qdy

∫ x(
1−ip− i

√
2

q
tanh

(
x + y√

2

))
sech2

(
x + y√

2

)
B(x)dx

(6.40)

for some vector functions z and B. By substituting this into the first equa-
tion in (6.39), we get B′ = 0. Thus, B = c1 for some c1 ∈ C2

1. Hence, (6.40)
reduces to

L(x, y) = z(y) +
√

2c1(1− ip(y))
e
R y(p−i)qdy

tanh
(

x + y√
2

)
+

ic1 sech2
(
((x + y)/

√
2
)

q(y)e
R y(p−i)qdy

.

(6.41)

From (6.41), we get

Lx = c1

(
1− ip(y)− i

√
2

q(y)
tanh

(
x + y√

2

))
e
R y(i−p)qdy sech2

(
x + y√

2

)
,

Ly =
ic1e

R y(i−p)qdy

q2(y)

{√
2q2(y)((1 + p2(y))q(y)− p′(y)) tanh

(
x + y√

2

)

−
(

2p(y)q2(y) + q′(y) +
√

2q(y) tanh
(

x + y√
2

))
sech2

(
x + y√

2

)}

+ z′(y). (6.42)

It follows from (6.1) and (6.42) that 〈c1, c1〉 = 〈z′, z′〉 = 0 and

〈c1, z
′〉 = −e

R y pqdy cos
( ∫ y

qdy

)
, 〈ic1, z

′〉 = −e
R y pqdy sin

( ∫ y

qdy

)
.

Consequently, we obtain case (5) of the theorem.
Case (b.2): γ 6= 0. It follows from (6.10), (6.36) and (6.37) that

(ln γ)y =
3√
2

tanh
(

x + y√
2

)
+ αy tanhα− 2q(y) sinhα.
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After solving this equation, we get

γ =
p(x) cosh α

e2
R y q(y) sinh αdy

cosh3

(
x + y√

2

)
,

λ =
e2
R y q(y) sinh αdy

p(x) cosh
(
(x + y)/

√
2
)
(

αxq(y)− sech α sech2

(
x + y√

2

)) (6.43)

for some real-valued nonzero function p. Hence, it follows from (6.1), (6.2),
(6.3), (6.5) (6.36), (6.37) and (6.43) that

Lxx = (tanhα− i sech α)αxLx −
√

2 tanh
(

x + y√
2

)
Lx

+
p(x)(i + sinhα)
e2
R y q(y) sinh αdy

cosh2

(
x + y√

2

)
Ly,

Lxy = (q(y) cosh α− αy)(i sech α− tanhα)Lx, (6.44)

Lyy = (i + sinhα)q(y)Ly −
√

2 tanh
(

x + y√
2

)
Ly

+
(tanhα− i sech α) sech2

(
x+y√

2

)

p(x)e−2
R y q(y) sinh αdy

(
sech α sech2

(
x + y√

2

)
− q(y)αx

)
Lx.

After solving the second equation in (6.44), we find

L(x, y) = A(y) + ei
R y q(y)dy

∫ x 1− i sinhα

e
R y q sinh αdy

z(x)dx (6.45)

for some vector functions A and z. Thus, we have

Lx = (1− i sinhα)e
R y q(y)(i−sinh α)dyz(x),

Ly = A′(y) + iei
R y q(y)dy

∫ x (q(y) cosh α− αy) cosh α

e
R y q sinh αdy

z(x)dx.
(6.46)

By substituting (6.45) into the first equation in (6.44), we obtain



Marginally trapped surfaces of constant curvature 407

A′ = −i
∫ x q(y) cosh α− αy

e
R y q(sinh α−i)dy sech α

z(x)dx +
ie
R y q(i+sinh α)dy

p(x) cosh2
(
(x + y)/

√
2
)

×
{

z(x)
∫ y

q(sinhα)xdy −
√

2z(x) tanh
(

x + y√
2

)
− z′(x)

}
. (6.47)

By combining this with (6.45), we show that the immersion is congruent
to

L(x, y) =

ei
R y q(y)dy

∫ x 1− i sinhα

e
R y q(y) sinh αdy

z(x)dx +
iz(x)
p(x)

∫ y e
R y q(y)(i+sinh α)dy

cosh2
(
(x + y)/

√
2
)

×
( ∫ y

q(y)(sinhα)xdy −
√

2 tanh
(

x + y√
2

))
dy

− i
∫ y∫ x (q(y) cosh α− αy)z(x)

e
R y q(y)(sinh α−i)dy sech α

dxdy − iz′(x)
p(x)

∫ y e
R y q(y)(i+sinh α)dy

cosh2
(
(x + y)/

√
2
)dy.

(6.48)

Also, by substituting (6.47) into (6.46), we find

Ly =
ie
R y q(i+sinh α)dy

p(x) cosh2
(
(x + y)/

√
2
)

×
{

z(x)
( ∫ y

q(sinhα)xdy −
√

2 tanh
(

x + y√
2

))
− z′(x)

}
.

This, together with (6.1) and (6.46), implies that 〈z, z〉 = 〈z′, z′〉 = 0,
〈z, iz′〉 = p. Consequently, we obtain case (6) of the theorem. ¤
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