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Givental-Type Reconstruction at a Nonsemisimple Point

Alexey Basalaev & Nathan Priddis

Abstract. We consider the orbifold curve that is a quotient of an
elliptic curve E by a cyclic group of order 4. We develop a system-
atic way to obtain a Givental-type reconstruction of Gromov–Witten
theory of the orbifold curve via the product of the Gromov–Witten
theories of a point. This is done by employing mirror symmetry and
certain results in FJRW theory. In particular, we present the particu-
lar Givental’s action giving the CY/LG correspondence between the
Gromov–Witten theory of the orbifold curve E/Z4 and FJRW theory
of the pair defined by the polynomial x4 + y4 + z2 and the maximal
group of diagonal symmetries. The methods we have developed can
easily be applied to other finite quotients of an elliptic curve. Using
Givental’s action, we also recover this FJRW theory via the product
of the Gromov–Witten theories of a point. Combined with the CY/LG
action, we get a result in “pure” Gromov–Witten theory with the help
of modern mirror symmetry conjectures.

1. Introduction

Let Mg,n be the Deligne–Mumford moduli space of stable curves, and let V be a
finite-dimensional complex vector space with a pairing η. A cohomological field
theory (CohFT for brevity) �g,n on (V ,η) is a system of linear maps

�g,n : V ⊗n → H ∗(Mg,n),

subject to the certain system of axioms for all g,n, where Mg,n exists and is
nonempty.

The study of CohFTs was initiated by physicists, who distinguished some par-
ticular classes of CohFT that play an important role in mirror symmetry. These
are the Saito–Givental CohFT of an isolated singularity W̃ (giving the B model)
and Gromov–Witten CohFT of a Calabi–Yau variety X (giving the A model). An-
other type of A model CohFT, conjectured in physics and later constructed by
mathematicians, is now known under the name of FJRW CohFT associated with
a pair (W,Gmax), where W is a polynomial defining an isolated singularity, and
Gmax is a symmetry group of W .

In this paper we address two different questions about the CohFTs.
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Classification

Of particular interest to mathematicians was the classification of all CohFTs, un-
derstood axiomatically in a general context (see [12]). From this point of view, the
CohFTs mentioned before are some very special points in the space of all CohFTs.
In this general context, it is convenient to work with a CohFT �g,n in terms of a
partition function Z� := exp(

∑
g≥0 h̄g−1Fg), where Fg is a genus g potential of

the CohFT—the generating function of the integrals of �g,n over Mg,n.
An important tool when working with the CohFTs is the group action of Given-

tal, acting on the space of all partition functions of CohFTs (cf. [11]). Givental’s
action is applied to the classificational problem as follows. For an arbitrary CohFT
on (V ,η) with the partition function Z , we try to find an element R of Givental’s
group such that

Z = Ŝ · R̂ ·Zbasic,

where R̂ denotes the action of R, Ŝ stands for the change of the variables, and
Zbasic is the partition function of some “basic” CohFT. If we have such a formula,
then we say that Z is reconstructed from Zbasic via the actions of R and S.

The canonical choice of the “basic” CohFT is given by the product of dim(V )

Gromov–Witten theories of a point. In this case the Givental’s group element
above is called an R-matrix of the CohFT. It was conjectured by Givental and
later proved by Teleman [21] that if CohFT �g,n is semisimple, then there is
always an R-matrix, reconstructing Z from Zbasic.

Calabi–Yau/Landau–Ginzburg Correspondence

Closely related to mirror symmetry is the phenomenon called the Calabi–
Yau/Landau–Ginzburg correspondence (CY/LG for brevity). Here Givental’s ac-
tion also has an application. The CY/LG correspondence is a conjecture, which
in this context states that for two different A model partition functions ZGW and
ZFJRW, being mirrors to the same B model, there is a Givental’s group element R

and a change of the variables Ŝ such that

ZFJRW = Ŝ · R̂ ·ZGW.

In this paper, we address both outlined problems. First, we show the CY/LG
correspondence for one particular pair (x4 + y4 + z2,Gmax) and a particular
CY orbifold P1

4,4,2 by giving the elements R and S explicitly. Second, we give
a Givental-type formula, expressing the partition function of FJRW theory of
(x4 + y4 + z2,Gmax) via the partition function of the so-called “untwisted the-
ory”. This step is connected to the works [7; 18; 8]. The partition function of
the “untwisted theory” differs from the partition function of the product of the
Gromov–Witten theories of a point just by a linear change of the variables. Due
to this fact, we consider it as a “basic” CohFT in the sense as before.
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Combining these two results, we get the formula, reconstructing the genus zero
potential of the Gromov–Witten theory of the orbifold P1

4,4,2 from the basic Zun:

FP
1
4,4,2

0 = lim
λ→0

resh̄ ln(Ŝ−1 · R̂GW ·Zun),

where the limit on the RHS is the so-called nonequivariant limit.
In this way, we get the result in Gromov–Witten theory by using mirror sym-

metry and modern approach to singularity theory, namely FJRW theory.
The Gromov–Witten theory of P1

4,4,2 is not semisimple, which makes the
Givental–Teleman technique not applicable. Our result shows that there could
be still some reconstruction in a nonsemisimple case too, but from another ba-
sic CohFT. Although Zbasic would be the product of nine functions Z(pt) us-
ing Givental’s methods, the partition function Zun is composed of 32 functions

Z(pt), which means more variables than the partition functions FP4,4,2
0 . A similar

result was obtained in [2], where it was shown that the Frobenius manifold of
the Gromov–Witten theory of the orbifold P1

2,2,2,2 is a submanifold of a certain
higher-dimensional Frobenius manifold.

It is also important to note that the R-matrix of Givental–Teleman theory is
very hard to write explicitly, making the use of the full theory very restrictive. In
contrast to this, our RGW is written in a closed formula.

The proof of the CY/LG correspondence is also interesting by itself, since it
uses the theory of modular forms but gives a result in terms of Givental’s action.
This part of the current paper is closely related to the independent work of Shen
and Zhou [20]. Their result is more systematic from the point of view of the the-
ory of modular forms; however, they do not give the particular Givental’s action.
Furthermore, when requiring some explicit data to be compared, Shen and Zhou
consider the solutions to a certain ODE fixed by the initial conditions, whereas
we use particular values of the modular forms. This difference is also related to
the different approaches to the primitive form change on the B side. Our approach
also shows the holomorphicity of the FJRW theory in question.

Organization of the Paper

In Section 2, we review FJRW theory for a pair (W,G) and give a system of
axioms by which we can compute the basic correlators. We do not give a full def-
inition of the virtual class of Fan–Jarvis–Ruan, but rather restrict ourselves to the
situation of this paper to avoid some complicated formulas unnecessary to this
work. In Section 3, we recall the definition of a cohomological field theory and
give many details on the particular cases of the FJRW theory of (Ẽ7,Gmax) and
Gromov–Witten theory of P1

4,4,2. In Section 4 we show the CY/LG correspon-

dence by using modularity property of the Gromov–Witten theory of P1
4,4,2—this

is exactly the place where we have an intersection with [20]. Section 5 is de-
voted to the Givental’s action. We give there a particular action, which yields
the CY/LG correspondence of the A models discussed. In Section 6, so-called
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“twisted” correlators are introduced. These give us a partition function depending
on additional parameters, which generalizes genus zero FJRW theory. In fact, we
recover the FJRW partition function in the limit. In Section 7, we show that the
twisted correlators also recover a basic theory, as discussed above, which we call
the “untwisted” theory. We show how to recover FJRW theory from the untwisted
theory using Givental’s action, and use this result to give an action similar to the
R-matrix of the Gromov–Witten theory of P4,4,2. In Appendix A, we have given

a closed formula for F
P4,4,2
0 .

2. Definition of FJRW Theory

We first introduce FJRW theory in some generality, describing the state space and
the moduli space of W -structures together with its virtual class.

2.1. State Space

The Landau–Ginzburg A model is provided by FJRW theory. The input is a pair
(W,G) of a quasihomogeneous polynomial and a group, which we now describe.

Let W ∈ C[x1, . . . , xN ] be a quasi-homogeneous polynomial of degree d with
integer weights w1, . . . ,wN such that gcd(w1, . . . ,wN) = 1. For each 1 ≤ k ≤ N ,
let qk = wk/d . The central charge of W is defined to be

ĉ :=
N∑

k=1

(1 − 2qk).

A polynomial is nondegenerate if

(i) the weights qk are uniquely determined by W , and
(ii) the hypersurface defined by W is nonsingular in projective space.

The maximal group of diagonal symmetries is defined as

Gmax := {(Θ1, . . . ,ΘN) ⊆ (Q/Z)N |
W(e2π iΘ1x1, . . . , e

2π iΘN xN) = W(x1, . . . , xN)}.
Note that Gmax always contains the exponential grading element j := (q1, . . . ,

qN). If W is nondegenerate, Gmax is finite.

Remark 2.1. We can define FJRW theory more generally for admissible sub-
groups G ⊂ Gmax (see [9]), but in the current work, we consider only G = Gmax.
From now on, we denote Gmax simply by G.

FJRW theory defines a state space and a moduli space of W -curves, from which
we obtain certain numbers—called correlators—as integrals over the moduli
space. Let us first fix some notation. For h ∈ G, let Fix(h) denote the fixed lo-
cus of CN with respect to h, let Nh denote the dimension of Fix(h), and let Wh

denote W |Fix(h). Let W+∞
h := (ReWh)

−1(ρ,∞) for ρ � 0 be the so-called Mil-
nor fiber of Wh.
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Define
Hh := HNh(Fix(h),W+∞

h ;C)G, (2.1)

that is, G-invariant elements of the middle-dimensional relative cohomology of
Fix(h). The state space is the direct sum of the “sectors” Hh, that is,

HW,G :=
⊕
h∈G

Hh.

Let Gnar = {h ∈ G | Nh = 0}. These summands Hh for h ∈ Gnar are the so-
called narrow sectors.

The space HW,G is Q-graded by the W -degree. To define this grading, first
note that each element h ∈ G can be uniquely expressed as a tuple of rational
numbers

h = (�h
1, . . . ,Θh

N)

with 0 ≤ Θh
k < 1.

We first define the degree-shifting number

ι(h) :=
N∑

k=1

(Θh
k − qk).

For αh ∈ Hh, the (real) W -degree of αh is defined by

degW(αh) := Nh + 2ι(h). (2.2)

The sector indexed by j is one-dimensional and has W -degree 0. This sector is
unique with this property.

Because Fix(h) = Fix(h−1), there is a nondegenerate pairing

〈−,−〉 : Hh ×Hh−1 → C,

the residue pairing of Wh, which induces a symmetric nondegenerate pairing

〈−,−〉 :HW,G ×HW,G →C.

2.2. Moduli of W-Curves

Recall that an n-pointed orbifold curve is a stack of Deligne–Mumford type with
at worst nodal singularities with orbifold structure only at the marked points and
the nodes. We require the nodes to be balanced in the sense that the action of the
generator of the stabilizer group Zk is given by

(x, y) �→ (e2π i/kx, e−2π i/ky).

Given such a curve C, let ω be its dualizing sheaf. The log-canonical bundle is

ωlog := ω(p1 + · · · + pn).

In what follows, we assume that d , the degree of W , is also the exponent of
Gmax, that is, for each h ∈ Gmax, hd = id. This is not the case in general, but it
simplifies the exposition, still giving a general enough picture.

