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A Skoda-Type Integrability Theorem for Singular
Monge–Ampère Measures

Lucas Kaufmann

Abstract. Let ϕ be a plurisubharmonic function defined on an open
subset of Cn. We give a sufficient condition for the local integrabil-
ity of e−ϕ with respect to a Monge–Ampère measure with Hölder-
continuous potential μ = (ddcu)n. This condition is expressed in
terms of the Lelong numbers of ϕ and the Hölder exponent of u.

1. Introduction and Main Result

Let � be an open subset of C
n. Recall that a function ϕ : � → R ∪ {−∞} is

plurisubharmonic (p.s.h. for short) if ϕ is upper semicontinuous, not identically
−∞ in some connected component of �, and if for every complex line L ⊂ C

n,
the function ϕ|�∩L is either subharmonic in � ∩ L or identically −∞.

The Lelong number of ϕ at a ∈ � can be defined as

ν(ϕ;a) := lim inf
z→a,z �=a

ϕ(z)

log |z − a| ,

and it somewhat measures the singularity of ϕ at a. This number can be character-
ized as ν(ϕ;a) = sup{γ : ϕ(z) ≤ γ log |z − a| + O(1) as z → a} and is one of the
most basic quantities associated with the pole of ϕ at a. The function z 
→ ν(ϕ; z)
is upper semicontinuous with respect to the usual topology, and a deep theorem
of Siu [Siu74] states that this function is also upper semicontinuous with respect
to the Zariski topology, that is, for every c > 0, the set {a ∈ �;ν(ϕ, a) ≥ c} is a
closed analytic subvariety of �. For further properties and equivalent definitions
of the Lelong number, the reader may consult [Dem] and [Hör07].

Another way of measuring the singularity of a p.s.h. function at a point was
introduced by Demailly and Kollár [DK01] (see also [Tia87]) as a tool to study
several types of algebraic and analytic objects, such as holomorphic functions,
divisors, coherent ideal sheaves, positive closed currents, and so on. They define
the integrability index of ϕ at a by

c(ϕ;a) = sup{c ≥ 0 : e−2cϕ is Lebesgue integrable in a neighborhood of a}.
A classical theorem of Skoda [Sko72] states that if ν(ϕ;a) < 2, then e−ϕ is

integrable in a neighborhood of a with respect to the Lebesgue measure. In terms
of the quantities defined, this translates as c(ϕ;a) ≥ ν(ϕ;a)−1. In the other direc-
tion, we also have c(ϕ;a) ≤ nν(ϕ;a)−1.
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The aim of this paper is to give a generalization of Skoda’s integrability theo-
rem with the Lebesgue measure replaced by a general Monge–Ampère mass with
a Hölder-continuous local potential (see Section 2.1 for the definition and some
examples). This class of measures is important in many applications of pluripo-
tential theory to complex geometry and dynamics and has been the topic of recent
research. The reader may consult [DN14] for a complete characterization of these
measures and [DDG+14] for some of its properties.

Theorem 1.1. Let 0 < α ≤ 1, let u be an α-Hölder continuous p.s.h. function in
the domain � ⊂ C

n, and let z ∈ �. If ϕ is a p.s.h. function in � and if ν(ϕ; z) <
2α

α+n(2−α)
, then there is a neighborhood K ⊂ � of z such that the integral∫

K

e−ϕ(ddcu)n

is finite. In other words, e−ϕ is locally integrable in U := {ξ ∈ �;ν(ϕ; ξ) <
2α

α+n(2−α)
} with respect to the positive measure (ddcu)n.

As a corollary, we obtain an estimate of the mass of the measure μ = (ddcu)n over
the sublevel sets of a p.s.h. function. In the particular case where μ is the Lebesgue
measure, this kind of estimate is useful in applications to complex geometry and
dynamics; see Corollary 4.3.

The proof of Theorem 1.1 is inspired by the methods of [DNS10] and consists
of approximating u by smooth potentials uε and applying successive integration
by parts in order to replace (ddcu)n with (ddcuε)

n. At each step, we use Skoda’s
theorem in the form of an estimate of the volume of the sublevel sets of ϕ due
to Kiselman and the Dinh–Nguyên–Sibony theorem stating that Monge–Ampère
measures with Hölder-continuous potentials are locally moderate.

2. Preliminaries

2.1. Monge–Ampère Measures with Hölder-Continuous Potentials

Let X be a complex manifold of dimension n. Recall that a k-current on X is a
continuous linear form on the space of compactly supported differential forms of
degree (2n − k). Such objects generalize k-forms with coefficients in L1

loc and
submanifolds of real codimension k. For the basic theory of currents in complex
manifolds, see [Dem].

