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ON EXCEPTIONAL SETS OF THE
HILBERT TRANSFORM

Abstract

We prove several theorems concerning the exceptional sets of Hilbert
transform on the real line. In particular, it is proved that any null set is
exceptional set for the Hilbert transform of an indicator function. The
paper also provides a real variable approach to the Kahane-Katsnelson
theorem on divergence of Fourier series.

1 Introduction

The study of exceptional sets is common in Harmonic Analysis and some re-
lated fields. One century ago Lusin [12] proved that for any boundary null
set e (a set of measure zero) there exists a bounded analytic function on
the unit disc, which has no radial limits at any point of e. This result was
a significant complement to the theorem of Fatou, providing almost every-
where tangential convergence for the bounded analytic functions on the disc.
Kahane-Katznelson’s [7] example of a continuous function, whose Fourier se-
ries diverges at any point of an arbitrary given null set, was the counterpart of
Carleson’s [3] celebrated theorem on almost everywhere convergence of Fourier
series. Some extensions of Kahane-Katznelson’s theorem for Fourier series
in different classical orthogonal systems the readers can find in the papers
[1, 2, 5, 10, 11, 13, 14, 16].

It was discovered in the papers [8, 9] that such divergence phenomena is
common for general sequences of bounded linear operators

Un : L∞(a, b)→ bounded measurable functions on (a, b) (1.1)
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satisfying the localization property, that means for any function f ∈ L∞(a, b)
with f(x) = 1, x ∈ (α, β), the sequence Unf(x) converges uniformly in (α, β).
We denote by IG the indicator function of a set G ⊂ R. It was proved in [8]
that

Theorem 1* ([8]). If the operator sequence (1.1) satisfies the localization
property, then for any null set e ⊂ (a, b) there exists a measurable set G ⊂ (a, b)
such that UnIG(x) diverges at any x ∈ e.

In [9] we obtained full characterization theorems for exceptional sets of
general sequences of operators with localization property.

In this paper we consider the exceptional null set problem for the Hilbert
transform. The Hilbert transform of a function f ∈ L1(R) is the integral

Hf(x) = lim
ε→0

Hεf(x) = lim
ε→0

1

π

∫
|t−x|>ε

f(t)

x− t
dt.

It is well-known the almost everywhere existence of this limit for the integrable
functions (see for example [18], ch. 4.3). The maximal Hilbert transform is
defined by

H∗f(x) = sup
ε>0
|Hεf(x)|.

Examples of exceptional sets for the Hilbert transform have been only con-
sidered by Lusin in his famous book ([12], page 459). It was proved in [12]
the existence of an everywhere dense continuum null set e ⊂ R, such that
H∗f(x) = ∞ on e for some f ∈ C(R) ∩ L1(R). The following theorem shows
that any null set e can serve as an exceptional set for the Hilbert transform of
some indicator function. Moreover, if e is additionally compact, then instead
of the indicator function it can be taken a continuous function.

Theorem 1. For any null set e ⊂ R there exists a set E ⊂ R of finite measure
such that

H∗IE(x) =∞, x ∈ e.

Note that Theorem 1 can not be deduced from Theorem 1*, since the
operators Hε do not satisfy the localization property. Its proof as well as the
proof of the next theorem are essentially based on characteristic properties of
Hilbert transform.

Theorem 2. For any closed null set e ⊂ R there exists a continuous function
f ∈ C(R) ∩ L1(R) such that

H∗f(x) =∞, x ∈ e.
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The proof of Kahane-Katznelson’s theorem [7] uses methods of analytic
functions. We will show in the last section that this theorem can be alterna-
tively deduced from Lemma 4 below.

The following questions are open.

Problem 1. Is the statement of Theorem 2 valid for arbitrary null sets.

Problem 2. Is the analogous of Kahane-Katznelson’s theorem true for Walsh
system (see for example [17]).

Concerning to Problem 2 we note that Harris [6] has proved that for any
compact null set e ⊂ [0, 1] there exists a continuous function, whose Walsh-
Fourier series diverges at any x ∈ e.