The FJRW correlators were first defined in [9], but we follow a slightly dif-
ferent treatment as given in [7], where it is also shown that the two definitions
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agree. The reason for our choice is that [7] allows us to use Givental’s formalism
to determine the FJRW correlators.

A d-stable curve is a proper connected orbifold curve C of genus g with n

distinct smooth markings p1, . . . , pn such that

(i) the n-pointed underlying coarse curve is stable, and
(ii) all the stabilizers at nodes and markings have order d .

The moduli stack Mg,n,d parameterizing such curves is proper and smooth
and has dimension 3g − 3 + n. It differs from the moduli space of curves only
because of the stabilizers over the normal crossings (see [7]).

We can write W as a sum of monomials W = W1 + · · · + Ws , where Wi =
ci

∏N
k=1 x

aik

k with aik ∈ N and ci ∈ C. Given line bundles L1, . . . ,LN on the d-
stable curve C, we define the line bundle

Wi(L1, . . . ,LN) :=
N⊗

k=1

L⊗aik

k .

Definition 2.2. A W -structure is comprised of the data

(C,p1, . . . , pn,L1, . . . ,LN,ϕ1, . . . ϕN),

where C is an n-pointed d-stable curve, Lk are line bundles on C satisfying

Wi(L1, . . . ,LN) ∼= ωlog,

and for each k, ϕk : L⊗d
k → ω

wk

log is an isomorphism of line bundles.

There exists a moduli stack of W -structures, denoted by Wg,n (see [10; 7] for the
construction).1

Proposition 2.3 ([7]). The stack Wg,n is nonempty if and only if n > 0 or 2g −
2 is a positive multiple of d . It is a proper smooth Deligne–Mumford stack of
dimension 3g − 3 + n. It is etale over Mg,n,d of degree |Gmax|2g−1+n/dN .

Let h = (h1, . . . , hn), with hi = (Θi
1, . . . ,Θ

i
N). Define Wg,n(h) to be the stack

of n-pointed genus g W -curves for which the generator of the isotropy group at

pj acts on Lk by multiplication by e2π iΘ
j
k . We can write Θ

j
k = m

j
k/d for some

integer 0 ≤ m
j
k < d , which we call the multiplicity of Lk at pj and denote by

multpi
Lk . The following proposition describes a decomposition of Wg,n in terms

of multiplicities.

Proposition 2.4 ([7; 9]). The stack Wg,n can be expressed as the disjoint union

Wg,n =
∐

Wg,n(h)

1This definition differs slightly from [10] in that only the isomorphisms φk are part of the data. But it
is shown in [7] that the definitions agree.
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with each Wg,n(h) an open and closed substack of Wg,n. Furthermore, Wg,n(h)

is nonempty if and only if

hi ∈ Gmax, i = 1, . . . , n,

qk(2g − 2 + n) −
n∑

i=1

Θi
k ∈ Z, k = 1, . . . ,N.

The second condition comes from the pushforward of Lk to the course underlying
curve, which must have integer degree. We denote the universal curve by π : C →
Wg,n,G(h) and the universal W -structure by (L1, . . . ,LN).

2.3. Axioms of FJRW Theory

For each substack Wg,n(h), we may define a virtual cycle (see [9; 10])

[Wg,n(h)]vir ∈ H∗(Wg,n(h),Q) ⊗
n∏

i=1

HNhi
(Fix(hi),W

+∞
hi

;C)G,

which satisfies the following axioms:

FJR 1 (Degree). The virtual cycle has degree

2

(
(ĉ − 3)(1 − g) + n −

n∑
i=1

ι(hi)

)
.

In particular, if this number is not an integer, then [Wg,n(h)]vir = 0.

FJR 2 (Line bundle degree). The degree of the pushforward |Lk|

qk(2g − 2 + n) −
n∑

i=1

Θ
hi

k

must be an integer (as in Proposition 2.4); otherwise [Wg,n(h)]vir = 0.

FJR 3 (Symmetric group invariance). For any σ ∈ Sn, we have

[Wg,n(h1, . . . , hn)]vir = [Wg,n(hσ(1), . . . , hσ(n))]vir.

FJR 4 (Deformation invariance). Let Wt ∈ C[x1, . . . , xN ] be a family of nonde-
generate quasi-homogeneous polynomials depending smoothly on a real param-
eter t ∈ [a, b]. Suppose that G is the common isomorphism group of Wt . The
corresponding moduli of W -structures are naturally isomorphic, and the virtual
cycle [Wg,n(h1, . . . , hn)]vir associated with (Wt ,G) is independent of t .

FJR 5 (Gmax-invariance). There is a natural Gmax action on H∗(Wg,n(h),Q) and
HNhi

(Fix(hi),W
+∞
hi

;C)G. The virtual cycle [Wg,n(h)]vir is invariant under the
induced Gmax action on the tensor product.
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FJR 6 (Concavity). Suppose that hi ∈ Gnar for all i. If π∗(
⊕N

k=1 Lk) = 0, then
the virtual class is given by

[Wg,n(h)]vir = ctop

((
R1π∗

N⊕
k=1

Lk

)∨)
∩ [Wg,n(h)],

and the substack Wg,n(h) is called concave.

Remark 2.5. This last axiom can also be modified to take into account the re-
striction to boundary components on Wg,n, that is, W -curves with reducible un-
derlying curve (cf. [9]).

Remark 2.6. Some authors also include the “Index Zero“ axiom, but in full gen-
erality, both concavity and index zero are actually a part of a larger axiom involv-
ing the topological Euler class and the Witten map, but we will not need the full
statement here. We also do not include the sums of singularities axiom.

There are a few other axioms satisfied by [Wg,n(h)]vir that are more complicated
to state (cf. [9]), so we will not list them here. They show, for example, that the
virtual class behaves well with respect to cutting along nodes, ensuring that FJRW
theory defines a cohomological field theory, as we will see.

The stacks Wg,n are also equipped with ψ -classes, which are pulled back from
the course underlying curve.

3. Cohomological Field Theories on Mg,n

We briefly recall some basic facts about cohomological field theories as intro-
duced in [12].

3.1. Cohomological Field Theory Axioms

Let (V ,η) be a finite-dimensional vector space with a nondegenerate pairing.
Consider a system of linear maps

�g,n : V ⊗n → H ∗(Mg,n),

defined for all g,n such that Mg,n exists and is nonempty. The set �g,n is called
a cohomological field theory on (V ,η), or CohFT, if it satisfies the following
axioms.

CFT 1 (Sn invariance). �g,n is equivariant with respect to the Sn-action per-
muting the factors in the tensor product and the numbering of marked points in
Mg,n.

CFT 2 (Cutting trees). For the gluing morphism ρ : Mg1,n1+1 × Mg2,n2+1 →
Mg1+g2,n1+n2 , we have

ρ∗�g1+g2,n1+n2 = (�g1,n1+1 · �g2,n2+1, η
−1),
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where we contract with η−1 the factors of V that correspond to the node in the
preimage of ρ.

CFT 3 (Cutting loops). For the gluing morphism σ : Mg,n+2 → Mg+1,n, we
have

σ ∗�g+1,n = (�g,n+2, η
−1),

where we contract with η−1 the factors of V that correspond to the node in the
preimage of σ .

In this paper, we further assume that the CohFT �g,n is unital—that is, there is a
fixed vector 1 ∈ V called the unit such that the following axioms are satisfied.

U 1. For every α1, α2 ∈ V , we have η(α1, α2) = �0,3(1 ⊗ α1 ⊗ α2).

U 2. If π : Mg,n+1 →Mg,n is a map forgetting the last marking, then

π∗�g,n(α1 ⊗ · · · ⊗ αn) = �g,n+1(α1 ⊗ · · · ⊗ αn ⊗ 1).

Another important property of CohFTs is the notion of quasi-homogeneity.
A CohFT �g,n on (V ,η) is called quasi-homogeneous if the vector space V is
graded by deg : V → Q and there is a number ĉ such that, for any α1, . . . , αn ∈ V ,

n∑
i=1

deg(αi) = ĉ + n + g − 3

whenever 〈α1, . . . , αn〉g,n �= 0. The number ĉ is called the central charge.

Remark 3.1. The space of all quasi-homogeneous CohFTs is discrete in the space
of all CohFTs. However, these CohFTs possess several properties that make them
easier to work with. The CohFTs we are going to work with in this text are quasi-
homogeneous. In FJRW theory, the state space is graded by W -degree, and in GW
theory, the state space is graded simply by the cohomological degree.

In what follows, we will denote the CohFT just by � rather than �g,n when there
is no ambiguity.

Let ψi ∈ H ∗(Mg,n), 1 ≤ i ≤ n, be the so-called ψ -classes. The genus g, n-
point correlators of the CohFT are the following numbers:

〈τa1(eα1) · · · τan(eαn)〉�g,n :=
∫
Mg,n

�g,n(eα1 ⊗ · · · ⊗ eαn)ψ
a1
1 · · ·ψan

n .

Denote by Fg the generating function of the genus g correlators, called genus
g potential of the CohFT:

Fg :=
∑ 〈τa1(eα1) · · · τan(eαn)〉�g,n

Aut({α,a}) ta1,α1 · · · tan,αn .
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It is useful to assemble the correlators into a generating function, called parti-
tion function of the CohFT:2

Z := exp

(∑
g≥0

h̄g−1Fg

)
.

We will also use the so-called primary genus g potential, which is the function
of the variables tα := t0,α defined as follows:

Fg := Fg|tα :=t0,α,t�,α=0,∀�≥1,

sometimes also called a restriction to the small phase space.

3.2. CohFT of FJRW Theory and Gromov–Witten Theory

In the space of all cohomological field theories, there are certain special theo-
ries, sometimes also called “geometric” since they correspond to some geometry.
These include FJRW theory and GW theory.

Consider the FJRW theory of a pair (W,G). Its moduli space of W -structures
has a good virtual cycle [Wg,n(h)]vir as it was explained in Section 2.3.

However, we can also push forward to Mg,n via the map s : Wg,n → Mg,n.
Let αi ∈ Hhi

and α = (α1, . . . , αn). We define

�FJRW
g,n (α) = |G|g

deg s
PDs∗

(
[Wg,n(h)]vir ∩

n∏
i=1

αi

)
. (3.1)

Here PD denotes the Poincaré dual.

Theorem 3.2 (Theorem 4.2.2 in [9]). For any admissible pair (W,G), the system
of maps �FJRW

g,n defines a unital CohFT on the vector space HW,G.

In what follows, we denote simply by Z(W,G) and F (W,G)
g the partition function

and genus g potential of the CohFT above for a fixed admissible pair (W,G). As
a consequence of the properties of the virtual cycle [Wg,n]vir, these functions also
satisfy certain additional properties in addition to those common to all CohFTs.

The second important class of the CohFTs is given by the Gromov–Witten the-
ories. We recall very briefly the definition and refer to [1] for a full exposition. Let
X be an orbifold, and let β ∈ H2(X ,Z). There is the moduli stack Mg,n(X , β)

of degree β stable orbifold maps from the genus g curve with n marked points
to X . The orbifold cohomology H ∗

orb(X ), with the nondegenerate pairing, serves
as a state space in this theory. Similarly to the FJRW theory, there is a good vir-
tual cycle [Mg,n(X , β)]vir so that we can consider the Gromov–Witten invariants
given by the intersection theory on Mg,n(X , β).

2We could consider a family of partition functions Zτ for τ ∈ V by shifting the variables. We will
explain this later in Section 5.
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Again, by considering a push forward s : Mg,n(X , β) → Mg,n we get a Co-
hFT associated with X , with fixed β:

�GW
g,n,β := 1

deg s
PDs∗

(
[Mg,n(X , β)]vir ∩

n∏
i=1

ev∗
i (αi)

)
.

