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Affine surfaces which admit several affine immersions in R3

Olivier Birembaux
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Abstract. Let F : Σ −→ R3 be a Blaschke immersion of an affine surface (Σ,∇)

with a positive definite affine fundamental form such that dim Im R = 1 where R is the

curvature tensor. Suppose that there exists another immersion of the same surface with

the same induced affine connection ∇ which is not affine equivalent to the first one.

Then we give explicitely F . Therefore all immersions which admit another immersion

which is not affine equivalent to the original one are classified.
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1. Introduction

For a long time, mathematicians have been interested in the study of
immersions of hypersurfaces and in particular in the problem of rigidity
of such immersions. Around 1980, K. Nomizu posed the following global
problem in affine differential geometry:

Problem a Assume that f : M −→ Rn+1 and g : M −→ Rn+1 are
two ovaloids (i.e. connected, compact non degenerate hypersurfaces) with
the same induced affine Blaschke connection. Are both immersions affine
equivalent?

In the case that n = 2, K. Nomizu and B. Opozda (see [4]) proved
the following theorems; given a positive answer to Problem a, under some
additional assumptions:

Theorem a Let M be a connected, compact orientable 2-manifold and let
f , f : M −→ R3 be two nondegenerate embeddings with equiaffine transver-
sal vector fields ξ, ξ. Assume that detS (where S is the shape operator) is
nowhere 0. If the induced connections coincide and if detS = det S at every
point, then f and f are affine equivalent.

Theorem b Let M be a connected, compact orientable 2-manifold and let
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f , f : M −→ R3 be a nondegenerate embedding and a nondegenerate immer-
sion, respectively, with equiaffine transversal vector fields ξ, ξ. Assume that
they have the same induced connection ∇ with nondegenerate Ricci tensor.
If trS = tr S and if det S ≤ det S, then f and f are affine equivalent.

And U. Simon (see [7]) showed a theorem which for Blaschke immersions
reduces to:

Theorem c Let x : M −→ R3 and x′ : M −→ R3 be two ovaloids in R3.
Assume that the Blaschke connections induced by x and x′ coincide. Then
x : M −→ R3 and x′ : M −→ R3 are affine equivalent.

Note that as in Blaschke geometry the volume form is always parallel,
the previous theorem solves the case n = 2 for ovaloids and up to now, the
case n ≥ 3 remains open.

In this paper we are interested in a local analog of this previous problem.

Problem b Assume that f : M −→ Rn+1 and g : M −→ Rn+1 are two
positive definite affine immersions with the same induced affine Blaschke
connection. Is it possible to find an affine transformation A of Rn+1 such
that f = A ◦ g?

K. Nomizu and L. Vrancken (see [6]) answered positively in case n ≥ 3
and the dimension of the image of the curvature tensor is at least equal
to 2 (dim Im R ≥ 2). In 2003, L. Vrancken solved the case n ≥ 3 and
dim Im R = 1 (see [8]). In this case, such immersions are generically locally
rigid and he gave a complete description of non locally rigid immersions in
terms of differential equations of Monge-Ampere type.

We study the case n = 2 and dim ImR = 1. We consider an affine
surface (Σ,∇) with a positive definite affine fundamental form and an im-
mersion F : Σ −→ R3. Since dim Im R = 1, we can choose X1 and X2

orthonormally, with respect to the affine metric introduced by F , such that
we have R(X1, X2)X1 = 0 and R(X1, X2)X2 = λ1X1, where λ1 is a non van-
ishing function defined on the surface. This is equivalent to have S1X2 = 0
and S1X1 = λ1X1 by using the Gauss equation. The aim of this paper is
to give a description of affine surfaces which admit several immersions in
R3 with the same induced connection, by giving the position vector for the
immersion F . More precisely we have the following theorems:
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Theorem 1 Let F : Σ −→ R3 be a Blaschke immersion with induced
connection ∇, positive definite affine fundamental form h1 such that the
image of the curvature tensor has dimension 1. Suppose that there exists
another Blaschke immersion with the same induced connection ∇, positive
definite affine fundamental form h2 such that h2(X1, X2) 6= 0, then under a
suitable choice of coordinates (u, v) on Σ, the immersion F is given by the
formulas:

if λ1 > 0, we have ∆
(

1
λ1

)
= − 1

λ1
and

F =




∫ u

0

λ1(ũ, v)−1 cos(ũ)dũ− f1(v)

∫ u

0

λ1(ũ, v)−1 sin(ũ)dũ + f2(v)

v




;

if λ1 < 0, we have ∆
(

1
λ1

)
= 1

λ1
and

F =




∫ u

0

−λ1(ũ, v)−1 cosh(ũ)dũ + f1(v)

∫ u

0

−λ1(ũ, v)−1 sinh(ũ)dũ− f2(v)

v




,

where f1, f2 are functions satisfying f ′′1 (v) = ∂λ−1
1

∂u (0, v), f ′′2 (v) = λ−1
1 (0, v).