2 Intermediate results

We say an open set G ⊂ R is of finite form (or finite-open) if it is a union of a
finite number of open intervals. For two measurable sets E and F we denote

E4F = (E \ F ) ∪ (F \ E)

and write E ∼ F in the case |E4F | = 0. Let E,En ⊂ be measurable sets.
We write Fn ⇒ F whenever we have

|Fn4F | → 0 as n→∞.

For measurable functions f and fn, n = 1, 2, . . . the notation fn ⇒ f denotes
a convergence in measure.

The following theorem has own interest and it will be used in the proofs
of the main theorems.

Theorem 3. Let

λ > 0, µ =
1

π
ln(1− e−λ). (2.1)

Then for an arbitrary measurable set F ⊂ R the sets

E = {x ∈ R \ F : HIF (x) < µ} , (2.2)

F ∗ = {x ∈ R \ E : HIE(x) > λ}

satisfy the relations
F ∼ F ∗, |E| = (eλ − 1)|F |.

Moreover, if F is open (or finite-open), then we additionally have F ⊂ F ∗ (or
F = F ∗).
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We shall often use the following property of the Hilbert transform. Namely,
if for f ∈ L1(R) vanishes on (a, b), then Hf(x) is decreasing on (a, b). Consider
numbers

ck < ak < bk < ck+1, k = 0, 1, 2, . . . , n+ 1 (2.3)

where
c0 = a0 = b0 = −∞, cn+1 = an+1 = bn+1 = +∞.

Denote

F =

n⋃
k=1

(ak, bk), (2.4)

E =

n⋃
k=1

(ck, ak). (2.5)

Simple calculations show that

HIF (x) =
1

π

n∑
k=1

∫ bk

ak

dt

x− t
=

1

π

n∑
k=1

ln

∣∣∣∣x− akx− bk

∣∣∣∣ , (2.6)

HIE(x) =
1

π

n∑
k=1

∫ ak

ck

dt

x− t
=

1

π

n∑
k=1

ln

∣∣∣∣x− ckx− ak

∣∣∣∣ (2.7)

for any
x ∈ R′ = R \ {ak, bk : k = 1, 2, . . . , n}. (2.8)

Observe that the function (2.6) is decreasing on each interval (bk, ak+1) and
increasing on (ak, bk), k = 0, 1, . . . , n. Besides we have

lim
x→ak

HIF (x) = −∞, lim
x→bk

HIF (x) = +∞, k = 1, 2, . . . , n, (2.9)

lim
x→±∞

HIF (x) = 0. (2.10)

The following lemma is the case of Theorem 3 when F is finite-open.

Lemma 4. Let the numbers λ > 0, µ < 0 satisfy (2.1). If F is an open set
of the form (2.4) with bk−1 < ak, k = 2, 3, . . . n, then the set

E = {x ∈ R′ \ F : HIF (x) < µ} ,

has the form (2.5), where ck satisfy the relation (2.3) and we have

F = {x ∈ R′ \ E : HIE(x) > λ}, (2.11)

|E| = (eλ − 1)|F |. (2.12)



On Exceptional Sets of the Hilbert Transform 315

Proof. From (2.9), (2.10) and monotonicity of HIF on (bk−1, ak), it follows
that given λ > 0 uniquely determines numbers ck such that

HIF (ck) = µ =
1

π
ln(1− e−λ), ck ∈ (bk−1, ak), k = 1, 2, . . . , n,

and

E =

n⋃
k=1

(ck, ak) = {x ∈ R′ \ F : HIF (x) < µ} .

Equality (2.6) implies that the numbers ck are the roots of the equation

1

π

n∑
k=1

ln

∣∣∣∣x− akx− bk

∣∣∣∣ = µ.