The fact that this map defines a CohFT follows from a more general statement
and can be found, for example, in [1].

As with FJRW theory, the CohFT obtained satisfies some additional proper-
ties. One of the most important for us is the so-called divisor equation. When
H2(X ,Z) is one-dimensional, as is the case in this work, it allows us to sum over
all classes β and obtain a CohFT �GW

g,n depending on X only. We denote by ZX

and FX
g the partition function and genus g potential of the CohFT �GW

g,n .

3.3. Reconstruction in Genus Zero

It is often useful to be able to express all correlators of a given CohFT from some
finite list. This is usually referred to as a reconstruction.

Due to the topology of the space M0,n the small phase space potential of
a CohFT on (V ,η) satisfies the so-called WDVV equations. For any four fixed
0 ≤ i, j, k, l ≤ dim(V ) − 1, they are as follows:

∑
p,q

∂3F0

∂t i∂tj ∂p
ηp,q ∂3F0

∂tq∂tk∂l
=

∑
p,q

∂3F0

∂t i∂tk∂p
ηp,q ∂3F0

∂tq∂tj ∂l
.

It follows from here that the genus zero three-point correlators endow V with
the structure of an associative and commutative algebra by setting ei ◦ ej :=∑

p,k〈ei, ej , ep〉0,3 · ηp,k · ek .

Definition 3.3. The vector γ ∈ V is called primitive if there are no γ1, γ2 ∈ V

such that γ = γ1 ◦ γ2 and 0 < deg(γ1) ≤ deg(γ2) < deg(γ ). We call a correlator
〈· · · 〉0,n basic if it involves at most two nonprimitive insertions.

We will need the following lemma.

Lemma 3.4 (Lemma 6.2.8 in [9]). Fix a quasi-homogeneous CohFT on (V ,η).
If deg(α) ≤ ĉ for all vectors α ∈ V , then all the genus zero correlators are

uniquely determined by η and the n-point genus zero correlators with

n ≤ 2 + 1 + ĉ

1 − P
, P := max

v∈V
v is primitive

deg(v).

The proof of this lemma is based on the analysis of WDVV equation of a quasi-
homogeneous CohFT.
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3.4. FJRW Correlators for Ẽ7

In this article, we consider the polynomial W = x4 + y4 + z2 defining the Ẽ7

singularity. The polynomial W is quasi-homogeneous with weights q1 = 1
4 , q2 =

1
4 , and q3 = 1

2 . The group G = Gmax is generated by the elements ρ1 := (q1,0,0),
ρ2 := (0, q2,0), and ρ3 := (0,0, q3). In this description, jW = ρ1ρ2ρ3.

Working through the definition, we see that in this case only narrow group
elements contribute to the state space. Furthermore, via (2.1), we see that Hh is
one-dimensional when h ∈ Gnar. In this case, we denote the fundamental class in
Hh by φh. With this φh, the set {φh}h∈Gnar defines a basis of HW,G, that is,

HW,G :=
⊕

1≤a≤3
1≤b≤3

C · φρa
1 ρb

2 ρ3
.

The pairing is determined by the following values on this basis:

〈φh1 , φh2〉 :=
{

1 if h1 = (h2)
−1,

0 otherwise.

In the following lemma, we show that the entire FJRW theory is concave,
namely all substacks Wg,n(h) satisfy the concavity condition. So by the concavity
axiom we can replace the virtual class by the fundamental class capped with the
top Chern class of a line bundle.

Proposition 3.5. The genus zero FJRW theory for (Ẽ7,Gmax) is concave.

Proof. The proof has been given in several places, including [7; 6; 18], so we will
not give it in detail here. It consists of checking that, over any geometric point
(C,p1, . . . , pn, L1,L2,L3, ϕ1, ϕ2, ϕ3) in the moduli space,

⊕3
k=1 H 0(C,Lk) = 0.

This is done by checking that, for each connected component Cv of C, the degree
of the line bundle satisfies

deg(|Lk|Cv ) ≤ qk(#nodes(Cv) − 2) < #nodes(Cv) − 1. �

The genus 0 potential of the FJRW theory is written in the variables t̃ab for 1 ≤
a ≤ 3 and 1 ≤ b ≤ 3, corresponding to the vectors φρa

1 ρb
2 ρ3

. It is always the case

that φj is the unit. Thus the variable t̃11 corresponds to the unit of the CohFT for
(Ẽ7,Gmax).

Using axioms FJR 1–FJR 6 (the data are also in [16, Section 3.3]), we
get the following expression for the genus zero small phase space potential of
(Ẽ7,Gmax):

F
Ẽ7,Gmax
0 = t̃2

11 t̃33

2
+ t̃11

(
t̃21 t̃23 + t̃12 t̃32 + t̃13 t̃31 + t̃2

22

2

)
+ t̃12 t̃21 t̃22

+ t̃2
12 t̃31

2
+ t̃2

21 t̃13

2
− t̃33

(
t̃2
21 t̃31

8
+ t̃2

12 t̃13

8

)
+ O(t̃4+, t̃33),

where t̃+ is the set of all coordinates except t̃33.
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We can rephrase Lemma 3.4 for this case in the following lemma.

Lemma 3.6 (Lemma 3.6 in [16] and Theorem 3.4 in [13]). Using the WDVV equa-
tion, all genus 0 primary correlators of FJRW theory (Ẽ7,Gmax) are uniquely de-
termined by the FJRW algebra and the basic 4-point correlators that have exactly
one insertion of ρ3

1ρ3
2ρ3.

Remark 3.7. It follows immediately from Lemma 3.6 and the proof of Lemma 3.4

that the genus 0 potential F
Ẽ7,Gmax
0 ∈ Q[[t]] because all the “primary” data are ra-

tional and the WDVV equation does not involve anything nonrational.

3.5. Gromov–Witten Theory of Elliptic Orbifolds

Let the ordered set (a1, a2, a3) be either (3,3,3), or (4,4,2), or (6,3,2). Con-
sider X := P1

a1,a2,a3
, one of the so-called elliptic orbifolds. They can be either

viewed as the projective line with the three isotropy points of the orders a1, a2,
a3, respectively, or as the quotients of an elliptic curve by a group of orders 3, 4,
and 6, respectively. In this case, we have

dim(H ∗
orb(P

1
a1,a2,a3

)) = 2 +
3∑

i=1

(ai − 1).

The space H ∗
orb(P

1
a1,a2,a3

) has the generators

�0,�−1,�i,j , 1 ≤ i ≤ 3,1 ≤ j ≤ ai − 1,

so that H ∗
orb(P

1
a1,a2,a3

) � Q�0 ⊕ Q�−1
⊕3

i=1
⊕ai−1

j=1 Q�i,j , and H 0(P1
a1,a2,a3

,

Q) � Q�0, H 2(P1
a1,a2,a3

,Q) � Q�−1,
The pairing is given by

η(�0,�−1) = 1, η(�i,j ,�k,l) = 1

ai

δi,kδj+l,ai
.

The potential of this CohFT is then written in the coordinates t0, t−1, and ti,j ,
corresponding to the classes �0,�−1, and �i,j , respectively.

As with FJRW theory, it turns out that one needs to know only certain finite
list of the correlators to compute all the correlators of these GW theories. Such
correlators were found explicitly by [19] and used independently by the first au-
thor to write down the genus 0 potentials explicitly. In what follows, we will be
particularly interested in the GW theory of P1

4,4,2. We give explicitly the genus 0
potential of this orbifold in the appendix.

3.6. GW Theory of P1
4,4,2

Let ϑ2(q), ϑ3(q), and ϑ4(q) be the following infinite series in a formal variable q:

ϑ2(q) = 2
∞∑

k=0

q1/2(k+1/2)2
, ϑ3(q) = 1 + 2

∞∑
k=1

qk2/2,
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ϑ4(q) = 1 + 2
∞∑

k=1

(−1)kqk2/2,

and also

f (q) := 1 − 24
∞∑

k=1

kqk

1 − qk
.

These series are the q-expansions of the Jacobi theta constants and the second
Eisenstein series, respectively. However, at the moment, we consider them only
as the formal series in the variable q .

Consider the functions x(q), y(q), z(q), w(q) defined as follows:

x(q) := (θ3(q
8))2, y(q) := (θ2(q

8))2, z(q) := (θ2(q
4))2,

w(q) := 1

3
(f (q4) − 2f (q8) + 4f (q16)).

In what follows, the function z(q) will be sometimes skipped because of the
following identity:

z(q)2 = 4x(q)y(q).

Proposition 3.8. The potential F
P

1
4,4,2

0 has an explicit form via the functions de-
fined, namely:

F
P

1
4,4,2

0 ∈ Q[t0, t−1, ti,j , x, y, z,w],
where x = x(q), y = y(q), z = z(q), and w = w(q) as before. Moreover, it satis-
fies the following homogeneity property:

F
P

1
4,4,2

0 (t0, t−1, ti,j , x, y, z,w) = α−2F
P

1
4,4,2

0

(
t0, t−1, α · ti,j , x

α
,
y

α
,

z

α
,

w

α2

)
for any α ∈ C∗.

Proof. This is clear from the explicit form of the potential; see Appendix A. �

Up to the 4th-order terms in ti,k , we have:

F
P

1
4,4,2

0 = 1

2
t2
0 t−1 + t0

(
1

4
t1,1t1,3 + 1

8
t2
1,2 + 1

4
t2,1t2,3 + 1

8
t2
2,2 + 1

4
t2
3,1

)
+ 1

8
x(q)(t2

1,1t1,2 + t2
2,1t2,2) + 1

8
y(q)(t1,2t

2
2,1 + t2

1,1t2,2)

+ 1

4
z(q)t1,1t2,1t3,1 + O(t4

i,k, t−1),

where q = exp(t−1).
Considering also the change of the variables t−1 = t−1(τ ) = 2π iτ

4 , we can con-
sider the functions x(q(τ)), y(q(τ)), z(q(τ )) as modular forms and w(q(τ))

as a quasi-modular form. This means in particular that these functions have a
large domain of holomorphicity and satisfy certain modularity condition. The
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first property holds also by the primary potential F
P

1
4,4,2

0 ; however, the second—
modularity—is slightly more complicated. It was shown in [3] that primary po-
tentials of all elliptic orbifolds satisfy the modularity property, too.

4. CY/LG Correspondence Via Modularity

Consider a unital CohFT � on (V ,η) with unit e0. Let {e0, . . . , em} be the basis
of V such that η0,k = δk,m. Define the coordinates t0, . . . , tm corresponding to this
basis. Due to Axiom (U1) of a unital CohFT, the primary genus zero potential of
� reads in coordinates:

F0(t0, . . . , tm) = t2
0 tm

2
+ t0

∑
0<α≤β<m

ηα,β

tαtβ

|Aut(α,β)| + H(t1, . . . , tm),

where H is a function not depending on t0.
For any A = (

a b
c d

) ∈ SL(2,C), consider the other function FA
0 = FA

0 (t0, . . . ,

tm) defined by

FA
0 := t2

0 tm

2
+ t0

∑
0<α≤β<m

ηα,β

tαtβ

|Aut(α,β)|

+ c(
∑

0<α≤β<m ηα,β(tαtβ)/|Aut(α,β)|)2

2(ctm + d)

+ (ctm + d)2H

(
t1

ctm + d
, . . . ,

tm−1

ctm + d
,
atm + b

ctm + d

)
. (4.1)

It is not hard to see that FA
0 is a solution to WDVV equation. We can also give

a CohFT whose genus 0 primary potential it is (see [4] for details). We also write
A · F0 := (F0)

A. Consider the following action of a particular matrix ACY/LG:

ACY/LG :=
(

1
2�

−π�
2

1
π�

�

)
, � :=

√
2π

(�(3/4))2
.