Theorem 2 Let F : Σ −→ R3 be a Blaschke immersion with induced
connection ∇, positive definite affine fundamental form h1 such that the
image of the curvature tensor has dimension 1. Suppose that there exists
another Blaschke immersion with the same induced connection ∇, positive
definite affine fundamental form h2 such that h2(X1, X2) = 0. Then under a
suitable choice of coordinates (u, v) on Σ, either there exist a non degenerate
equiaffine curve γ in R2, constant vectors k1, k2, e and constants d1, d2 such
that the immersion F is given by one of the following expressions:

F(u, v) = γ(u) +
e

2
v2 + k1v,
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F(u, v) = (d1v + d2)γ(u) +
e

6d2
1

(d1v + d2)3 + k2v,

or there exist a non degenerate centroaffine curve γ̃ = (γ1, γ2, 0), constants
d1, d2, d and e such that F is given by one of the following expressions:

F(u, v) =
((

d1 exp(
√

d v) + d2 exp(−
√

d v)
)
γ1(u),

(
d1 exp(

√
d v) + d2 exp(−

√
d v)

)
γ2(u), ev

)
,

F(u, v) =
((

d1 cos(
√
−d v) + d2 sin(

√
−d v)

)
γ1(u),

(
d1 cos(

√
−d v) + d2 sin(

√
−d v)

)
γ2(u), ev

)
.

2. Preliminaries

In this section, we will introduce all the material we need. For more
details see [5]. Let f : M −→ (Rn+1, D) be an immersion of an n dimen-
sional manifold in the affine space Rn+1 equipped with its usual flat affine
connection D.

For each point of M we can choose locally a transversal vector field ξ.
Then we have a torsion free induced connection ∇ satisfying:

DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ (Gauss formula), (1)

where h is a symmetric bilinear function on the space X (M) of vector fields
on M . To simplify, we will write DXY = ∇XY + h(X, Y )ξ.

Definition 2.1 This symmetric bilinear form h is called the affine funda-
mental form of f with respect to ξ.

Remark 2.1 Each choice of a transversal ξ gives us such form h.

For all X ∈ X (M) we have:

DXξ = −f∗(SX) + τ(X)ξ (Weingarten formula), (2)

where S is a tensor of type (1, 1), called the affine shape operator and τ is
a 1-form called the transversal connection form. To simplify, we will write
DXξ = −SX + τ(X)ξ.

On Rn+1 we have a parallel volume element Ω given by the determinant.
Parallel means that DXΩ = 0 for all vector fields on Rn+1. Now we suppose
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that h is nondegenerate. This condition is independent of the choice of ξ.
In this case, we say that the immersion is nondegenerate. In fact h is

a pseudo-riemannian metric called the affine metric. We define a volume
element ω on M by setting ω = iξΩ, where i is the interior product.

Proposition 2.1 (see [5]) We have ∇Xω = τ(X)ω for all X in X (M).
Consequently, the following conditions are equivalent :

(a) ∇ω = 0,
(b) τ = 0, that is DXξ is tangential for all X in X (M).

Definition 2.2 We say that f is an equiaffine immersion if condition (b)
is verified. In this case ξ is said to be equiaffine.

Remark 2.2 Every hypersurface immersion admits locally an equiaffine
transversal vector field ξ.

In this case, we have the following equations:

Gauss equation

R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY, (3)

Codazzi equations for h and S

(∇Xh)(Y, Z) = (∇Y h)(X, Z), (4)

(∇XS)(Y ) = (∇Y S)(X), (5)

Ricci equation

h(X, SY )− h(SX, Y ) = 0. (6)

Relative to a coordinate system (x1, x2, . . . , xn), we can express the
components of h as follows: hij = h

(
∂

∂xi
, ∂

∂xj

)
. If the immersion is nonde-

generate, we define the volume element by ωh

(
∂

∂x1
, . . . , ∂

∂xn

)
=

√|det(hij)|.
Let (c): ω = ωh.

There exists a unique choice of ξ, such that conditions (b) and (c) hold.
In this case, ξ is called the affine normal and f is a Blaschke immersion.

Definition 2.3 Let f : M −→ Rn+1 and g : M −→ Rn+1 be two immer-
sions. We say that f and g are affine equivalent or affine congruent if there
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exists an affine transformation A of Rn+1 such that f = A ◦ g.

3. Computations

Assume now that we have two Blaschke immersions of the same surface
F : Σ −→ R3 and G : Σ −→ R3, which are not affine congruent, but which
have the same induced connection ∇. We also assume that the dimension
of the image of the curvature tensor R is 1. We denote by ξ the affine
normal, h1 the nondegenerate positive definite affine metric, S1 the affine
shape operator and ω1 the volume form for the first immersion F . We use
the notations ξ̃, h2, S2 and ω2 for the second one G. We denote by X1 and
X2 a basis of vector fields on Σ.

The volume forms ω1 and ω2 are parallel with respect to ∇; that is
∇Xωi(X1, X2) = 0 (i = 1, 2). Hence ω2 is a constant multiple of ω1. By
using a homothety, we can suppose that ω1 = ω2. So, we will write the
volume form ω, without indices.

We pose:

∇X1X1 = a1X1 + a2X2,

∇X1X2 = a3X1 + a4X2,

∇X2X1 = a5X1 + a6X2,

∇X2X2 = a7X1 + a8X2,

where the ai are functions defined on the surface.
As dim Im R = 1, choosing X1 and X2 as indicated before, we have

h1(X1, X1) = h1(X2, X2) = 1, h1(X1, X2) = 0, S1X2 = 0 and S1X1 =
λ1X1.

By using the Codazzi equations for h1 and S1 ((4) and (5)) and ∇ω = 0,
a straightforward computation shows:

∇X1X1 = a1X1 + a2X2,

∇X1X2 = a3X1 − a1X2,

∇X2X1 =
1
2
(a2 + a3)X1,

∇X2X2 = −2a1X1 − 1
2
(a2 + a3)X2,



Affine surfaces 211

with X2(λ1) = −a3 λ1.
Now, we look at the second immersion in order to deduce more informa-

tions. We pose b11 = h2(X1, X1), b22 = h2(X2, X2) and b12 = h2(X1, X2).
In this case, in general, b12 6= 0 and we have the equation b11b22 − b2

12 = 1.
Since the two immersions have the same connection, they have the same
curvature tensor R. Using (3) for the second immersion, we find S2X1 =
λ1b11X1 and S2X2 = λ1b12X1.