From (2.3) it follows that (cj − bk)(cj − ak) > 0 for any j = 1, 2, . . . , n. Thus
we conclude that ck are the roots of the algebraic equation

eπµ
n∏
k=1

(x− bk)−
n∏
k=1

(x− ak) = 0, (2.13)

and according to Bézout’s theorem we have

eπµ
n∏
k=1

(x− bk)−
n∏
k=1

(x− ak) = (eπµ − 1)

n∏
k=1

(x− ck). (2.14)

This implies that bk are the roots of the equation

(eπµ − 1)

n∏
k=1

(x− ck) +

n∏
k=1

(x− ak) = 0

and therefore for

n∑
k=1

ln

∣∣∣∣x− ckx− ak

∣∣∣∣ = − ln(1− eπµ) = λ.

That means
HIE(bk) = λ, k = 1, 2, . . . , n.

Thus, since HIE is decreasing on (ak, ck+1) and bk ∈ (ak, ck+1), we get (2.11).
Equality of the xn−1 coefficients of the right and left sides of (2.14) gives

n∑
k=1

ck =
eπµ

∑n
k=1 bk −

∑n
k=1 ak

eπµ − 1
.



316 G. A. Karagulyan

This implies

|E| =
n∑
k=1

(ak − ck) =
eπµ

∑n
k=1(bk − ak)

1− eπµ
=

eπµ|F |
1− eπµ

= (eλ − 1)|F |

and so we get (2.12).

Proof of Theorem 3. Since F is measurable, there exists a sequence of
finite-open sets Fn such that

Fn ⇒ F. (2.15)

Applying Lemma 4, we may find finite-open sets En such that

Fn = {x ∈ R′ \ En : HIEn
(x) > λ}, (2.16)

En = {x ∈ R′ \ Fn : HIFn
(x) < µ} , (2.17)

|En| = (eλ − 1)|Fn|. (2.18)

We have
‖HIFn

−HIF ‖2 = ‖IFn
− IF ‖2 → 0. (2.19)

Taking into account the monotonicity property of functionHIF (x), from (2.17)
and (2.19) one can easily get

En ⇒ E, (2.20)

where E is defined in (2.2). By the same reason (2.20) implies HIEn(x) ⇒
HIE(x) and therefore we get the relation Fn ⇒ F ∗, which together with (2.15)
gives us F ∼ F ∗. From (2.19), (2.20) and relation (2.12) between En and Fn
we get

|E| = lim
n→∞

|En| = (eλ − 1) lim
n→∞

|Fn| = (eλ − 1)|F |. (2.21)

If F is open, then

F =

∞⋃
k=1

(ak, bk),

where the intervals (ak, bk) are pairwise disjoint. Denote

Fn =

n⋃
k=1

(ak, bk).

Take an arbitrary point x ∈ F . The points x and x + δ are in the same
component interval (an(x), bn(x)) for small enough δ > 0. So we have x ∈ Fn
for n ≥ n(x) and therefore by (2.16) we conclude

HIEn
(x+ δ) > λ, n > n(x). (2.22)
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Since HIE(x) is decreasing in (an(x), bn(x)), from (2.22) we get

HIE(x) > HIE(x+ δ) = lim
n→∞

HIEn
(x+ δ) ≥ λ.

This implies x ∈ F ∗ and therefore we get F ⊂ F ∗.

3 Proofs of main theorems

Let G ⊂ R be an open set. To any component interval (a, b) of G we associate
the intervals[

a+
b− a
2j+1

, a+
b− a

2j

)
,

[
b− b− a

2j
, b− b− a

2j+1

)
, j = 1, 2, . . . ,

We denote by {Ik} the family of all these intervals. It gives a Withney partition
of the set G. Observe that each Ik has two adjacent intervals I+k and I−k . We
denote

I∗k = Ik ∪ I+k ∪ I
−
k .

We have

G =

∞⋃
k=1

Ik, (3.1)

dist(Ik, G
c) = |Ik|. (3.2)

dist(Ij , Ik) ≥ |Ij |/2, if Ij ∩ I∗k = ∅. (3.3)

In the proof of the next lemma we use Stein-Weiss [15] well known identity.
That is for any set E ⊂ R of finite measure we have

|{x ∈ R : |HIE(x)| > λ}| = 4eπλ|E|
e2πλ − 1

, λ > 0.