The main statement of this section is the following theorem.

Theorem 4.1. Let F
(Ẽ7,Gmax)
0 and F

P4,4,2
0 be the primary genus 0 potentials of the

FJRW theory of (Ẽ7,Gmax) and GW theory of P1
4,4,2, respectively. Then we have:

F
(Ẽ7,Gmax)
0 (t̃) = ACY/LG · F P4,4,2

0 (t),

where t̃ = t̃(t) is the following linear change of the variables:

t1,1 = i
√

2(t̃12 − t̃21), t1,2 = −t̃13 + √
2t̃22 − t̃31, t1,3 = i

√
2(t̃23 − t̃32),

t2,1 = √
2(t̃12 + t̃21), t2,2 = t̃13 + √

2t̃22 + t̃31, t2,3 = √
2(t̃23 + t̃32),

t3,1 = i(t̃13 − t̃31),

t0 = t̃11, t−1 = t̃33.
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Moreover, the primary potential F
(Ẽ7,Gmax)
0 (t̃) is holomorphic in

C9 × {t̃33 ∈C | |t̃33| < |π�2|}
and has an expansion with rational coefficients.

Together with the explicit formulae for the genus 0 small phase space potentials
of the GW theories of the elliptic orbifolds announced in [4], this theorem gives
an explicit closed formula for the FJRW potential of (Ẽ7,Gmax). For example,
we have the following expansion:

F
Ẽ7,Gmax
0 = 1

2
t̃2
11 t̃33 + t̃11

(
t̃2
22

2
+ t̃21 t̃23 + t̃13 t̃31 + t̃12 t̃32

)
− t̃2

12 t̃13

(
t̃33

8
+ t̃5

33

61,440

)
+ t̃2

21 t̃31

(
− t̃33

8
− t̃5

33

61,440

)
+ t̃13 t̃

2
21

(
1

2
+ t̃4

33

3,072
+ t̃8

33

330,301,440

)
+ t̃2

12 t̃31

(
1

2
+ t̃4

33

3,072
+ t̃8

33

330,301,440

)
+ t̃12 t̃21 t̃22

(
1 + t̃2

33

32
+ t̃4

33

6,144
+ t̃6

33

327,680
+ 289t̃8

33

2,642,411,520

)
+ O(t̃9

33, t̃4+)

for t̃+ = t\t̃33.

4.1. Group Action in the Formal Variable

We make a few preparations before we prove Theorem 4.1. The following propo-
sition appeared first in [19] in a slightly different notation.

Proposition 4.2 (Section 3.2.3 of [19]). Consider x(q), y(q), and w(q) as the

functions of t = t−1 by taking q = exp(t−1). The WDVV equation on F
P

1
4,4,2

0 is
equivalent to the following system of equations:

∂

∂t
x(t) = x(t)(2y(t)2 − x(t)2 + w(t)),

∂

∂t
y(t) = y(t)(2x(t)2 − y(t)2 + w(t)),

∂

∂t
w(t) = w(t)2 − x(t)4.

(4.2)

The following proposition explains the SL(2,C)-action we consider.

Proposition 4.3. Consider x(q), y(q), and w(q) as the functions of t = t−1 by
taking q = exp(t−1). We have:
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(i) for any A = (
a b
c d

) ∈ SL(2,C), the functions xA(t), yA(t), and wA(t) defined
by

xA(t) := 1

(ct + d)
x

(
at + b

ct + d

)
,

yA(t) := 1

(ct + d)
y

(
at + b

ct + d

)
,

wA(t) := 1

(ct + d)2
w

(
at + b

ct + d

)
− c

ct + d

give a solution to (4.2).

(ii) The potential A · FP
1
4,4,2

0 is obtained from F
P

1
4,4,2

0 by substituting

{x(t−1), y(t−1), z(t−1)} → {xA(t−1), y
A(t−1), z

A(t−1)}.
Proof. Part (i) is easy by using Proposition 4.2, and part (ii) follows immediately
from the definition of the SL(2,C)-action on the primary potential, explicit form

of F
P

1
4,4,2

0 , and Proposition 3.8. �

The following proposition will be used later.

Proposition 4.4. For any α ∈ C∗ and A = (
a b
c d

) ∈ SL(2,C), we have

(αx(α2t))A = xA′
(t), (αy(α2t))A = yA′

(t), (α2w(α2t))A = wA′
(t),

where A′ = (
a·α b·α
c/α d/α

) ∈ SL(2,C).

Proof. First of all, note that if x(t), y(t), and w(t) give a solution to (4.2), then
x̂(t) := αx(α2t), ŷ(t) := αy(α2t), ŵ(t) := α2w(α2t) is also a solution to (4.2),
so we can consider the action of A from Proposition 4.3.

Indeed,

(αx(α2t))A = α

(ct + d)
x

(
α2 · at + b

ct + d

)
= 1

(c/αt + d/α)
x

(
αat + αb

c/αt + d/α

)
= xA′

(t).

The same computations are easy to perform for the remaining functions. �

In what follows, we consider the explicit values of the functions ϑk and make use
of their holomorphicity. For such purposes, it is convenient to write them not as
the q-expansions, but as holomorphic functions on H. The formal variable t−1
is not suitable for these purposes. So we consider the changes of the variables
q = exp( 2π iτ

4 ). This is equivalent to applying the change of variables t−1 = 2π iτ
4

mentioned earlier. Applying it to the potential F
P

1
4,4,2

0 will change the terms defin-
ing the pairing. Because of this, we give a special treatment to this change of the
variables.
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4.2. Group Action Via the Modular Forms

For p ∈ {2,3,4}, consider the following functions, holomorphic on H:

ϑp(τ) := ϑp(q(τ)), X∞
p (τ) := 2

∂

∂τ
logϑp(τ).

Fixing some branch of the square root, denote κ := √
2π i/4. We now introduce

the new functions

x∞(τ ) := κ · x(q(τ)), y∞(τ ) := κ · y(q(τ)),

z∞(τ ) := κ · z(q(τ )), w∞(τ ) := κ2 · w(q(τ)).

For any τ0 ∈H and ω0 ∈ C∗, consider the following functions x(τ0,ω0), y(τ0,ω0),
and z(τ0,ω0):

x(τ0,ω0)(τ ) := 2iω0 Im(τ0)

(2iω2
0 Im(τ0) − τ)

x∞
(

2iω2
0τ0 Im(τ0) − τ̄0τ

2iω2
0 Im(τ0) − τ

)
,

with y(τ0,ω0) and z(τ0,ω0) defined similarly, and also

w(τ0,ω0)(τ ) := (2iω0 Im(τ0))
2

(2iω2
0 Im(τ0) − τ)2

w∞
(

2iω2
0τ0 Im(τ0) − τ̄0τ

2iω2
0 Im(τ0) − τ

)
− 1

(2iω2
0 Im(τ0) − τ)

.

Remark 4.5. The functions introduced make sense from the point of view of
modular forms; they are just expansions of the (quasi-)modular forms x(τ), y(τ),
and w(τ) at the point τ = τ0 (see Proposition 17 in [22]). This is also a coordinate
form of the Cayley transform of [20].

Proposition 4.6. Fix some τ0 ∈H and ω0 ∈C∗. We have:

(i) The functions x(τ0,ω0), y(τ0,ω0), w(τ0,ω0) give a solution to (4.2).
(ii) The functions x(τ0,ω0)(τ ), y(τ0,ω0)(τ ), z(τ0,ω0)(τ ), w(τ0,ω0)(τ ) are holomor-

phic on
D(τ0,ω0) := {τ ∈C | |τ | < |2ω2

0 Im(τ0)|}.
(iii) Consider the SL-action on x(t−1) as in Proposition 4.3. We have:

(x(τ ))(τ0,ω0) = (x(t−1))
A,

where

A =
(

iκτ̄0
2ω0 Im(τ0)

κω0τ0
i

2κω0 Im(τ0)
ω0
κ

)
.

Proof. Part (i) is easily checked by the explicit differentiation and definition of
the functions x(τ0,ω0)(τ ), y(τ0,ω0)(τ ), w(τ0,ω0)(τ ). Part (ii) follows from the fact
that the theta constants are holomorphic functions on H.

For part (iii), note first that in principle the action of Proposition 4.3 is more
general. It can be applied to any solution of (4.2). The rest follows from Proposi-
tion 4.4. �



Givental-Type Reconstruction at a Nonsemisimple Point 351

Remark 4.7. The action x∞ → x(τ0,ω0) can be seen as the action changing the
primitive form of the B model. Having applied this action on the B side, we get
the CohFT of a simple elliptic singularity Ẽ7 with the primitive form “at τ0” (see
[5; 15; 4]).

4.3. Proof of Theorem 4.1

First of all, note that the change of variables of Theorem 4.1 identifies the two
pairings. This is clear also that the action of any A ∈ SL(2,C) does not change
the correlators involving insertion of the unit vector of a CohFT.

Applying the linear change of the variables t̃ = t̃(t) given in the theorem to

A · FP
1
4,4,2

0 , we get:

A · F P
1
4,4,2

0 (t̃) = 1

2
t̃2
11 t̃33 + t̃11

(
t̃21 t̃23 + t̃13 t̃31 + t̃12 t̃32 + t̃2

22

2

)
+ 1

2
t̃2
21(C1(t̃33) · t̃13 + C2(t̃33) · t̃31)

+ 1

2
t̃2
12(C2(t̃33) · t̃13 + C1(t̃33) · t̃31)

+ √
2(xA(t̃33) + yA(t̃33))t̃12 t̃21 t̃22 + O(t̃4

i,k, t̃11)

for C1(t̃33) := xA(t̃33) − yA(t̃33) + zA(t̃33) and C2(t̃33) := xA(t̃33) − yA(t̃33) −
zA(t̃33).

Lemma 4.8. The equality of the formal series A · F P
1
4,4,2

0 (t̃) = F
Ẽ7,Gmax
0 (t̃) is sat-

isfied if any only if

A · F P
1
4,4,2

0 (t̃) − F
Ẽ7,Gmax
0 (t̃) ∈ O(t̃4

i,k, t̃11).

Proof. One direction is straightforward, and we concentrate on the opposite one.

First of all, note that the potential A · F
P

1
4,4,2

0 (t̃) satisfies the same quasi-

homogeneity property as the potential F
P

1
4,4,2

0 (t̃). Next, we see easily that the
change of the variables t̃(t) preserves the quasi-homogeneity property.

Recall the genus zero reconstruction lemma of Section 3.3. The equality above
assures also that the algebra structure at the origin coincides on the both sides.
Hence the notion of the primitive vectors coincides on the both sides.

Hence the conditions of Lemma 3.4 coincide for the both potentials. For the
FJRW theory, these conditions were written in Lemma 3.6 to be exactly those as
described in the proposition. �

However, to prove the theorem, we need to use explicit values of the functions
and therefore work with the “modular” variable τ ∈ H.
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Lemma 4.9. Let τ0 = i and ω0 := κ
√

2π/(�( 3
4 ))2. The equation

ACY/LG · F
P

1
4,4,2

0 (t̃) = F
Ẽ7,Gmax
0 (t̃)

holds if and only if

x(τ0,ω0)(τ ) − y(τ0,ω0)(τ ) + z(τ0,ω0)(τ ) = 1 + O(τ 2),

x(τ0,ω0)(τ ) − y(τ0,ω0)(τ ) − z(τ0,ω0)(τ ) = −τ

4
+ O(τ 2),

x(τ0,ω0)(τ ) + y(τ0,ω0)(τ ) = 1√
2

+ O(τ 2).