Writing (5) for the second immersion in the direction of X1, we get:

X1(λ1b12) + λ1a1b12 − a3λ1b11 − a4λ1b12 = X2(λ1b11),

so X1(λ1)b12 + λ1a1b12 − a3λ1b11 + a1λ1b12 + λ1X1(b12) − λ1X2(b11) =
−λ1a3b11.

Using (4), we have X1(b12) + a2(b11 − b22)−X2(b11) = 0.
Then

X1(λ1)b12 + 2λ1a1b12 + λ1a2(b22 − b11) = 0. (7)

Using (5) in the direction of X2, we obtain λ1b12a2 = 0.
Thus we get a2b12 = 0.

Lemma 3.1 We always have a2 = 0.

Proof. The case b12 6= 0 is obvious. Now suppose that b12 = 0. We have
X1(λ1)b12 + 2λ1a1b12 + λ1a2(b22 − b11) = 0. So a2(b11 − b22) = 0.

If b11 = b22, since b12 = 0, we have b11 = b22 = 1 and the second
immersion equals to the first one (see [3]). Hence b11 6= b22 and we find
a2 = 0. ¤

To further simplify the problem, we now introduce special isothermal
coordinates. It is well known that general isothermal coordinates exist for 2
dimensional regular surfaces (see [2]). However we want to find isothermal
coordinate vector fields ∂

∂u and ∂
∂v such that ∂

∂u is a multiple of X1 and ∂
∂v

is a multiple of X2. The existence of such coordinates is equivalent to the
existence of a positive function ρ such that [ρX1, ρX2] = 0. As

[ρX1, ρX2] = ∇ρX1ρX2 −∇ρX2ρX1

= ρ

[
(X1(ρ)− ρa1)X2 +

(
ρ
1
2
a3 −X2(ρ)

)
X1

]
,
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such isothermal coordinates exist if and only if we can find a function ρ

satisfying the following differential equations:

{
X1(ln(ρ)) = a1,

X2(ln(ρ)) = 1
2a3.

(8)

Lemma 3.2 The above equations have solutions and hence isothermal
coordinate vector fields

(
∂

∂u , ∂
∂v

)
exist.

Proof. After straightforward computations, we find that these equations
have solutions if and only if the following integrability equation holds: 0 =
X1

(
1
2a3

)−X2(a1).
By using the following Gauss equation with X = Z = X1 and Y = X2:

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = h1(Y, Z)S1X − h1(X, Z)S1Y,

we find that X1

(
1
2a3

)−X2(a1) = 0. ¤

Using these isothermal coordinates, we have:

Fuu = 2ρa1Fu + ρ2ξ,

Fuv = Fvv = ρa3Fu, (9)

Fvv = −2ρa1Fu + ρ2ξ,

ξu = −λ1Fu,

ξv = 0,

and

Guu = 2ρa1Gu + ρ2b11ξ̃,

Guv = Gvv = ρa3Gu + ρ2b12ξ̃, (10)

Gvv = −2ρa1Gu + ρ2b22ξ̃,

ξ̃u = −λ1b11Gu,

ξ̃v = −λ1b12Gu,
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where the bij , i, j = 1, 2 satisfy:





b11b22 − b2
12 = 1,

∂b12

∂u
− ∂b11

∂v
= 0 because a2 = 0 (Cf. (4)),

−∂b22

∂u
+

∂b12

∂v
+ 2ρa1b11 + 2ρa3b12 − 2ρa1b22 = 0 (Cf. (4)),

and

λ1 = −2X1(a1)−X2(a3)− 3
2
a2
3 − 6a2

1 (Cf. (3)). (11)

From (9), after integration, we get Fu = C(u) exp(
∫

ρa3dv). Moreover
X2(ρ) = ρ 1

2a3.
Then

Fu = C(u) exp
( ∫

2X2(ρ)dv

)

= C(u) exp
( ∫

2
1
ρ

∂ρ

∂v
dv

)

= C(u) exp
( ∫

2
∂(ln(ρ))

∂v
dv

)

= C(u) exp(ln(ρ2))

= C(u)ρ2.

Therefore we have Fuu = C ′(u)ρ2 + 2ρC(u) ∂ρ
∂u .

Moreover Fuu = 2ρa1Fu + ρ2ξ = 2ρ3a1C(u) + ρ2C ′(u) then ξ = C ′(u)
and ξu = C ′′(u) = −λ1ρ

2C(u). We deduce from this that λ1ρ
2 doesn’t

depend on v.
So we have to solve the following differential equation:

C ′′(u) + λ1ρ
2C(u) = 0. (12)

Remark 3.1 As the surface is nondegenerate, (C(u), C ′(u)) is linearly
independent.
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We have the following well known result (see [1, p. 243]):

Lemma 3.3 The solutions of the previous equation (12) are of the form
C(u) = C1α1(u)+C2α2(u) where C1, C2 ∈ R3 and (α1, α2) is a fundamental
system of solutions.