Lemma 5. Let G be an open set with Withney partition {Ik} and let e ⊂ G
be a null set. Then for any γ > 0 and a sequence of numbers δk > 0 there
exists an open set F with e ⊂ F ⊂ G such that

{x ∈ R : |HIF (x)| > γ} ⊂ G, (3.4)

|Ik ∩ {x ∈ R : |HIF (x)| > γ}| ≤ δk, k = 1, 2, . . . . (3.5)

If the set e additionally is compact, then F can be taken to be finite.
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Proof. We define F to be an open set satisfying

|F ∩ I∗j | < min

{
πγ|Ij |
2j+2

,
δj(e

πγ − 1)

4eπγ/2

}
, j = 1, 2, . . . . (3.6)

If e is compact, then clearly F can be finite. If x ∈ R\G, then dist(x, Ij) ≥ |Ij |.
Thus we get

|HIF (x)| ≤

∣∣∣∣∣∣
∞∑
j=1

HIF∩Ij (x)

∣∣∣∣∣∣ ≤ 1

π

∞∑
j=1

∣∣∣∣∣
∫
F∩Ij

dt

x− t

∣∣∣∣∣
≤ 1

π

∞∑
j=1

|F ∩ Ij |
dist(x, Ij)

≤ 1

π

∞∑
j=1

|F ∩ Ij |
|Ij |

< γ

and so (3.4). Then, using (3.3), for any x ∈ Ik we get

∣∣∣∣∣∣
∑

j: Ij∩I∗k=∅
HIF∩Ij (x)

∣∣∣∣∣∣ ≤ 1

π

∑
j: Ij∩I∗k=∅

∣∣∣∣∣
∫
F∩Ij

dt

x− t

∣∣∣∣∣
≤ 1

π

∑
j: Ij∩I∗k=∅

|F ∩ Ij |
dist(Ij , Ik)

≤ 1

π

∞∑
j=1

2|F ∩ Ij |
|Ij |

<
γ

2
. (3.7)

If Ij ∩ I∗k 6= ∅, then Ij coincides with one of the intervals Ik, I+k or I−k . Thus
by the Stein-Weiss inequality we get

∣∣∣∣{x ∈ R :

∣∣∣∣ ∑
j: Ij∩I∗k 6=∅

HIF∩Ij (x)

∣∣∣∣ > γ/2

}∣∣∣∣
=

∣∣∣∣{x ∈ R :

∣∣∣∣HIF∩I∗k (x)

∣∣∣∣ > γ/2

}∣∣∣∣
≤ 4eπγ/2

eπγ − 1
|F ∩ I∗k | ≤ δk. (3.8)
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From (3.7) and (3.8) we obtain

|{x ∈ Ik : |HIF (x)| > γ}|

≤

∣∣∣∣∣∣
x ∈ Ik :

∣∣∣∣∣∣
∑

j: Ij∩I∗k=∅
HIF∩Ij (x)

∣∣∣∣∣∣ > γ/2


∣∣∣∣∣∣

+

∣∣∣∣∣∣
x ∈ Ik :

∣∣∣∣∣∣
∑

j: Ij∩I∗k 6=∅
HIF∩Ij (x)

∣∣∣∣∣∣ > γ/2


∣∣∣∣∣∣

≤

x ∈ R :

∣∣∣∣∣∣
∑

j: Ij∩I∗k 6=∅
HIF∩Ij (x)

∣∣∣∣∣∣ > γ/2

 ≤ δk.

Lemma 6. Let G be an open set and e ⊂ G be a null set. Then for any δ > 0
and λ > 0, µ < 0, satisfying (2.1), there exists an open set F such that

e ⊂ F ⊂ G, (3.9)

E = {x ∈ R \ F : HIF (x) < µ} ⊂ G (3.10)

F ⊂ {x ∈ R \ F : HIE(x) > λ}, (3.11)

and
1

π

∫
|t−x|>ε

IE(t)

|x− t|
dt < δ, (3.12)

whenever
(x− ε, x+ ε) 6⊂ G. (3.13)

If e is compact, then F is finite-open.