(4.3)

Proof. Using the lemma above and reconstruction Lemma 3.4, we see that it is

enough to compare the potentials F
Ẽ7,Gmax
0 and A · F P

1
4,4,2

0 (t̃) up to O(t̃4
i,k, t̃11).

Recall part (iii) of Proposition 4.6. Note that, for τ0 and ω0 as in the statement
of the lemma, the matrix A′ coincides with the matrix ACY/LG.

The equalities above are obtained by comparing the coefficients of F
Ẽ7,Gmax
0

and A · F P
1
4,4,2

0 (t̃). The RHS of them are taken from the explicit form of F
Ẽ7,Gmax
0

(recall Section 3.4).
It follows from Lemma 3.6 that it is enough to check these equalities in order

for the whole potentials to coincide. �

In the remainder of this section, we show that (4.3) is satisfied by the functions
x(τ0,ω0)(τ ), y(τ0,ω0)(τ ), z(τ0,ω0)(τ ) for τ0 and ω0 as in Lemma 4.9.

Denote by x̃, ỹ, z̃ the expansion of the function x, y, z with the change of
variables τ → A(τ0,ω0)τ applied, that is,

x̃(τ ) := x∞
(

2iω2
0τ0 Im(τ0) − τ̄0τ

2iω2
0 Im(τ0) − τ

)
,

and similarly for ỹ, z̃. Define the numbers x0, x1,y0, y1 and z0, z1 as the coeffi-
cients of the series expansions at τ = 0:

x̃ = x0 + x1τ + O(τ 2), ỹ = y0 + y1τ + O(τ 2), z̃ = z0 + z1τ + O(τ 2).

The functions x(τ0,ω0), y(τ0,ω0), z(τ0,ω0) satisfy

x(τ0,ω0)(τ ) = x0

ω0
+ τ

(
x1

ω0
+ x0

2iω3
0 Im(τ0)

)
+ O(τ 2).

To find the coefficients explicitly, we use the following derivation formula.

Lemma 4.10. The derivatives of the functions x, y, z satisfy:

∂

∂τ
x̃(τ )

∣∣∣
τ=0

= κ

2ω2
0

(ϑ3(τ0)
2X∞

3 (τ0) + ϑ4(τ0)
2X∞

4 (τ0)),

∂

∂τ
ỹ(τ )

∣∣∣
τ=0

= κ

2ω2
0

(ϑ3(τ0)
2X∞

3 (τ0) − ϑ4(τ0)
2X∞

4 (τ0)),
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∂

∂τ
z̃(τ )

∣∣∣
τ=0

= κ

ω2
0

ϑ2(τ0)
2X∞

2 (τ0).

Proof. By using the double argument formulae of the Jacobi theta constants we
see:

2x(q) = ϑ3(q
4)2 + ϑ4(q

4)2,

2y(q) = ϑ3(q
4)2 − ϑ4(q

4)2,

and all functions x(q), y(q), z(q) are written via q4. Directly from the definition
of X∞

k (τ ) and the rescaling we get:

∂

∂τ
x∞(τ ) = κ

2
(ϑ3(τ )2X∞

3 (τ ) + ϑ4(τ )2X∞
4 (τ )),

∂

∂τ
y∞(τ ) = κ

2
(ϑ3(τ )2X∞

3 (τ ) − ϑ4(τ )2X∞
4 (τ )),

∂

∂τ
z∞(τ ) = κϑ2(τ )2X∞

2 (τ ).

The rest follows from the chain rule and the definition of x̃, ỹ, z̃. �

The values of the theta constants and their logarithmic derivatives at the point
τ = i are known:

ϑ2(i) = π1/4

21/4�(3/4)
, ϑ3(i) = π1/4

�(3/4)
, ϑ4(i) = π1/4

21/4�(3/4)
,

X∞
2 (i) = iπ2

4(�(3/4))4
+ i

2
, X∞

3 (i) = i

2
, X∞

4 (i) = − iπ2

4(�(3/4))4
+ i

2
.

For K = π1/2/(21/2(�( 3
4 ))2), using the lemma above, we get:

κ−1x̃(τ ) = K

2

(√
2 + 1

) + τ
K i

2ω2
0

(√
2

2
+

(
1

2
− K2π

2

))
+ O(τ 2),

κ−1ỹ(τ ) = K

2

(√
2 − 1

) + τ
K i

2ω2
0

(√
2

2
−

(
1

2
− K2π

2

))
+ O(τ 2),

κ−1z̃(τ ) = K + τ
K i

ω2
0

(
1

2
+ πK2

2

)
+ O(τ 2).

Hence

κ−1(x(i,ω0)(τ ) − y(i,ω0)(τ ) + z(i,ω0)(τ ))

= x0 − y0 + z0

ω0
+ τ

(
x1 − y1 + z1

ω0
+ x0 − y0 + z0

2iω3
0

)
+ O(τ 2)

= 2
K

ω0
+ O(τ 2),
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κ−1(x(i,ω0)(τ ) − y(i,ω0)(τ ) − z(i,ω0)(τ ))

= x0 − y0 − z0

ω0
+ τ

(
x1 − y1 − z1

ω0
+ x0 − y0 − z0

2iω3
0

)
+ O(τ 2)

= −τ · π iK3

ω3
0

+ O(τ 2),

κ−1(x(i,ω0)(τ ) + y(i,ω0)(τ ))

= x0 + y0

ω0
+ τ

(
x1 + y1

ω0
+ x0 + y0

2iω3
0

)
+ O(τ 2)

= √
2

K

ω0
+ O(τ 2).

Fixing ω0 = 2Kκ , we get exactly the expansions as in (4.3). This completes
proof of Theorem 4.1.

5. Givental’s Action and CY/LG Correspondence

In this section, we formulate the CY/LG correspondence via the group action on
the space of cohomological field theories and give the particular action connecting

FP
1
4,4,2

0 and F (Ẽ7,Gmax)
0 .

5.1. Inifinitesimal Version of Givental’s Action

In this subsection, we introduce Givental’s group action on the partition function
of a CohFT via the inifinitesimal action computed in [14]. Let �g,n be a unital
CohFT on (V ,η) with the unit e0 ∈ V .

The upper-triangular group consists of all elements R = exp(
∑

l=1 rlz
l) such

that

r(z) =
∑
l≥1

rlz
l ∈ Hom(V ,V ) ⊗C[z]

and r(z) + r(−z)∗ = 0 (where the star means dual with respect to η). Following
Givental, we define the quantization of R:

R̂ := exp

(∑
l=1

r̂lzl

)
,

where for (rl)
α,β = (rl)

α
σ ησ,β , and we have:

r̂lzl := −(rl)
α
1

∂

∂t l+1,α
+

∞∑
d=0

td,β(rl)
α
β

∂

∂td+l,α

+ h̄

2

∑
i+j=l−1

(−1)i+1(rl)
α,β ∂2

∂t i,αtj,β
.

The following theorem is essentially due to Givental.
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Theorem 5.1 ([11]). The differential operator R̂ acts on the space of partition
functions of CohFTs.

The action of R̂ can be also formulated on the CohFT itself—not just on its par-
tition function (cf. [17]). We call the action of the differential operator R̂ on the
partition function of the CohFT Givental’s R-action or upper-triangular Given-
tal’s group action.

The lower-triangular group consists of all elements S = exp(
∑

l=1 slz
−l ) such

that
s(z) =

∑
l≥1

slz
−l ∈ Hom(V ,V ) ⊗C[z−1]

and s(z) + s(−z)∗ = 0. Following Givental, we define the quantization of S as

Ŝ := exp

( ∞∑
l=1

(slz
−l )ˆ

)
,

where
∞∑
l=1

(slz
−l )ˆ = −(s1)

α
1

∂

∂t0,α
+ 1

h̄

∞∑
d=0

(sd+2)1,αtd,α

+
∞∑

d=0
l=1

(sl)
α
β td+l,β ∂

∂td,α

+ 1

2h̄

∑
d1,d2
α1,α2

(−1)d1(sd1+d2+1)α1,α2 t
d1,α1 td2,α2 .

In contrast to R̂, the action of the differential operator Ŝ generally3 cannot
be extended to the action on the space of CohFTs. Moreover, it can happen that
Ŝ · Z� is not anymore a partition function in our definition.4 However, for the
examples of this paper, Ŝ ·Z� is still a partition function. In general, such Ŝ are
mostly used to perform linear change of the variables; however, they can also
affect 1-point and 2-point correlators.

We call Ŝ : Z� → Ŝ ·Z� the lower-triangular Givental’s group action.

5.2. R-Matrix of a CohFT

Fix a unital CohFT � on (V ,η) with unit e0 and m + 1 = dimV . Let t =
(t0, . . . , tm) with tα := t0,α as in Section 3.1. For each choice of indices i, j, k ∈
0, . . . ,m, define

ck
ij (t) :=

m∑
p=0

∂3F0

∂t i∂tj ∂tp
ηpk.

3See, for example, [17, Section 1].
4We can consider Ŝ as acting on the space of genus zero potentials if we treat the latter as a space of

functions, subject to Dilaton, String, and TRR–0 equations.



356 Alexey Basalaev & Nathan Priddis

Because F0 is a solution to WDVV equation (see Section 3.3), the functions ck
ij (t)

are structure constants of an associative and commutative algebra for all t. Denot-
ing the basis of this algebra by 〈∂/∂t0, . . . , ∂/∂tm〉, the product ◦ reads:

∂

∂t i
◦ ∂

∂tj
=

m∑
k=0

ck
ij

∂

∂tk
.

Moreover, this algebra turns out to be a Frobenius algebra with respect to the
pairing η.

The CohFT � is called semisimple if the algebra defined by ck
ij (0) above

is semisimple. In that case, there are new coordinates u0(t), . . . , um(t) such
that ∂/∂ui

◦ ∂/∂uj
= δi,j�

−1
i ∂/∂ui

for some functions �i = �i(u). Let �

be the transformation matrix from the frame 〈∂/∂t0, . . . , ∂/∂tm〉 to the frame
〈∂/∂u0, . . . , ∂/∂um〉.

Consider the partition function Zpt of the GW theory of a point. This is a
partition function of a CohFT on a one-dimensional space, and can be therefore
written in coordinates {u�,0}�≥0. In the next formula, take the product of m + 1
such partition functions indexing the variables,

T (m+1) =
m∏

k=0

Zpt({u�,k}�≥0). (5.1)

Consider also

�̂ · T (m+1) :=
m∏

k=0

Zpt ({u�,k}�≥0)|u�,k→�
1/2
i v�,k,h̄→�ih̄

.

The following theorem was conjectured by Givental and later proved by Tele-
man.

Theorem 5.2 (Theorem 1 in [21]). For every quasi-homogenous semisimple uni-
tal CohFT � on an (m+ 1)-dimensional vector space V , there is a unique upper-
triangular group element R such that

Z� = R̂ · �̂ · �̂ · T (m+1),

where �̂ acts by the change of the variables vd,α = �α
β td,β .