The existence of a complex structure implies, by duality, that every k-current
decomposes as a sum of (p, q)-currents with p + q = k. It is a remarkable fact
that real currents of type (p,p) carry a notion of positivity (see [Dem; Lel98]).
Examples of positive currents include Kähler forms (p = 1), currents of integra-
tion along complex submanifolds of X, and positive measures (p = n).

The operators ∂ , ∂̄ , d, and dc = i
2π

(∂̄ − ∂) extend to currents by duality, and
the ddc-Poincaré lemma states that every positive closed (1,1)-current T can be
written locally as T = ddcu where u is a p.s.h. function, called a local potential
of T .
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If T is a positive closed current and u is a locally bounded p.s.h. function, then
the current uT is well defined, and the product (or intersection) current ddcu ∧ T

can be defined by the formula

ddcu ∧ T
def= ddc(uT ).

We may then define the product S∧T when S is a positive closed (1,1)-current
with bounded local potential: just write S = ddcu locally and use the last formula.
We note however that the wedge product of general currents is not always well
defined.

By induction the product ddcu1 ∧ · · · ∧ ddcup is well defined for every locally
bounded p.s.h. functions u1, . . . , up . In particular, if u is a locally bounded p.s.h.
function, then the current (ddcu)n is well defined. It is a positive measure called
the Monge–Ampère measure associated with u. See [Kli91] or the original paper
[BT82] for some basic properties of the Monge–Ampère operator u 
→ (ddcu)n.

Let now � be a domain in C
n, and let u be an α-Hölder continuous p.s.h.

function on � for some 0 < α ≤ 1. From the previous discussion we can define
the positive measure

μ = (ddcu)n.

We call such a measure a Monge–Ampère measure with Hölder-continuous
potential.

Example 2.1. Measures that are absolutely continuous with respect to the
Lebesgue measure with a density in Lp for some p > 1 are examples of Monge–
Ampère measures with Hölder-continuous potential.

More precisely, let � be a bounded strongly pseudoconvex domain of C
n.

Denote by λ2n the Lebesgue measure on Cn. Let φ ∈ C1,1(∂�) and f ∈ Lp(�).
By a result of Guedj, Zeriahi, and Kolodziej [GKZ08] the Dirichlet problem{

(ddcu)n = f λ2n in �,

u = φ on ∂�

admits a unique solution u ∈ PSH(�) ∩ C0(�) which is α-Hölder continuous
on �. The exponent α is explicit in terms of p and n. For a global counterpart of
this result, see [DDG+14].

Example 2.2. Let f : Pk → P
k be a holomorphic endomorphism of degree d ≥ 2.

Let T be its Green current, and μ = T k be its Green measure (see [DS10] for the
definitions). The current T has Hölder-continuous local potentials. Therefore μ

locally is a Monge–Ampère measure with Hölder-continuous potential.

In the proof of Theorem 1.1, we will need the following simple regularization
result, which can be proved using standard convolution with a cut-off function.
We denote by Br the ball of radius r centered at the origin of Cn.

Lemma 2.3. Let r > 0, and let u be an α-Hölder-continuous p.s.h. function in
Br for some 0 < α ≤ 1. Fix ρ > 0 such that ρ < r . Then, for every ε > 0 suffi-
ciently small, there are a smooth p.s.h. function uε defined on Br−ρ and constants
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c1, c2 > 0 independent of ε such that

‖u − uε‖L∞(Br−ρ) ≤ c1ε
α and ‖uε‖C2(Br−ρ) ≤ c2ε

α−2.

2.2. Locally Moderate Currents

We now introduce the notion of a locally moderate current, which is the main
tool in the proof of the Theorem 1.1. Recall that the set of all p.s.h. functions in
X is closed in the space L1

loc(X) and that every family of p.s.h. functions that
is bounded in L1

loc(X) is relatively compact in L1
loc(X) (see Theorem 3.2.12 in

[Hör07]). For simplicity, such a family is called a compact family.
The concept of locally moderate measures was introduced by Dinh and Sibony

[DS06] and is very useful in the study of complex dynamical systems (see also
[DS10]).

Definition 2.4. A measure μ on a complex manifold X is called locally moder-
ate if for any open set U ⊂ X, any compact set K ⊂ U , and any compact family
F of p.s.h. functions on U , there are constants β > 0 and C > 0 such that∫

K

e−βψ dμ ≤ C for every ψ ∈ F .

It follows immediately from the definition that, for any F and μ as in the defini-
tion, F is bounded in L

p

loc(μ) for 1 ≤ p < ∞ and μ does not charge pluripolar
sets.

A positive closed current S of type (p,p) on X is said to be locally moderate
if the trace measure σS = S ∧ ωn−p is locally moderate. Here n = dimX, and ω

is the fundamental form of a fixed Hermitian metric on X.