By using an equiaffine transformation, we can suppose that C1 =
(k, 0, 0) and C2 = (0, k′, 0), where k, k′ ∈ R∗. Applying the matrix

M =
( 1

k 0 0

0 1
k′ 0

0 0 kk′

)
on the vector space, we find that C1 = (1, 0, 0) and

C2 = (0, 1, 0). Therefore, we have C(u) = (α1(u), α2(u), 0) and Fu =
(ρ2α1(u), ρ2α2(u), 0).

Finally we have:

F =




∫ u

ρ2(ũ, v)α1(ũ)dũ + f1(v)

∫ u

ρ2(ũ, v)α2(ũ)dũ + f2(v)

f3(v)




,

where the fi, i = 1, 2, 3 are integration functions with conditions on their
second derivative given by Fuu + Fvv = 2ρ2 (α′1, α

′
2, 0).

4. Case h2

(
∂

∂u
, ∂

∂v

) 6= 0.

Since b12 6= 0, by using Lemma 3.1 and (7), we get:

{
X1(λ1) = −2λ1a1,

X2(λ1) = −a3λ1.
(13)

By (8) and (13), we have ρ2|λ1| = c, where c is a constant. As ρ is
determined up to a constant, we can take c = 1.

By (11) and (13), we find that:

λ3
1 = (X1X1(λ1) + X2X2(λ1))λ1 − 5

2
(X2(λ1))2 − 5

2
(X1(λ1))2. (14)

In isothermal coordinates, (14) reduces to
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ρ2λ3
1 = λ1

∂2λ1

∂u2
+ λ1

∂2λ1

∂v2
− 2

(
∂λ1

∂u

)2

− 2
(

∂λ1

∂v

)2

. (15)

If ρ2λ1 = 1, the equation (12) becomes C ′′(u) + C(u) = 0 and we can
choose initial condition such that:

F =




∫ u

0

1
λ1(ũ, v)

cos(ũ)dũ + f1(v)

∫ u

0

1
λ1(ũ, v)

sin(ũ)dũ + f2(v)

f3(v)




,

|C(u), C ′(u)| =
cos(u) − sin(u)

sin(u) cos(u)

= cos2(u) + sin2(u)

= 1

and ∂
∂u |C(u), C ′(u)| = |C(u), C ′′(u)| = 0.
The equation (15) gives:

λ2
1 = λ1

∂2λ1

∂u2
+ λ1

∂2λ1

∂v2
− 2

(
∂λ1

∂u

)2

− 2
(

∂λ1

∂v

)2

.

So

1
λ1

=
1
λ2

1

∂2λ1

∂u2
+

1
λ2

1

∂2λ1

∂v2
− 2

λ3
1

(
∂λ1

∂u

)2

− 2
λ3

1

(
∂λ1

∂v

)2

.

Then λ1 verifies the following differential equation:

∆
(

1
λ1

)
= − 1

λ1
.

We have:
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Fvv =




∫ u

0

∂2

∂v2

(
1
λ1

)
cos(ũ)dũ + f ′′1 (v)

∫ u

0

∂2

∂v2

(
1
λ1

)
sin(ũ)dũ + f ′′2 (v)

f ′′3 (v)




=




∫ u

0

(
− 1

λ1
− ∂2

∂ũ2

(
1
λ1

))
cos(ũ)dũ + f ′′1 (v)

∫ u

0

(
− 1

λ1
− ∂2

∂ũ2

(
1
λ1

))
sin(ũ)dũ + f ′′2 (v)

f ′′3 (v)




.

By making two integrations by parts we get:

−
∫ u

0

∂2

∂ũ2

(
1
λ1

)
cos(ũ)dũ

= − ∂

∂u

(
1
λ1

)
cos(u) +

(
∂

∂u

(
1
λ1

))

|u=0

− 1
λ1

sin(u) +
∫ u

0

1
λ1

cos(ũ)dũ

and

−
∫ u

0

∂2

∂ũ2

(
1
λ1

)
sin(ũ)dũ

= − ∂

∂u

(
1
λ1

)
sin(u) +

1
λ1

cos(u)−
(

1
λ1

)

|u=0

+
∫ u

0

1
λ1

sin(ũ)dũ.

So

Fvv =




− ∂

∂u

(
1
λ1

)
cos(u)− 1

λ1
sin(u) +

(
∂

∂u

(
1
λ1

))

|u=0

+ f ′′1 (v)

− ∂

∂u

(
1
λ1

)
sin(u) +

1
λ1

cos(u)−
(

1
λ1

)

|u=0

+ f ′′2 (v)

f ′′3 (v)




.

Using Fuu − 2ρa1Fu = ρ2ξ, we obtain ρ2ξ. Then
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−2ρa1Fu + ρ2ξ =




−4ρa1
1
λ1

cos(u)− 1
λ1

sin(u)− ∂

∂u
(λ1)× 1

λ2
1

cos(u)

−4ρa1
1
λ1

sin(u) +
1
λ1

cos(u)− ∂

∂u
(λ1)× 1

λ2
1

sin(u)

0




.

Since Fvv = −2ρa1Fu +ρ2ξ, finally we find that
(

∂
∂u

(
1
λ1

))
|u=0

+f ′′1 (v) =

0, −(
1
λ1

)
|u=0

+ f ′′2 (v) = 0 and f ′′3 (v) = 0.

Therefore we can assume that f ′′1 (v) = −(
∂

∂u

(
1
λ1

))
|u=0

, f ′′2 (v) =
(

1
λ1

)
|u=0

and f3(v) = v.
This completes the proof of the first case of Theorem 1.
If ρ2λ1 = −1, similar computations give the second case.

