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Abstract

We define and discuss a pure mathematics formulation of an ap-
proach proposed in the physics literature to analysing anistropy of frac-
tal sets.

1 Introduction.

There are numerous real world phenomena that display fractal characteris-
tics and many notions of dimension have been introduced to try to measure
the complexity of such objects. However objects with the same dimension
may appear very different in structure, such as displaying differing amounts
of isotropy. For example, the computer simulations displayed in Figure 1
have similar (correlation) dimension but visually appear very different. There
have been sporadic attempts over the years to define appropriate measures of
(an)isotropy (see for Example [1]), but most have suffered from being difficult
to calculate either numerically or theoretically. In this note, we describe a nu-
merical approach first given in [2] and show how to put it on sound theoretical
footing.

1.1 The numerical physics approach taken in [2]

Suppose you are given a (finite) point set in the plane and fix some parameter
α ∈ (0, 1).
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Figure 1: left: (Numerical) DLA with correlation dimension ' 1.71
right: Numerical simulation of inertial particles in an area preserving velocity
field with correlation dimension ' 1.76. (Both images from [2])

For each point x in the set, determine the maximum number of points of
the set that can be covered by an ellipse centred on x that has semi-minor
axis of length ε and semi-major axis of length εα: denote the number of points
covered by this ellipse by N(ε, α) (we are suppressing the dependence on x).

Do this for each point in the set and compute the mean value, 〈N(ε, α)〉,
of the maximum number of points covered by an appropriate ellipse. If the set
has a regular enough structure (and enough points in the sample), then one
should find that for a large range of ε > 0,

〈N(ε, α)〉 ∼ εβ(α),

where the exponent β depends solely upon α.
In the extreme case where α = 1, the associated ellipse is a circle, and

we should obtain the correlation dimension: D2 = β(1) (definition follows).
When α = 0, we are effectively maximising over ‘infinite’ strips of width ε.

Definition 1. The upper and lower correlation dimension of a (finite Borel
regular) measure µ on the plane are given by

D2(µ) = lim sup
ε↘0

log
∫
µ(B(x, ε)) dµ(x)

log ε

and

D2(µ) = lim inf
ε↘0

log
∫
µ(B(x, ε)) dµ(x)

log ε
,
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Figure 2: Estimates of β(α) for particular self-similar sets. (From [2]).

respectively. When these values agree, we obtain the correlation dimension of
µ, D2(µ).

It is easy to verify that for a point set based on a line segment, one obtains
β(α) = α and for the unit square, one obtains β(α) = 1 + α and, arguing
heuristically, the authors claimed [2] that for any locally isotropic point set,

β(α) ≤ 1 + α(D2 − 1), (1)

where D2 is the correlation dimension of the set (but see Theorem 2).

Using this approach, they numerically investigated β(α) for computer-
generated point sets that had fractal-like structure. The main class of ex-
amples they looked at were self-similar sets constructed from dividing a unit
square into nine similar subsquares, selecting a fixed subcollection for reten-
tion, and then iterating. Figure 2, taken from their paper, summarises their
results.
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2 Turning this approach into rigorous mathematics

A finite point set {x1, . . . , xn} can be represented as a sum of dirac measures

µ =
1

n

n∑
i=1

δxi ,

which is a finite Borel measure. For 0 < α ≤ 1 and ε small, we find

〈N(ε, α)〉 =

∫
max

θ∈[−π/2,π/2)
µ(E(x, θ, εα, ε)) dµ(x),

where E(x, θ, εα, ε) denotes the (closed) ellipse centered on x, with semi-minor
axis of length ε, semi-major axis of length εα and inclined at an angle of θ to
the positive x-axis.

Conversely, finite Borel regular measures can (in an appropriate sense) be
well-approximated by sums of dirac measures. This leads us to the following
definition of the anistropic dimension spectrum.