Proof. Let Ik = [ak, bk) be a Withney partition ofG defined above. Applying
Lemma 5, we find an open set F satisfying (3.9), (3.4) and (3.5) for the
numbers

γ = |µ|, δk =
πδ|Ik|
2k+1

.

Such that
E ⊂ {x ∈ R \ F : |HIF (x)| > γ},

from (3.4) implies (3.9). Since F is open, from Theorem 1 it follows that

F ⊂ F ∗ = {x ∈ R \ E : HIE(x) > λ},



320 G. A. Karagulyan

which implies (3.11). From (3.5) we get

|E ∩ Ik| ≤ δk =
δ|Ik|
2k+1

.

Take an arbitrary x ∈ R and ε > 0 satisfying (3.13). We claim that

ak(x) =
1

π

∫
|t−x|>ε

IE∩Ik(t)

|x− t|
dt ≤ δ

2k
. (3.14)

Indeed, if

Ik ∩ (x− ε, x+ ε) = ∅,

then from (3.13) and (3.2) one can easily get dist(x, Ik) ≥ |Ik|/2 and therefore

ak(x) ≤ |E ∩ Ik|
πdist(x, Ik)

≤ 2|E ∩ Ik|
π|Ik|

≤ δ

2k
.

In the case

Ik ∩ (x− ε, x+ ε) 6= ∅,

again taking into account of (3.13), we get |Ik| ≤ 2ε. Then the bound

ak(x) ≤ |E ∩ Ik|
πε

≤ |E ∩ Ik|
π|Ik|/2

≤ δ

2k

establishes (3.14). Thus, applying (3.13), for x satisfying (3.13) we get

|HεIE(x)| ≤
∞∑
k=1

|HεIE∩Ik(x)| ≤
∞∑
k=1

δ

2k
≤ δ.

Lemma 7. There exists a function ϕ ∈ C(R) with suppϕ ⊂ [−1, 1], such that
Hϕ(x) is finitely defined for any x 6= 0 and H∗ϕ(0) =∞.

Proof. Define ϕ(x) by

ϕ(x) =


1− x if x ∈ [0, 1],
1− 1/(k + 1) if x = −2−k, k = 0, 1, . . . ,
linear on each interval [−2−k,−2−k−1), k = 0, 1, . . . .

(3.15)
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One can check that f is continuous. Linearity implies the existence of Hϕ(x)
for any x 6= 0. Then we have

Hδ/2nϕ(0) ≤
∫ 1

2−n

(1− t)
−t

dt+

n∑
k=1

∫ −2−k

−2−k+1

(1− 1/(k + 1))

−t
dx

= −n ln 2 + (1− 2−n) +

n∑
k=1

(
1− 1

k + 1

)
ln 2

= − ln 2

n∑
k=1

1

k + 1
+ 1− 2−n

that means H∗ϕ(0) =∞.

Proof of Theorem 1. Let e ⊂ R be a set of measure zero. Applying
Lemma 6 successively (with λ = 1, µ = π−1 ln(1 − e−1)), we find a sequence
of open sets Fn such that

Fn−1 ⊃ Fn ⊃ e, (3.16)

En = {x ∈ R \ Fn : HIFn
(x) < µ} ⊂ Fn−1 \ Fn, (3.17)

Fn ⊂ {x ∈ R \ En : HIEn
(x) > 1}, (3.18)∫

|t−x|>ε

IEn
(t)

|x− t|
dt < 2−n, if (x− ε, x+ ε) 6⊂ Fn−1. (3.19)

Define

E =

∞⋃
n=1

En.

Take an arbitrary point x ∈ e. Since the sets En are pairwise disjoint, we can
write

HεIE(x) =

∞∑
n=1

HεIEn
(x)

=
∑

(x−ε,x+ε)6⊂Fn−1

HεIEn
(x) +

∑
(x−ε,x+ε)⊂Fn−1

HεIEn
(x)

= A+B. (3.20)

Using (3.19), we get

|A| ≤
∑

(x−ε,x+ε)6⊂Fn−1

∫
|t−x|>ε

IEn
(t)

|x− t|
dt <

∞∑
n=1

2−n = 1. (3.21)
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From (3.16) and (3.18) we obtain

B =
∑

(x−ε,x+ε)⊂Fn−1

HIEn
(x) ≥

∑
(x−ε,x+ε)⊂Fn−1

1. (3.22)

The number of terms in the last sum can be arbitrarily big, if we take ε > 0
sufficiently small. So combining (3.20)-(3.22), we get

H∗IE(x) =∞.