It often happens that although the structure constants ck
ij (0) do not define a

semisimple algebra, there is t0 such that, for t = t0, the semisimplicity condi-
tion holds. In this case, we can consider the S-action, acting on Z� by just the
change of the variables t → t − t0, allowing us to apply Theorem 5.2 to Ŝ ·Z�.

Because �̂ and �̂ only apply the change of the variables, the most important
part of the formula above is located in the action or R. This motivates the follow-
ing definition.

Definition 5.3. The upper-triangular group element R as above is called the
R-matrix of the CohFT �.
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In order to find such an R-matrix explicitly, we should normally use the recursive
procedure described by Givental. After writing R = Id+∑

k≥1 Rkz
k , every matrix

Rk is uniquely determined by the preceding matrices. However, it is difficult to
perform this procedure to the end to have a closed formula for R = R(z). Up to
now, the only explicitly written R-matrix is for the theory of 3-spin curves, which
is two-dimensional (cf. [17]).

Furthermore, it could still happen that the formula of the theorem holds for a
nonsemisimple CohFT. In this case, we do not know if the R-matrix is unique
and the recursive procedure above can no longer be applied. We will return to this
question in Section 6.3, where we present a formula similar to the R-matrix for
the Gromov–Witten theory of P1

4,4,2 without the use of the recursive procedure
described.

5.3. Mirror Symmetry and CY/LG Correspondence

The CY/LG correspondence is best understood using mirror symmetry via the B
model.

Given a hypersurface singularity W̃ : CN → C, we can construct the so-called
Saito–Givental CohFT, which depends nontrivially on the certain special choice
of ζ , a primitive form of Saito. Let Z

W̃ ,ζ
be the partition function of this CohFT.

CY–LG mirror symmetry conjectures that the partition function Z
W̃ ,ζ∞ with

the special choice of the primitive form ζ = ζ∞ coincides with the partition func-
tion of the GW theory of some Calabi–Yau variety X up to probably a linear
change of the variables.

LG–LG mirror symmetry conjectures that the partition function Z
W̃ ,ζ0

with
another special choice of the primitive form ζ = ζ0 coincides with the partition
function of the FJRW theory of some pair (W,Gmax) up to probably a linear
change of the variables, where W :CN → C is some other hypersurface singular-
ity (generally, different from W̃ ).

We say than that the GW theory of X and FRJW theory of (W,Gmax) consti-
tute two mirror A models of the one B model of W̃ , taken in the different phases,
ζ∞ and ζ0. This leads to the following conjecture.

Conjecture 5.4. Let GW theory of X and FJRW theory of (W,Gmax) be two
mirror A models of the same B model. Then there is an upper-triangular Given-
tal’s action R = R(z) such that

R̂ ·ZX (t) = Z(W,Gmax)(t̃(t)),

where t̃ = t̃(t) is a linear change of the variables.

When two mirror symmetry conjectures of type CY–LG and type LG–LG hold,
Conjecture 5.4 is an A side analogue of the following B side conjecture.

Conjecture 5.5. There is an upper-triangular group element of Givental R =
R(z) such that, up to a linear change of variables, the following equation holds:

R̂ ·Z
W̃ ,ζ∞ = Z

W̃ ,ζ0
.
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In the case of simple elliptic singularities, this sort of action was investigated in
[15; 5; 4]. In particular, it was shown in [4] that the SL(2,C)-action of Section 4
has at the same time the meaning of the primitive form change on the B side
and can be written via the certain R-action of Givental. In other words, (4.1) can
be realized as the restriction of the certain action of Givental to the small phase
space.

5.4. CY/LG Correspondence Via Givental’s Action

For any τ, σ ∈C, consider the lower-triangular group element

Sτ (z) = exp

⎛⎜⎝
⎛⎜⎝0 . . . 0

... 0
...

τ . . . 0

⎞⎟⎠ z−1

⎞⎟⎠
and the upper-triangular group element Rσ defined as

Rσ (z) = exp

⎛⎜⎝
⎛⎜⎝0 . . . σ

... 0
...

0 . . . 0

⎞⎟⎠ z

⎞⎟⎠ .

For any c ∈C, we also define the matrix

Sc
0 :=

⎛⎜⎝1 . . . 0
... c · In−2

...

0 . . . c2

⎞⎟⎠ ,

together with an action of Sc
0 on Z(t) (which we denote by Ŝc

0) defined by

t�,α → (Sc
0)

α
β t�,β and h̄ → c2h̄.

Letting � = √
2π/(�( 3

4 ))2 as in Theorem 4.1, define:

τ := −π

2
, σ := − 1

π�2
, c := 1

�
.

We give now the Givental’s action form of the CY/LG correspondence in genus
zero.

Theorem 5.6. Consider the partition functions Z(Ẽ7,Gmax) and ZP
1
4,4,2 . We have:

F (Ẽ7,Gmax)
0 = resh̄ ln(R̂σ · Ŝc

0 · Ŝτ ·ZP
1
4,4,2)

with the Givental’s elements Sτ , Sc
0, and Rσ .

Proof. We can check (cf. [4]) that the action of the theorem induces the action
of Theorem 4.1 on the primary genus 0 potentials. Also, in Theorem 4.1 and
Corollary 5.1 in [4], we see that the theorem holds for the primary potentials. We
only have to take care of the psi-class insertions.

However, in genus zero, all correlators are unambiguously reconstructed from
the small phase space correlators by using the topological recursion relation.
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Hence we can reconstruct these correlators on the LHS from the small phase
space. �

6. Extended FJRW Correlators

In this section, we reformulate FJRW theory to obtain the genus zero potential

F (Ẽ7,Gmax)
0 from a basic CohFT. This method is also used in [7; 6; 18], so we will

be brief. The details can be found in these other articles. In this and the following
sections, we fix W = x4 + y4 + z2 and G = Gmax.

6.1. r-Spin Theory

Let (Ar)g,n denote the moduli space of genus g, n-marked Ar -curves correspond-
ing to the polynomial Ar = xr+1. Such W -structures are often referred to as r-
spin curves. Let (AW)g,n denote the fiber product

(AW)g,n := (A3)g,n ×Mg,n,4 (A3)g,n ×Mg,n,4 (A1)g,n.

Proposition 6.1 ([7]). There is a surjective map

s : (AW)g,n →Wg,n

that is a bijection at the level of a point.

Each factor of (Ar)g,n in the product above is equipped with a universal Ar -
structure. Abusing notation, we denote the universal line bundle over the kth fac-
tor of (AW)g,n also by Lk . By the universal properties of the W -structure on Wg,n

we have s∗Lk
∼= Lk for 1 ≤ k ≤ 3.

Given h = (h1, . . . , hn), let us denote

AW(h)g,n := (A3)g,n(Θ
h1
1 , . . . ,Θ

hn

1 ) ×Mg,n,4 (A3)g,n(Θ
h1
2 , . . . ,Θ

hn

2 )

×Mg,n,4 (A1)g,n(Θ
h1
3 , . . . ,Θ

hn

3 ).

By the projection formula we can pull back to (AW)0,n and obtain the follow-
ing expression for the genus 0 correlators:

〈τa1(φh1), . . . , τan(φhn)〉(Ẽ7,Gmax)
0,n

= 32
∫

AW (h)0,n

n∏
i=1

ψ
ai

i ∪ ctop

(
R1π∗

( 3⊕
i=1

Li

)∨)
.

The factor in front of the integral is the factor in (3.1).
From this description we see that the FJRW theory in this case is a so-called

twisted theory. Thus we can use Givental’s formalism to give an expression for
the generating function of these correlators.
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6.2. Twisted Theory

We will construct a twisted FJRW theory whose correlators coincide with those
of (Ẽ7,Gmax) in genus zero. We first extend the state space

Hext
W,G := HW,G ⊕

⊕
h∈G\Gnar

C · φh.

Any point t ∈ Hext
W,G can be written as t = 1

∑
h∈G thφh. Let ik(h) := 〈Θh

k − qk〉,
where 〈−〉 denotes the fractional part. Notice that ik(h) = 1 − qk exactly when
Θh

k = 0. Set

degW(φh) := 2
3∑

k=1

ik(h).

For h ∈ Gnar, this definition matches the W-degree defined in (2.2).
We extend the definition of our FJRW correlators to include insertions φh in

Hext
W,G. Namely, set

〈τa1(φh1), . . . , τan(φhn)〉(W,G)
0,n = 0

if hi ∈ G \ Gnar for some i.
We would like to unify our definition of the extended FJRW correlators, by

reexpressing them as integrals over (ÃW )0,n, a slight variation of (AW)0,n, where
instead of considering orbifold line bundles, we consider line bundles on the
coarse curve with multiplicities (see the discussion prior to Proposition 2.4). We
will use the following lemma.

Lemma 6.2 ([7]). Let C be a d-stable curve with coarse underlying curve C, and
let M be a line bundle pulled back from C. If l | d , then there is an equivalence
between two categories of lth roots L on d-stable curves:

{L | L⊗l ∼= M} ↔
⊔

0≤E<
∑

lDi

{L | L⊗l ∼= M(−E),multpi
(L) = 0},

where the union is taken over divisors E that are linear combinations of (integer)
divisors Di corresponding to the marked points pi .

Proof. Let p denote the map that forgets stabilizers along the markings. The cor-
respondence is simply L �→ p∗p∗(L). �

Definition 6.3. For m1, . . . ,mn ∈ { 1
4 , 1

2 , 3
4 ,1}, consider the stack Ã3(m1, . . . ,

mn)g,n classifying genus g, n-pointed, 4-stable curves equipped with fourth roots:

Ã3(m1, . . . ,mn)g,n

:=
{
(C,p1, . . . , pn,L, ϕ) | φ : L⊗4 ∼→ ωlog

(
−

n∑
i=1

4miDi

)
,multpi

(L) = 0

}
,

where the integer divisors Di correspond to the markings pi .
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The moduli space Ã3(m1, . . . ,mn)g,n also has a universal curve C → Ã3 and a
universal line bundle L̃. We can define everything similarly for A1 and replace it
with Ã1.

We now define an analogue of (AW)g,n, replacing (A3)g,n with (Ã3)g,n in the
first two factors, and (A1)g,n with (Ã1)g,n. For 1 ≤ i ≤ n, let mi = (m1i , . . . ,m3i )

be a tuple of fractions satisfying m1i ,m2i ∈ { 1
4 , 1

2 , 3
4 ,1} and m3i ∈ { 1

2 ,1}. Let m
denote the 3 × n matrix (m)ki = mki .

Define

ÃW (m)g,n := Ã3(m11, . . . ,m1n)g,n ×Mg,n,4 · · · ×Mg,n,4 Ã1(m31, . . . ,m3n)g,n.

ÃW (m)g,n carries three universal line bundles L̃1, L̃2, L̃3 satisfying

(L̃k)
⊗4 ∼= ωlog

(
−

n∑
i=1

4mkiDi

)
.

The above moduli space yields a uniform way of defining the extended FJRW
correlators for (Ẽ7,Gmax). Given φh1 , . . . , φhn ∈ Hext

W,G, we define the 3 × n ma-
trix

I (h) =
⎛⎜⎝i1(h1) + 1

4 · · · i1(hn) + 1
4

i2(h1) + 1
4 · · · i2(hn) + 1

4

i3(h1) + 1
2 · · · i3(hn) + 1

2

⎞⎟⎠ .

Consider the following proposition.