Definition 2. For µ a finite Borel regular measure on the plane and 0 ≤ α ≤
1, define the upper anistropic dimension spectrum by

βµ(α) = lim sup
ε↘0

log Eµ(ε, α)

log ε

and define the lower anisotropic dimension spectrum by

β
µ
(α) = lim inf

ε↘0

log Eµ(ε, α)

log ε
,

where

Eµ(ε, α) :=

∫
ess sup

θ∈[−π/2,π/2)
µ(E(x, θ, εα, ε)) dµ(x).

(When α = 1, we recover the upper and lower correlation) dimensions of µ.)

(The replacement of max by ess sup in the above is helpful theoretically and
does not change the value of the integrand for finite sums of dirac measures.)

The following estimate allows us to turn an apparently hard estimate in-
volving the mass of ellipses into a more symmetric one involving the mass of
balls.

Lemma 1. Suppose 0 < r ≤ s ≤ 1. Then∫
θ

µ(E(x, θ, εα, ε)) d(θ/π) � r

s
µ(B(x, s)) + r

∫ s

r

σ−2µ(B(x, σ)) dσ.
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(Here f(r) � g(r) means that there are positive constants c1 and c2 so that
c1g(r) ≤ f(r) ≤ c2g(r) for sufficiently small r.) It is also possible to obtain
similar but (more complicated looking) expressions for higher powers of the
mass of ellipses and we note that, since

ess sup
θ∈[−π/2,π/2)

µ(E(x, θ, εα, ε))

= lim
p→∞

(∫
|θ|≤π/2

µ(E(x, θ, εα, ε))p dθ/π

)1/p

,

estimates of
∫
µ(E(x, θ, εα, ε))pdθ/π (for large p) gives information about the

anisotropy spectrum.
We can use Lemma 1 to derive the correct upper estimate of the anisotropic

dimension spectrum for isotropic measures, compare with equation (1):

Theorem 2. If µ is a (compact, finite Radon) measure in the plane and
0 < α ≤ 1, then

βµ(α) ≤ min{D2(µ), 1 + α(D2(µ)− 1)}.

If µ is supported in a line segment with µ(B(x, r)) � rD2(µ) for almost
every x, then we expect to find that for small ε,∫

ess sup
θ

µ(R(x, θ, εα, ε)) dµ(x) � εαD2

and then
βµ(α) � αD2.

2.1 Examples

In all the examples illustrated in Figure 2, we associate the natural uniform
measure that is supported on the limiting self-similar set.

If the measure µ has support in a line, then it is easy to see that

ess supµ(R(x, θ, εα, ε)) = µ(B(x, εα))

and so
βµ(α) = αD2(µ) and β

µ
(α) = αD2(µ).

This situation occurs for examples P and Q in Figure 2.
In case D of Figure 2, the resulting measure is the product of length mea-

sure on the unit interval together with the uniform measure on the 1/3-Cantor
set
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Figure 3: Construction of D in Figure 2.

For this example, it is not too hard to show that maximal ellipses are
aligned vertically and we find that for a general point x,

ess supµ(E(x, θ, εα, ε)) � εlog 6/ log 3+α−1,

giving
βµ(α) = log 6/ log 3 + α− 1 = α+ log 2/ log 3.

For more general cross-products such as denoted by Case I, there is a lot
of symmetry and we find that for a general point x, if µ is the natural uniform
measure defined on the limiting self-similar set, then

ess supµ(R(x, θ, εα, ε)) � ε(1+α) log 2/ log 3,

giving
βµ(α) = (1 + α) log 2/ log 3.

We are able to deal with some of the other examples given in Figure 2 but
do not have a general approach that works in all cases and in particular, we
do not have a technique that can cope with any reasonable self-similar set.

References

[1] P. Grassberger. Generalizations of the Hausdorff dimension of fractal mea-
sures. Phys. Lett., A107, 101-5, (1985)

[2] M. Wilkinson, H. R. Kennard, M. A. Morgan. Anisotropic covering of
fractal sets. arXiV: 1204.3718v1