Remark 4.1 Conversely, given a strictly positive function f on an open
domain of R2 satisfying ∆(f) = ∓f and putting λ1 = ± 1

f in formulas
of Theorem 1, we can construct an immersion F . It is straightforward to
check that this immersion admits several immersions with the same induced
connection. An example of this is given in the final section.

5. Case h2

(
∂

∂u
, ∂

∂v

)
= 0

In this case b12 = 0. We have b11b22 = 1. We also recall that the
function λ1ρ

2 depends only on u. In this case, we follow the approach of
section 3 of Vrancken ([8]). More precisely we have:

Lemma 5.1 For any Y in the second direction, we have:

X1

(
Y (ln(|λ1|))

)− (∇X1Y )∗
(
ln(|λ1|)

)
= 0

where Z∗ is the component in the second direction; i.e. Z = Z∗ +
h1(Z, X1)X1.

Proof. By using the Codazzi equation for h2 ((4)), we obtain:





X1(b22) = 2a1(b11 − b22) = 2a1

(
1

b22
− b22

)
,

X2(b11) = X2(b22) = 0.
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These equations have solutions if and only if

B(b22) = [X1, X2](b22)− (∇X1X2 −∇X2X1)(b22) = 0.

B(b22) = X1(X2(b22))−X2(X1(b22))−∇X1X2(b22) +∇X2X1(b22)

= 0−X2

(
2a1

(
1

b22
− b22

))
− a3X1(b22) +

1
2
a3X1(b22)

= −2X2(a1)
(

1
b22

− b22

)
− 1

2
a3

(
2a1

(
1

b22
− b22

))

= −
(

1
b22

− b22

)
(2X2(a1) + a1a3).

Since
(

1
b22

− b22

) 6= 0, we find that:

2X2(a1) + a1a3 = 0. (16)

Since Y belongs to the second direction, there exists some function f

such that Y = f X2. We have:

X1(Y (ln(|λ1|))) = X1(f × (−a3))

= −X1(f)a3 − fX1(a3)

and (∇X1fX2) = X1(f)X2 + f(a3X1 − a1X2). So

(∇X1Y )∗(ln(|λ1|)) = X1(f)X2(ln(|λ1|))− fa1 × (−a3)

= −X1(f)a3 + fa1a3.

Then using (16), we find:

X1

(
Y (ln(|λ1|))

)− (∇X1Y )∗(ln(|λ1|))
= −fX1(a3)− fa1a3

= f [−2X2(a1)− a1a3]

= f
[
X1

(
X2(ln(|λ1|))

)− (∇X1X2)∗(ln(|λ1|))
]

= 0. ¤
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Lemma 5.2 We have ∂
∂u

∂
∂v ln(|λ1|) = 0.

Proof. By using the previous lemma we get:

X1

(
∂

∂v
(ln(|λ1|))

)
−

(
∇X1

∂

∂v

)∗
(ln(|λ1|)) = 0.

So ρX1

(
∂
∂v (ln(|λ1|))

) − (
ρ∇X1

∂
∂v

)∗(ln(|λ1|)) = 0 and then
∂

∂u

(
∂
∂v (ln(|λ1|))

)− (∇ ∂
∂u

∂
∂v

)∗(ln(|λ1|)) = 0.

∇ ∂
∂u

∂

∂v
= ∇ρX1ρX2

= ρX1(ρ)X2 + ρ2∇X1X2

= ρ2a1X2 + ρ2(a3X1 − a1X2)

= ρa3
∂

∂u
.

Therefore
(∇ ∂

∂u

∂
∂v

)∗ = 0 and ∂
∂u

(
∂
∂v (ln(|λ1|))

)
= 0. ¤

This previous lemma implies that there exist a function λ (depending
only on the variable u) and a function µ (depending only on the variable v)
such that:

|λ1| = λ(u)
µ(v)

.

As |λ1| is positive, we may assume that λ and µ are positive functions.

Lemma 5.3 There exists a curve γ depending only on the variable u such
that Fu = µ(v)γ′(u).

Proof. As ∂(|λ1|)
∂v = −ρa3|λ1|, we find that:

ρa3 = −
∂(|λ1|)

∂v

|λ1| = −µ
∂
(

1
µ

)

∂v
=

µ′

µ
.

Since ∂Fu

∂v = ρa3Fu = µ′

µ Fu, we have:
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µ
∂

∂v
(Fu)− µ′Fu = 0,

so

∂

∂v

(Fu

µ

)
= 0. ¤

Lemma 5.4 If µ′′ 6= 0, there exists a curve γ̃ depending only on the
variable u such that Fvv = µ′′(v)γ̃(u).

Proof. From the previous lemma, we deduce that Fvv = µ′′γ(u)+c(v) and
ρa3 = µ′

µ .

We know that ∂
∂v (ρ) = 1

2ρ2a3, so µ′

µ = 2 ∂
∂v (ρ)

ρ .
Therefore there exists a function g depending only on the variable u

such that ρ =
√

µg.
Then

Fvv = −2ρa1Fu + ρ2ξ

= −2ρa1µγ′ + µg2ξ

= −2
√

µga1µγ′ + µg2ξ

= µ
(− 2g(

√
µa1)γ′ + g2ξ

)
.

Using (16) we find that:

∂

∂v
(ρa1) =

1
2
ρ2a1a3 + ρ2X2(a1)

= 0.

So ∂
∂v (

√
µ a1) = 0.

We deduce that the function (−2g(
√

µa1)γ′ + g2ξ) depends only on the
variable u, so

∂

∂v

(
1
µ
Fvv

)
= 0,

i.e.
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∂

∂v

(
µ′′

µ

)
γ(u) +

∂

∂v

(
c(v)
µ

)
= 0.