Proof of Theorem 2. Let us suppose first that e is a compact null set
and we have E ⊂ [a, b]. Applying Lemma 6 successively (with λ = 2n, µ =
1
π ln(1− e−2n) we find a sequences of finite-open sets of the form

Fn =

mn⋃
k=1

(a
(n)
k , b

(n)
k ),

such that

Fn−1 ⊃ Fn ⊃ e, (3.23)

En = {x ∈ R \ Fn : HIFn
(x) < µ} ⊂ Fn−1 \ Fn, (3.24)

Fn = {x ∈ R \ En : HIEn
(x) > λ = 2n} (3.25)∫

|t−x|>ε

IEn(t)

|x− t|
dt < 1 if (x− ε, x+ ε) 6⊂ Fn−1. (3.26)

From the finiteness of the open sets Fn we get the finiteness of En. Thus the
equality in (3.25) will follow from Theorem 3. From (3.25) it follows that

HIEn
(b

(n)
k ) = 2n. (3.27)

Observe that one can choose functions fn ∈ C(R) such that

0 ≤ fn ≤ IEn
, (3.28)

|Hfn(b
(n)
k )−HIEn

(b
(n)
k )| < 1, k = 1, 2, . . . ,mn. (3.29)

Thus, taking into account (3.27), we get Hfn(b
(n)
k ) > 2n − 1. Then, applying

the monotonicity property, we conclude

Hfn(x) > 2n − 1, x ∈ Fn. (3.30)
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Define

f(x) =

∞∑
n=1

fn(x)

2n
.

One can easily check that f ∈ C(R). Take an arbitrary point x ∈ e. Using
(3.28), we can write

Hεf(x) =

∞∑
n=1

Hεfn(x)

2n

=
∑

(x−ε,x+ε)6⊂Fn−1

Hεfn(x)

2n
+

∑
(x−ε,x+ε)⊂Fn−1

Hεfn(x)

2n

= A+B. (3.31)

Applying (3.26), we get

|A| ≤
∑

(x−ε,x+ε)6⊂Fn−1

1

2n

∫
|t−x|>ε

fn(t)

|x− t|
dt

≤
∑

(x−ε,x+ε)6⊂Fn−1

1

2n

∫
|t−x|>ε

IEn
(t)

|x− t|
dt <

∞∑
n=1

2−n = 1. (3.32)

From (3.28) and (3.24) it follows that supp fn ⊂ Fn−1. Thus, using (3.30), we
obtain

B =
∑

(x−ε,x+ε)⊂Fn−1

Hfn(x)

2n
≥

∑
(x−ε,x+ε)⊂Fn−1

(1− 2−n). (3.33)

For sufficiently small ε > 0 the last sum can be arbitrarily big. So combining
(3.31)-(3.33), we get

H∗f(x) =∞.

Now suppose e ⊂ R is an arbitrary closed set. Take a sequence xk ∈ e, k ∈ Z,
such that

xk+1 − xk > 1, e =
⋃
k

e ∩ [xk, xk+1]

and consider the compact sets ek = e ∩ [xk, xk+1]. For each k we can find a
continuous functions fk such that

H∗fk(x) =∞, x ∈ ek.
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Denote

g(x) =
∑
k

1

2k(xk+1 − xk)
fk(x)I[xk,xk+1](x) ∈ L1(R).

One can easily check that

H∗g(x) =∞, x ∈ e \ {xk}.

Set

εk =

{
0 if H∗g(xk) =∞,
1 if H∗g(xk) <∞.