Proposition 6.4. On ÃW (I (h))0,n, π∗(
⊕3

k=1 L̃k) vanishes, and R1π∗(
⊕3

k=1 L̃k)

is locally free. Furthermore,

〈τa1(φh1), . . . , τan(φhn)〉(Ẽ7,Gmax)
0,n

= 32
∫

ÃW (I (h))0,n

∏
ψ

ai

i ∪ ctop

(
R1π∗

( 3⊕
k=1

L̃k

)∨)
.

Proof. This proof is given in [7] and [18], so we only give an outline. Comparing
A3 and Ã3, we see that if mki ∈ { 1

4 , 1
2 , 3

4 } for all k, i, then h1, . . . , hn ∈ Gnar.
In this case, we can identify Ã4

4(m)g,n with A4
4(m)g,n via Lemma 6.2 and

Rkπ∗(L̃k) = Rkπ∗(Lk).
We must consider the case where hi ∈ G \ Gnar for some i. In this case,

(I (h))ki = 1 for some k. Thus it suffices to prove that if mki = 1 for some i

and k, then π∗(
⊕3

k=1 L̃k) = 0 and ctop(R
1π∗(

⊕3
k=1 L̃k)) = 0.

To do this, assume that mk1 = 1 and consider the integer divisor D1 on
ÃW (m)0,n corresponding to the first marked point. We get the long exact sequence

0 → π∗(L̃k) → π∗(L̃k(D1)) → π∗(L̃k(D1)|D1)

→ R1π∗(L̃k) → R1π∗(L̃k(D1)) → R1π∗(L̃k(D1)|D1) → 0.

As in Lemma 3.5, the first two terms are 0.
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With π∗(L̃k(D1)), there is one alteration. If C is reducible, and v′ cor-
responds to the irreducible component carrying the first marked point, then
deg L̃k(D1)|Cv′ < # nodes(Cv′). However, any section of L̃k(D1) must still van-
ish on all other components of C, and by degree considerations it must therefore
vanish on Cv′ .

R1π∗(L̃k(D1)|D1) also vanishes, so we have

0 → π∗L̃k(D1)|D1 → R1π∗L̃k → R1π∗L̃k(D1) → 0

and

ctop(R
1π∗L̃k) = ctop(π∗L̃k(D1)|D1) · ctop(R

1π∗L̃k(D1)).

However, ctop(π∗L̃k(D1)|D1) = 0 since L̃k(D1)|D1
∼= Lk|D1 is a root of ωlog|D1 ,

which is trivial. Thus ctop(R
1π∗L̃k) = 0 as well. �

We may define a C∗-equivariant generalization of the above theory. This will
allow us to compute correlators which, in the nonequivariant limit coincide with
the genus zero FJRW correlators above. Given a point (C,p1, . . . , pn, L̃1, L̃1, L̃3)

in (ÃW )g,n, let C∗ act on the total space of
⊕3

k=1 L̃k by multiplication of the fiber.
This induces an action on (ÃW )g,n.

Set R = H ∗
C∗(pt,C)[[s0, s1, . . . ]], the ring of power series in the vari-

ables s0, s1, . . . with coefficients in the equivariant cohomology of a point,
H ∗

C∗(pt,C) = C[λ]. Define the multiplicative characteristic class c taking val-
ues in R by

c(E) := exp

(∑
�

s� ch�(E)

)
for E ∈ K∗((ÃW )g,n).

Define the twisted state space

Htw := Hext
W,G ⊗ R ∼=

⊕
h∈G

R · φh

and extend the pairing by

〈φh1 , φh2〉 :=
{

exp(−Nh1s0) if h1 = (h2)
−1,

0 otherwise.

We may also define twisted correlators as follows. Given φh1 , . . . , φhn basis
elements in Htw, define the invariant

〈τa1(φh1), . . . , τan(φhn)〉tw
g,n := 32

∫
ÃW (I (h))g,n

∏
ψ

ai

i ∪ c
(

Rπ∗
( 3⊕

k=1

L̃k

))
taking values in R. We can organize these correlators into generating functions
F tw

g and Z tw as in Section 3.1. It is not clear at first glance that these correlators
come from a CohFT. We will see in the next section, however, that they do indeed.
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6.3. From Twisted Theory to FJRW Theory

Specializing to particular values of s� yields different twisted correlators. One
particularly important specialization is the following. From the partition function
Z tw, if we set

s� =
{

− lnλ if � = 0,

(� − 1)!/λ� otherwise,
(6.1)

then we obtain the (extended) FJRW theory correlators defined above. To see this,
first, consider the following lemma.

Lemma 6.5 ([7, Lemma 4.1.2]). With s� defined as in (6.1), the multiplicative
class c(−V ) = eC∗(V ∨). In particular, the nonequivariant limit λ → 0 yields the
top Chern class of V ∨.

By Proposition 3.5, π∗(
⊕

L̃k) = 0 and c(Rπ∗(L̃k)) = c(−R1π∗(L̃k)). Setting s�
as in (6.1) therefore yields

c
(

Rπ∗
( 3⊕

k=1

L̃3

))
= eC∗

(
R1π∗

( 3⊕
k=1

L̃k

)∨)
.

We have seen in Proposition 6.4 that the FJRW correlators are obtained by the top
Chern class of R1π∗(

⊕3
k=1 L̃k), so we arrive at the following important result

Corollary 6.6. After specializing s� to the values in (6.1),

lim
λ→0

F tw
0 = F (Ẽ7,Gmax)

0 .

7. Computing the R-Matrix

In this section, we begin by describing the so-called “untwisted” theory, which,
as we will see, is equivalent to the product of GW theories of a point, as in Sec-
tion 5.2. From this we will show how to go from this basic theory to the FJRW
theory of the pair (Ẽ7,Gmax), and then using Theorem 5.6, we will obtain the
R-matrix for the GW theory of P4,4,2.

7.1. Untwisted Theory

In addition to the specialization mentioned at the end of the previous section, if
we specialize to s� = 0 for all �, then we obtain the “untwisted” theory. Using the
projection formula, we can push all calculations down to M0,n and obtain (cf.
[7])

〈τa1(φh1) · · · τan(φhn)〉un
0,n := 32

∫
ÃW (I (h))0,n

ψ
a1
1 · · ·ψan

n =
( ∑

i ai

a1, . . . , an

)
whenever the line bundle degree axiom (axiom FJR 2) is satisfied. From the un-
twisted theory we obtain a CohFT. We will denote the generating functions of the
untwisted theory by Fun

g and Zun.
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Recall the function T (m+1) of (5.1). Take m + 1 = |G|. It is then connected to
Fun

0 as follows.

Proposition 7.1. The genus zero potential Fun
0 is obtained from resh̄ lnT (|G|) by

a linear change of the variables.

Proof. We can check explicitly that the function Fun
0 defines a semisimple alge-

bra. It is also quasi-homogeneous, and so we can apply Theorem 5.2. We only
need to show that the upper-triangular group element of that theorem is trivial.

Both functions T (|G|) and Fun
0 are generating functions of the products of the

CohFTs. It is enough by considering the “factors” on the both sides. In particular,
we show that the untwisted theories of A3 and A1 are connected by the linear
changes of the variables to the genus zero potentials of T (4) and T (2), respec-
tively.

Because of the topological recursion relation in genus zero, it is enough to
show this on the small phase space only, namely, on the level of primary poten-
tials. Let F

(KdV ⊗k)
0 and F un⊗r

0 stand for the primary genus zero potential of T (k)

and Ar respectively. We have:

FKdV ⊗4
0 = u3

0

6
+ u3

1

6
+ u3

2

6
+ u3

3

6
.

Using the selection rule, we have:

F un⊗3
0 = 1

2
t0t

2
1 + 1

2
t2
0 t2 + 1

2
t0t

2
3 + 1

6
t3
2 + t1t2t3.

We can check that the desired linear change of the variables is given by u0 =
t0 − t1 + t2 − t3, u1 = t0 + t1 + t2 + t3, u2 = −t0 + t2 − i(t1 − t3), u3 = −t0 + t2 +
i(t1 − t3). �

Recall from Corollary 6.6 that we obtain FJRW theory in genus zero as the
nonequivariant limit of the twisted theory. To obtain the twisted theory, we use
the following proposition. Recall that the Bernoulli polynomials are defined by
the equation

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n! .

Proposition 7.2. Recall the numbers ik(h) and qk from Section 6.2. Consider
the upper-triangular group element Rtw acting diagonally:

Rtw(φh) :=
3∏

k=1

exp

(∑
�≥0

s�
B�+1(ik(h) + qk)

(� + 1)! z�

)
φh.

The action of this upper-triangular group element satisfies

R̂tw ·Zun = Z tw. (7.1)
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Proof. Note first that the identity B�(1 − x) = (−1)�B�(x) implies that Rtw is in
the upper-triangular Givental’s group.

Let the partition functions be written in the variables t�,h = q�,h +δ with h ∈ G

and � ≥ 0. The proof is the same as the proof in [8; 7; 18]. The basic idea is to
consider both sides of (7.1) as functions in the variables s�. Then we show that
both sides satisfy

∂�

∂s�
=

3∑
k=1

P
(k)
� �, (7.2)

where

P
(k)
� = B�+1(qk)

(� + 1)!
∂

∂t�+1,j
−

∑
a≥0
h∈G

B�+1(ik(h) + qk)

(� + 1)! ta,h ∂

∂ta+�,h

+ h̄

2

∑
a+a′=�−1

h,h′∈G

(−1)a
′
ηh,h′ B�+1(ik(h) + qk)

(� + 1)!
∂2

∂ta,h∂ta
′,h′ ,

and ηh,h′
denote the entries of the matrix inverse to the pairing. Since both Z tw

and R̂tw ·Zun satisfy (7.2) and both have the same initial condition (when s� = 0),
they must then be equal.

By the definition of quantization it is clear that R̂tw ·Zun satisfies (7.2).
That Z tw satisfies (7.2) was proven by giving an expression for ch�(Rπ∗(L̃k))

using the Grothendieck–Riemann–Roch theorem. This was done in [8] and gen-
eralized to the extended state space in [7]. �

Consider rGW ∈ Hom(H,H)[z] for H = Hext
Ẽ7,Gmax

given by

rGW(φh) :=
3∑

k=1

∑
�≥0

s�
B�+1(ik(h) + qk)

(� + 1)! z�φh + 1

2

(
�

(
3

4

))4

δhj,idφj.

The following theorem gives a formula for the genus zero potential of the GW
theory of P1

4,4,2.

Theorem 7.3. For the upper-triangular group element RGW := exp(rGW) and
some lower-triangular group element S, we have the following:

FP
1
4,4,2

0 = lim
λ→0

resh̄ ln(Ŝ−1 · R̂GW ·Zun).

Due to Proposition 7.1, the partition function Zun differs from the partition func-
tion T (m+1) by a linear change of the variables, and we get indeed the R-matrix
reconstructing the GW theory of P1

4,4,2 from the product of the GW theories of a
point.
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Proof. Let R̂ := R̂σ and Ŝ := Ŝc
0 · Ŝτ as in Theorem 5.6. By composing Corol-

lary 6.6 and Proposition 7.2 we get:

F (Ẽ7,Gmax)
0 = lim

λ→0
F tw

0 = lim
λ→0

resh̄ ln(R̂tw ·Zun).

From Theorem 5.6 we get:

F (Ẽ7,Gmax)
0 = resh̄ ln(R̂ · Ŝ ·ZP

1
4,4,2).

Note that when considering Givental’s action in genus zero, only the genus
zero correlators of a CohFT given contribute to the Givental-transformed CohFT.
So we can turn this around to obtain

FP
1
4,4,2

0 = resh̄ ln(Ŝ−1 · R̂−1 ·Z(Ẽ7,Gmax)).