Since Fu = µγ′ 6= 0, we have γ′(u) 6= 0. Then ∂
∂v

(
µ′′

µ

)
= 0 and

∂
∂v

( c(v)
µ

)
= 0.

Therefore there are non zero constant d and constant vector e such that
µ′′ = dµ and c = eµ.

So

Fvv = dµγ(u) + eµ

= dµ

(
γ(u) +

e

d

)
.

Taking γ̃(u) = γ(u) + e
d completes the proof. ¤

5.1. Case µ′′ = 0
We have Fvv = eµ and µ(v) = d1v + d2 where d1, d2 are constants. So

Fu = (d1v + d2) γ′(u) where γ is a non degenerate equiaffine curve.
If d1 = 0, then F(u, v) = γ(u) + k(v) such that k′′(v) = e.
Therefore there exists constant vector k1 such that k(v) = e

2v2 + k1v.
We find that F(u, v) = γ(u) + e

2v2 + k1v.
If d1 6= 0, then F(u, v) = (d1v + d2) γ(u) + k(v) such that

k′′(v) = e(d1v + d2).

Therefore there exists constant vector k2 such that

k(v) = e
1

6d2
1

(d1v + d2)3 + k2v.

We get F(u, v) = (d1v + d2)γ(u) + e
6d2

1
(d1v + d2)3 + k2v.

In isothermal coordinates, we obtain that γ′′(u) = e + 4ρa1γ
′(u), by

using the equality 2ρa1 Fu = Fuu − 1
2 (Fuu + Fvv).

5.2. Case µ′′ 6= 0
We have F(u, v) = µ(v)γ̃(u) + k(v) such that the function k verifies

k′′(v) = 0. The curve γ̃ verifies γ̃′(u) = γ′(u).
Since µ′′ = dµ, there are two cases.
If d > 0, we have µ(v) = d1 exp(

√
d v) + d2 exp(−

√
d v).
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And if d < 0, we have µ(v) = d1 sin(
√−d v) + d2 cos(

√−d v) where d1

and d2 are constants.

Since γ̃ is a non degenerate equiaffine curve in R2, there exist functions
γ1 and γ2 which verify γ′1γ

′′
2 − γ′2γ

′′
1 6= 0, constants d1, d2, d and e such that

F is given by one of the following expressions:

F(u, v) =
((

d1 exp(
√

d v) + d2 exp(−
√

d v)
)
γ1(u),

(
d1 exp(

√
d v) + d2 exp(−

√
d v)

)
γ2(u), ev

)
,

F(u, v) =
((

d1 cos(
√
−d v) + d2 sin(

√
−d v)

)
γ1(u),

(
d1 cos(

√
−d v) + d2 sin(

√
−d v)

)
γ2(u), ev

)
.

In each case, we calculate Fuu + Fvv.
We know that 2ρa1 Fu = Fuu − 1

2 (Fuu + Fvv). Then we obtain that
γ′′1 (u) = 4ρa1γ

′
1(u) + dγ1(u) and γ′′2 (u) = 4ρa1γ

′
2(u) + dγ2(u).

So γ′1(u)γ′′2 (u)− γ′2(u)γ′′1 (u) = d(γ′1(u)γ2(u)− γ′2(u)γ1(u)).
Therefore γ′1(u)γ2(u)−γ′2(u)γ1(u) 6= 0, i.e. γ̃ = (γ1, γ2, 0) is a non dege-

nerate centroaffine curve.
In isothermal coordinates, we notice that we have:

(
γ′′1 , γ′′2 , 0

)
= d(γ1, γ2, 0) + 4ρa1

(
γ′1, γ

′
2, 0

)
.

This completes the proof of Theorem 2.

6. Examples

In this section, we will construct some explicit examples using Theorem
1.

6.1. Case h2

(
∂

∂u
, ∂

∂v

) 6= 0 and ρ2λ1 = 1
We define F and G on

{
(u, v) ∈ R2/− π

2 < u < π
2

}
by

F =




1
4

sin(2u) +
1
2
u

−1
4

cos(2u) +
1
2
u +

1
2
v2

v




,
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G =
(
exp(f(u)) cos(g(u)− b12v),− exp(f(u)) sin(g(u)− b12v), v

)
,

where b12 is a non-zero constant, and f , g are functions satisfying:

g′(u) =
−

√
2 + tan2(u) + b2

12 × b2
12

2 + 2 tan2(u) + b2
12

and

exp(f(u)) =
√

4 + b2
12 + b2

12 cos(2u)−
√

4 + b2
12 + b2

12 + 1.

Here is a picture of F :

Here is a picture of G, with b12 = 1:

These immersions have the same induced connection∇ with dim Im R =
1 and they are not affine equivalent. In fact, the induced connection ∇ is
given by:
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∇Xu
Xu = − tan(u)Xu,

∇XuXv = 0,

∇Xv
Xu = 0,

∇Xv
Xv = tan(u)Xu.

The affine metric h1 of F is given by h1 =
(

1 0
0 1

)
. The affine h2

of G is given by h2 =
(

b11 b12
b12 b22

)
, with b11 = 1+b212q

1+b212+
1

cos2(u)

and b22 =
√

1 + b2
12 + 1

cos2(u) .