Define
f(x) = g(x) +

∑
k

εk2−kλ(x− xk),

where ϕ satisfies the conditions of Lemma 7. It is clear that the function
satisfies the conditions of Theorem 2.

4 Remark on Kahane-Katznelson divergence theorem

Kahane-Katznelson constructed a complex valued continuous function whose
Fourier series diverges on a given set of zero measure. The proof of this
theorem is based on the following lemma, which was proved by methods of
analytic functions. We will deduce this lemma from Lemma 4. We shall
use also the following well-known relation between two functions f ∈ L1(T),
g ∈ L∞(T) (see. [18], ch. 2, Theorem 4.15)

lim
n→∞

∫ 2π

0

f(x)g(nx)dx =
1

2π

∫ 2π

0

f(x)dx ·
∫ 2π

0

g(x)dx. (4.1)

Lemma 8 (Kahane-Katznelson). If F ⊂ T is a finite-open set |F | = α > 0,
then there exists a complex trigonometric polynomial P (x) of degree n such
that

max
1≤m≤n

|Sm(x, P )| ≥ c ln
1

α
, x ∈ F. (4.2)

Proof. Let F has the form (2.4) and first suppose that

maxF −minF ≤ π. (4.3)

Without loss of generality we can suppose F ⊂ [0, π]. For λ = ln π
α we apply

Lemma 4. We get an open set E of the form (2.5) satisfying the conditions of
lemma. From (2.12) it follows that

|E| =
(π
α
− 1
)
|F | = π − α < π.
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According the structure of the set E coming from Lemma 4, we get E ⊂
[−π, π]. Take δ > 0 and consider the following modification of the set E:

Ẽ =

n⋃
k=1

(ck + δ, ak − δ). (4.4)

For small enough δ from (2.11) we get

HIẼ(x) > λ, x ∈ F.

Set
fm(x) = IẼ(x)sign (sinmx), m = 1, 2, . . . .

For the modified partial sums we have

S∗m(x, fm) =
1

π

∫ π

−π

sinm(x− t)
x− t

fm(t)dt

=
sinmx

π

∫ π

−π

cosmt

x− t
fm(t)dt− cosmx

π

∫ π

−π

sinmt

x− t
fm(t)dt

Applying (4.1), as m→∞ for x ∈ F we get∫ π

−π

cosmt

x− t
fm(t)dt =

∫ π

−π

IẼ(t)

x− t
· cosmt sign (sinmt)dt

→ 1

2π

∫ π

−π

IẼ(t)

x− t
dt ·

∫ π

−π
cos t sign (sin t)dt = 0

and ∫ π

−π

sinmt

x− t
fm(t)dt =

∫ π

−π

IẼ(t)

x− t
· sinmt sign (sinmt)dt

→ 1

2π

∫ π

−π

IẼ(t)

x− t
dt ·

∫ π

−π
| sin t|dt =

π

2
·HIẼ(x).

Since the sets Ẽ and F have positive distance (see (4.4), (2.4)), in both limits
the convergence is uniform on F . Thus for enough bigger m we will have

|S∗m(x, fm)| > πλ

2
| sinmx|, x ∈ F.

Again, since dist(Ẽ, F ) > 0, a proper approximation of fm by a real polynomial
f(x) implies

|S∗m(x, f)| > πλ

3
| sinmx|, x ∈ F.
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Similarly, taking instead of fm the sequence

gm(x) = IE(x)sign (cosmx), m = 1, 2, . . . ,

we will get another real polynomial g(x) such that

|S∗m(x, g)| > πλ

3
| cosmx|, x ∈ F.

For the complex polynomial P = f + gi we will have

|S∗m(x, P )| ≥ πλ

3
(| sinmx|+ | cosmx|) ≥ πλ

3
, x ∈ F,

and so it will satisfy the condition of lemma. If F is arbitrary, then we have
F = F1∪F2, where each F1 and F2 satisfy (4.3). Let P1 and P2 be the polyno-
mials corresponding to F1 and F2. Suppose the degrees of those polynomials
are less than n. One can check that the polynomial P (x) = P1(x) + einxP2(x)
satisfies (4.2).
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