Consider the extension of Rσ to the state space Htw. This can be done because
Rσ acts nontrivially only on the vector φj−1 belonging both to HW,G and Htw.

Slightly abusing the notation, we denote by the same letter rσ the operator on
Htw such that rσ (φh) = σδhj,idφj. Also, Rσ = exp(rσ z). It is clear that the action
of the differential operator R̂σ is not affected by the limit as λ → 0. The same is
true for Ŝ−1:

FP
1
4,4,2

0 = lim
λ→0

resh̄ ln(Ŝ−1 · R̂−1 · R̂tw ·Zun).

By comparing the formal power series in h̄ we get:

FP
1
4,4,2

0 = lim
λ→0

resh̄ ln(Ŝ−1 · R̂−1 · R̂tw ·Zun),

= lim
λ→0

resh̄ ln(Ŝ−1 · (R−1Rtw)ˆ ·Zun).

This completes the proof. �

A. Gromov–Witten Potential of P1
4,4,2

To shorten the formulae, let tk := t1,k for 1 ≤ k ≤ 3, tl := t2,l−3 for 4 ≤ l ≤ 6,
t7 := t3,1. Let also t0 correspond to the unit, t8 to the hyperplane class of the
cohomology ring of P1, and let x = x(q), y = y(q), z = z(q), w = w(q) be as
in Section 3.6. Then the following expression for the genus zero GW potential of
P1

4,4,2 was first announced by the first author in [4]:

F
P

1
4,4,2

0 = − (x6 − 5x4y2 − 5x2y4 + y6)

4,128,768
(t8

3 + t8
6 )

+ xy(x4 + 14x2y2 + y4)

294,912
t2
3 t2

6 (t4
3 + t4

6 ) + z(8x4 + 8y4 + 19z4)

294,912
t3
6 t7t

3
3

+ x(x2 + y2)2

73,728
(t2t

6
3 + t5t

6
6 ) + y(x2 + y2)2

73,728
(t6

3 t5 + t2t
6
6 )

+ 5x2y2(x2 + y2)

73,728
t4
6 t4

3 − (x4 − 6x2y2 + y4)

30,720
(t1t

5
3 + t4t

5
6 )
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− (x4 − 3x2y2)

3,072
(t2

2 t4
3 + t2

5 t4
6 ) + (3x2y2 − y4)

3,072
(t4

3 t2
5 + t2

2 t4
6 )

+ xyz(x2 + y2)

6,144
t3t6(t

4
3 + t4

6 )t7 + x2y(x2 + 4y2)

6,144
t2
3 t2

6 (t2t
2
3 + t5t

2
6 )

+ xy2(4x2 + y2)

6,144
t2
3 t2

6 (t2
3 t5 + t2t

2
6 )

+ xy(x2 + y2)

1,536
(t2

3 t2
6 (t1t3 + t4t6) + t2t5(t

4
3 + t4

6 ))

+ x2y2

1,536
t3t6(t

3
3 t4 + t1t

3
6 ) + xz(x2 + 7y2)

1,536
t3t6t7(t

2
3 t5 + t2t

2
6 )

+ yz(7x2 + y2)

1,536
t3t6t7(t2t

2
3 + t5t

2
6 ) + xy(x2 + y2)

512
t2
3 t2

6 (t2
2 + t2

5 )

+ x2y2

384
(t4

3 + t4
6 )t2

7 + x(x2 + y2)

384
(t1t2t

3
3 + t4t5t

3
6 )

+ y(x2 + y2)

384
(t1t

3
3 t5 + t2t4t

3
6 ) + (x2 + y2)z

384
t7(t

3
3 t4 + t1t

3
6 )

+ x3

384
(t3

2 t2
3 + t3

5 t2
6 ) + y3

384
(t2

3 t3
5 + t3

2 t2
6 ) − (3w − x2 + 2y2)

384
(t4

2 + t4
5 )

+ xy2

128
t2t5(t

2
3 t5 + t2t

2
6 ) + x2y

128
t2t5(t2t

2
3 + t5t

2
6 ) + x2y2

128
t2t5t

2
6 t2

3

+ xy(x2 + y2)

128
t2
6 t2

7 t2
3 + (2x2 − y2 − 3w)

96
t4
7

+ xy2

64
t3t6(t2t3t4 + t1t5t6) + x2y

64
t3t6(t3t4t5 + t1t2t6)

+ xyz

192
t3t6t7(3t2

2 + 3t1t3 + 3t2
5 + 3t4t6 + 4t2

7 ) + z(x2 + y2)

64
t2t5t6t7t3

− (w − x2)

64
(2t2

5 t2
7 + t2

2 t2
5 + 2t2

2 t2
7 ) − (2w − x2 + y2)

64
(t2

1 t2
3 + t2

4 t2
6 )

+ xy2

32
(t2t

2
7 t2

3 + t5t
2
6 t2

7 ) + x2y

32
(t5t

2
7 t2

3 + t2t
2
6 t2

7 )

+ xy

32
(2t1t2t5t3 + t2

1 t2
6 + t2

4 t2
3 ) − w

32
(t4t

2
5 t6 + t1t

2
2 t3)

+ (x2 − y2 − w)

32
(t1t

2
5 t3 + t2

2 t4t6)

− (w − x2)

16
(t1t

2
7 t3 + t1t4t6t3 + t4t6t

2
7 ) + xy

16
t2t5(t4t6 + 2t2

7 )

+ xz

16
t7(t2t4t3 + t1t5t6) + yz

16
t7(t3t4t5 + t1t2t6) + x

8
(t2

1 t2 + t2
4 t5)

+ y

8
(t2t

2
4 + t2

1 t5) + z

4
t1t4t7
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+ 1

8
t0(t

2
2 + t2

5 + 2t2
7 + 2t1t3 + 2t4t6) + 1

2
t2
0 t8.
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(Ẽ7,Gmax) by our methods, we were informed that Shen and Zhou had inde-
pendently developed a systematic proof for the CY/LG correspondence for all
simple elliptic singularities via the use of modular forms [20]. We are grateful to
Shen and Zhou for the email conversations and also for sharing the draft versions
of our respective texts between us.

References

[1] D. Abramovich, Lectures on Gromov–Witten invariants of orbifolds, Lecture Notes
in Math., 1947, Springer, 2008.

[2] A. Basalaev, Orbifold GW theory as the Hurwitz–Frobenius submanifold, J. Geom.
Phys. 77 (2014), 30–42.

[3] , SL(2,C)-action on cohomological field theories and Gromov–Witten theory
of elliptic orbifolds, Oberwolfach reports 12 (2015), no. 2, 1201–1254.

[4] , SL(2,C) group action on Cohomological field theories, Lett. Math. Phys.
108 (2018), no. 1, 161–183.

[5] A. Basalaev and A. Takahashi, On rational Frobenius manifolds of rank three with
symmetries, J. Geom. Phys. 84 (2014), 73–84.

[6] A. Chiodo, H. Iritani, and Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence,
global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci.
119 (2014), no. 1, 127–216.

[7] A. Chiodo and Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic
three-folds via symplectic transformations, Invent. Math. 182 (2010), 117–165.

[8] A. Chiodo and D. Zvonkine, Twisted Gromov–Witten r-spin potential and Givental’s
quantization, Adv. Theor. Math. Phys. 13 (2009), no. 5, 1335–1369.

[9] H. Fan, T. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry and quantum
singularity theory, Ann. of Math. 178 (2013), 1–106.

[10] , The Witten equation and its virtual fundamental cycle, preprint, 2007,
arXiv:0712.4025.

[11] A. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians,
Mosc. Math. J. 1 (2001), 551–568.

[12] M. Kontsevich and Yu. Manin, Gromov–Witten classes, quantum cohomology, and
enumerative geometry, Comm. Math. Phys. 164 (1994), 525–562.

[13] M. Krawitz and Y. Shen, Landau-Ginzburg/Calabi–Yau correspondence of all genera
for elliptic orbifold P1, preprint, 2011, arXiv:1106.6270.

[14] Y.-P. Lee, Notes on axiomatic Gromov-Witten theory and applications, Proc. Sympos.
Pure Math., 80, Part 1, Amer. Math. Soc., 2005. 309–323.

[15] T. Milanov and Y. Ruan, Gromov–Witten theory of elliptic orbifold P1 and quasi-
modular forms, preprint, 2011, arXiv:1106.2321.

http://arxiv.org/abs/arXiv:0712.4025
http://arxiv.org/abs/arXiv:1106.6270
http://arxiv.org/abs/arXiv:1106.2321


Givental-Type Reconstruction at a Nonsemisimple Point 369

[16] T. Milanov and Y. Shen, Global mirror symmetry for invertible simple elliptic singu-
larities, preprint, 2012, arXiv:1210.6862.

[17] R. Pandharipande, A. Pixton, and D. Zvonkine, Relations on Mg,n via 3-spin struc-
tures, J. Amer. Math. Soc. 28 (2015), 279–309.

[18] N. Priddis and M. Shoemaker, A Landau–Ginzburg/Calabi–Yau correspondence for
the mirror quintic, Ann. Inst. Fouriers. 66 (2016), no. 3, 1045–1091.

[19] Y. Shen and J. Zhou, Ramanujan identities and quasi-modularity in Gromov–Witten
theory, Commun. Number Theory Phys. 11 (2017), no. 2, 405–452.

[20] , LG/CY correspondence for elliptic orbifold curves via modularity, preprint,
2016, arXiv:1603.02660.

[21] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012),
525–588.

[22] D. Zagier, Elliptic modular forms and their applications, 1–2–3 modul. forms, pp. 1–
103, Springer Universitext, 2008.

A. Basalaev
Universität Mannheim
Lehrsthul für Mathematik VI
Seminargebäude A 5, 6
68131 Mannheim
Germany

Current address
Skolkovo Institute of Science
and Technology,
Moscow, Russian Federation

a.basalaev@skoltech.ru

N. Priddis
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
Germany

priddis@math.uni-hannover.de

http://arxiv.org/abs/arXiv:1210.6862
http://arxiv.org/abs/arXiv:1603.02660
mailto:a.basalaev@skoltech.ru
mailto:priddis@math.uni-hannover.de

	Introduction
	Classiﬁcation
	Calabi-Yau/Landau-Ginzburg Correspondence
	Organization of the Paper

	Deﬁnition of FJRW Theory
	State Space
	Moduli of W-Curves
	Axioms of FJRW Theory

	Cohomological Field Theories on  Mg, n  
	Cohomological Field Theory Axioms
	CohFT of FJRW Theory and Gromov-Witten Theory
	Reconstruction in Genus Zero
	FJRW Correlators for E7
	Gromov-Witten Theory of Elliptic Orbifolds
	GW Theory of P14,4,2

	CY/LG Correspondence Via Modularity
	Group Action in the Formal Variable
	Group Action Via the Modular Forms
	Proof of Theorem 4.1

	Givental's Action and CY/LG Correspondence
	Iniﬁnitesimal Version of Givental's Action
	R-Matrix of a CohFT
	Mirror Symmetry and CY/LG Correspondence
	CY/LG Correspondence Via Givental's Action

	Extended FJRW Correlators
	r-Spin Theory
	Twisted Theory
	From Twisted Theory to FJRW Theory

	Computing the R-Matrix
	Untwisted Theory

	Gromov-Witten Potential of P14,4,2
	Acknowledgments
	References
	Author's Addresses