To construct F , we set λ1 = 1
cos(u) in Theorem 1. And we construct G

as follows.
We take bij depending only on the variable u. So we find that b12 is a

constant, b11b22 = 1 + b2
12 and −∂b22

∂u − tan(u)(b11 − b22) = 0. Then after
integration, we get |1 + b2

12 − b2
22| = 1

cos2(u) .
We take b22 such that b2

22 = 1 + b2
12 + 1

cos2(u) . We find b22 =√
1 + b2

12 + 1
cos2(u) and b11 = 1+b212q

1+b212+
1

cos2(u)

.

We have:

Guvv = ρ2b12ξ̃v

= ρ2b12(−λ1b12Gu)

= −b2
12Gu.

So there exist differentiable vectors D1, D2 and D3 such that G =
D1(u) cos(b12v) + D2(u) sin(b12v) + D3(v).

From Guv = ρ2b12ξ̃, we deduce that:

ξ̃ =
1

cos(u)
(−D′

1(u) sin(b12v) + D′
2(u) cos(b12v)

)
.

From Guu = − tan(u)Gu + ρ2b11ξ̃, we obtain that:

D′′
1 (u) = − tan(u)D′

1(u) + D′
2(u)

1 + b2
12√

1 + b2
12 + 1

cos2(u)

,
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D′′
2 (u) = − tan(u)D′

2(u)−D′
1(u)

1 + b2
12√

1 + b2
12 + 1

cos2(u)

.

From Gvv = tan(u)Gu + ρ2b22ξ̃, we find that:

D′′
3 (v) = b2

12(D1(u) cos(b12v) + D2(u) sin(b12v))

+ tan(u)
(
D′

1(u) cos(b12v) + D′
2(u) sin(b12v)

)

+

√
1 + b2

12 +
1

cos2(u)
(−D′

1(u) sin(b12v) + D′
2(u) cos(b12v)

)
.

Then

D3(v) = −(D1(u) cos(b12v) + D2(u) sin(b12v))

− tan(u)
b2
12

(
D′

1(u) cos(b12v) + D′
2(u) sin(b12v)

)

− 1
b2
12

√
1 + b2

12 +
1

cos2(u)
(−D′

1(u) sin(b12v) + D′
2(u) cos(b12v)

)

+ E × v,

where E is a constant vector.
Separating the variables u and v, we get that there exist constant vectors

E1 and E2 such that:

D1(u) +
tan(u)

b2
12

D′
1(u) +

1
b2
12

√
1 + b2

12 +
1

cos2(u)
D′

2(u) = E1

and D2(u) +
tan(u)

b2
12

D′
2(u)− 1

b2
12

√
1 + b2

12 +
1

cos2(u)
D′

1(u) = E2.

So we have:

(D1 + iD2 − (E1 + iE2))

=
(
− tan(u)

b2
12

+
i

b2
12

√
1 + b2

12 +
1

cos2(u)

)
(D1 + iD2 − (E1 + iE2))′.
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Then there exist constants vectors A and B such that:

(D1 + iD2)

= (A + iB) exp
( ∫ u

0

b2
12

− tan(u) + i
√

1 + b2
12 + 1

cos2(u)

du

)
+ (E1 + iE2).

We write
∫ u

0
b212

− tan(u)+i
q

1+b212+
1

cos2(u)

du = f(u) + ig(u), where f and g

are functions depending on the variable u.
We have:

f ′(u) + ig′(u) =
b2
12

− tan(u) + i
√

1 + b2
12 + 1

cos2(u)

=
b2
12

(
− tan(u)− i

√
1 + b2

12 + 1
cos2(u)

)

tan2(u) + 1 + b2
12 + 1

cos2(u)

=
b2
12

(
− tan(u)− i

√
1 + b2

12 + 1
cos2(u)

)

2 + 2 tan2(u) + b2
12

.

So f ′(u) = − tan(u)×b212
2+2 tan2(u)+b212

and g′(u) = −
√

2+tan2(u)+b212×b212
2+2 tan2(u)+b212

.
We obtain that:





D1(u) = A exp(f(u))× cos(g(u))−B exp(f(u))× sin(g(u)) + E1,

D2(u) = A exp(f(u))× sin(g(u)) + B exp(f(u))× cos(g(u)) + E2,

D3(v) = −E1 cos(b12)− E2 sin(b12) + E × v.

Finally we get:

G = exp(f(u))
(
cos(g(u)) cos(b12v) + sin(g(u)) sin(b12v)

)
A

+ exp(f(u))
(
cos(g(u)) sin(b12v)− sin(g(u)) cos(b12v)

)
B + E × v.

Since G is non degenerate, (A,B, E) are linearly independent. So by an
affine transformation, we can assume that:
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G =
(
exp(f(u))

(
cos(g(u)) cos(b12v) + sin(g(u)) sin(b12v)

)
,

exp(f(u))
(
cos(g(u)) sin(b12v)− sin(g(u)) cos(b12v)

)
, v

)
.

So G = (exp(f(u)) cos(g(u)− b12v),− exp(f(u)) sin(g(u)− b12v), v) and

ξ̃ =
exp(f(u))

cos(u)
(
cos(g(u)− b12v) + f ′(u) sin(g(u)− b12v),

− sin(g(u)− b12v) + f ′(u) cos(g(u)− b12v), 0
)
,

with f ′(u) = − tan(u)×b212
2+2 tan2(u)+b212

, g′(u) = −
√

2+tan2(u)+b212×b212
2+2 tan2(u)+b212

and exp(f(u)) =√
4 + b2

12 + b2
12 cos(2u)− c, where c is a constant.

Since f(0) = 0, we find that c =
√

4 + 2b2
12 − 1.

Therefore exp(f(u)) =
√

4 + b2
12 + b2

12 cos(2u)−
√

4 + 2b2
12 + 1.

6.2. Case h2

(
∂

∂u
, ∂

∂v

) 6= 0 and ρ2λ1 = −1
Like before, we define F and G on R2 by

F =




1
2
u− 1

4
exp(−2u) +

v2

2

1
2
u +

1
4

exp(−2u) +
v2

2
v




,

G =
(

1
2

exp(f(u) + b12v),
1
2

exp(g(u)− b12v), v
)

,

where b12 is a non-zero constant, and f , g are functions satisfying:

f ′(u) =
b2
12

1 +
√

1 + b2
12 + exp(2u)

and g′(u) =
b2
12

1−
√

1 + b2
12 + exp(2u)

.

Here is a picture of F :
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Here is a picture of G, with b12 = 1 :

These immersions have the same induced connection∇ with dim Im R =
1 and are not affine equivalent. The induced connection ∇ is given by:

∇Xu
Xu = −Xu,

∇XuXv = 0,

∇Xv
Xu = 0,

∇Xv
Xv = Xu.

The affine metric h1 of F is given by h1 =
(

1 0
0 1

)
. The affine h2

of G is given by h2 =
(

b11 b12
b12 b22

)
, with b11 = 1+b212√

1+b212+exp(2u)
and b22 =

√
1 + b2

12 + exp(2u).
To construct F , we set λ1 = − exp(u) in Theorem 1 and we construct

G as follows.
We take bij depending only on the variable u. We find that b12 is a

constant and we choose b22 such that:

b22 =
√

1 + b2
12 + exp(2u) and b11 =

1 + b2
12√

1 + b2
12 + exp(2u)

.
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We make similar computations than before and we obtain that there
exist differentiable vectors D1, D2 and D3 such that:

G = D1(u) cosh(b12v) + D2(u) sinh(b12v) + D3(v),

with

D′′
1 (u) = −D′

1(u) + D′
2(u)

1 + b2
12√

1 + b2
12 + exp(2u)

,

D′′
2 (u) = −D′

2(u) + D′
1(u)

1 + b2
12√

1 + b2
12 + exp(2u)

and D3(v) = −(D1(u) cosh(b12v) + D2(u) sinh(b12v))

+
1

b2
12

(
D′

1(u) cosh(b12v) + D′
2(u) sinh(b12v)

)

+
1

b2
12

√
1 + b2

12 + exp(2u)
(
D′

1(u) sinh(b12v) + D′
2(u) cosh(b12v)

)

+ E × v,

where E is a constant vector.
Separating the variables u and v, we get that there exist constant vectors

E1 and E2 such that:

−D1(u) +
1

b2
12

D′
1(u) +

1
b2
12

√
1 + b2

12 + exp(2u) D′
2(u) = E1

and −D2(u) +
1

b2
12

D′
2(u) +

1
b2
12

√
1 + b2

12 + exp(2u) D′
1(u) = E2.

Then

(D1(u) + D2(u) + E1 + E2)

=
(

1
b2
12

+
1

b2
12

√
1 + b2

12 + exp(2u)
)

(D1(u) + D2(u) + E1 + E2)′

and
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(D1(u) + E1 −D2(u)− E2)

=
(

1
b2
12

− 1
b2
12

√
1 + b2

12 + exp(2u)
)

(D1(u) + E1 −D2(u)− E2)′.

We obtain that there exist constant vectors V1 and V2 such that:




(D1(u) + D2(u) + E1 + E2) = V1 exp
( ∫ u

0

b2
12

1 +
√

1 + b2
12 + exp(2u)

du

)
,

(D1(u)−D2(u) + E1 − E2) = V2 exp
( ∫ u

0

b2
12

1−
√

1 + b2
12 + exp(2u)

du

)
.

If we write:
∫ u

0

b2
12

1 +
√

1 + b2
12 + exp(2u)

du = f(u)

and
∫ u

0

b2
12

1−
√

1 + b2
12 + exp(2u)

du = g(u),

we get:

{
2D1(u) + 2E1 =

(
V1 exp(f(u)) + V2 exp(g(u))

)
,

2D2(u) + 2E2 =
(
V1 exp(f(u))− V2 exp(g(u))

)
.

Then




D1(u) =
1
2
(
V1 exp(f(u)) + V2 exp(g(u))

)− E1,

D2(u) =
1
2
(
V1 exp(f(u))− V2 exp(g(u))

)− E2,

D3(v) = E1 cosh(b12) + E2 sinh(b12) + E × v.

Moreover ξ̃ = exp(u)(D′
1(u) sinh(b12v) + D′

2(u) cosh(b12v)).
Finally we get:
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G =
1
2
(
V1 exp(f(u)) + V2 exp(g(u))

)
cosh(b12v)

+
1
2
(
V1 exp(f(u))− V2 exp(g(u))

)
sinh(b12v) + E × v.

Since G is non degenerate, (V1, V2, E) are linearly independent. So by
an affine transformation, we can assume that:

G =
(

1
2

exp(f(u))(cosh(b12v) + sinh(b12v)),

1
2

exp(g(u))(cosh(b12v)− sinh(b12v)), v
)

.

So G =
(

1
2 exp(f(u) + b12v), 1

2 exp(g(u) − b12v), v
)

and ξ̃ =
exp(u)

(
1
2f ′(u) exp(f(u) + b12v),− 1

2g′(u) exp(g(u) − b12v), 0
)
, with f ′(u) =

b212
1+
√

1+b212+exp(2u)
and g′(u) = b212

1−
√

1+b212+exp(2u)
.
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