Theorem 2.5 (Dinh, Nguyên, and Sibony [DNS10]). If 1 ≤ p ≤ n and u1, . . . , up

are Hölder-continuous p.s.h. functions on X, then the Monge–Ampère current
ddcu1 ∧ · · · ∧ ddcup is locally moderate.

This result says, in particular, that measures of the form μ = (ddcu)n with a
Hölder-continuous p.s.h. function u are locally moderate. It seems interesting
to know whether the converse is true, that is, whether every locally moderate
measure is locally of the form μ = (ddcu)n for some Hölder-continuous p.s.h.
function u. The answer is positive whenever the measure μ is smooth outside a
finite set and, around these singular points, it has radial or toric symmetries; see
[DDG+14].

3. Proof of the Integrability Theorem

This section is devoted to the proof of Theorem 1.1 and some related results.
We first state two lemmas used in the proof of Theorem 2.5 that will also be

useful for us. We denote by Br the ball of radius r centered at the origin of Cn

and fix a Hermitian form ω as before.
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Lemma 3.1 ([DNS10]). Let S be a locally moderate positive closed current of
type (n − 1, n − 1) on Br . If G is a compact family of p.s.h. functions on Br , then
G is bounded in L1

loc(σS). Moreover, the masses of the measures ddcϕ ∧ S, ϕ ∈ G,
are locally bounded in Br uniformly for ϕ.

Proof. Let K be a compact subset of Br . After subtracting a fixed constant, we
may assume that every element of G is negative on K . Since σS is locally mod-
erate, we can choose β,C > 0 such that

∫
K

e−βϕ dσS ≤ C for every ϕ ∈ G. We
thus have

∫
K

β|ϕ|dσS ≤ ∫
K

e−βϕ dσS ≤ C for every ϕ ∈ G, which proves the first
assertion.

For the second assertion, let K be a compact subset of Br and consider a cut-
off function χ that is equal to 1 in a neighborhood of K and is supported on a
larger compact L ⊂ Br . We have, for ϕ ∈ G,∫

K

ddcϕ ∧ S ≤
∫

L

χddcϕ ∧ S =
∫

L

ddcχ ∧ ϕS ≤ ‖χ‖C2

∫
L

|ϕ|dσS,

which is uniformly bounded by the first part of the lemma. �

Lemma 3.2 ([DNS10]). Let r > 0, S be a locally moderate positive closed current
of type (n − 1, n − 1) on B2r , and u be an α-Hölder-continuous p.s.h. function
on Br that is smooth on Br \ Br−4ρ for some 0 < ρ < r/4. Fix a smooth cut-off
function χ with compact support in Br−ρ , 0 ≤ χ ≤ 1, and χ ≡ 1 on Br−2ρ .

If ϕ is a p.s.h. function on B2r , then∫
Br

χϕddc(uS) = −
∫

Br\Br−3ρ

ddcχ ∧ ϕuS −
∫

Br\Br−3ρ

dχ ∧ ϕdcu ∧ S

+
∫

Br\Br−3ρ

dcχ ∧ ϕdu ∧ S +
∫

Br−ρ

χuddcϕ ∧ S.

Notice that the smoothness of u in Br \Br−4ρ makes the second and third integrals
in the right-hand side meaningful.

Idea of the proof. The case where ϕ is smooth follows from a direct computation
using integration by parts. The general case follows by approximating ϕ by a
decreasing sequence of smooth p.s.h. functions. See [DNS10] for the complete
proof. �

We also need a volume estimate of the sublevel sets of p.s.h. functions obtained
by Kiselman [Kis00]. We include Kiselman’s argument here for the the reader’s
convenience.

Lemma 3.3 ([Kis00]). Let ϕ be a p.s.h. function on an open set � ⊂ C
n, and

K ⊂ � be a compact subset. Then, for every γ < 2/ supz∈K ν(ϕ; z), there is a con-
stant Cγ = Cγ (ϕ,�,K) such that

λ2n(K ∩ {ϕ ≤ −M}) ≤ Cγ e−γM, M ∈ R,

where λ2n denotes the Lebesgue measure in C
n.
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Proof. Since eγ (−M−ϕ) ≥ 1 on K ∩ {ϕ ≤ −M}, we have

λ2n(K ∩ {ϕ ≤ −M}) ≤
∫

K

eγ (−M−ϕ(z)) dλ2n(z) = e−γM

∫
K

e−γϕ dλ2n.

It suffices then to take Cγ = ∫
K

e−γϕ dλ2n, which is finite by Skoda’s theorem
since ν(γ ϕ; z) < 2 for every z ∈ K . �

Before getting to the proof of Theorem 1.1, we need the following simple exten-
sion of the second part of Lemma 3.1.

Lemma 3.4. Let 1 ≤ p ≤ n, and let S be a locally moderate positive closed current
of type (n−p−1, n−p−1) on Br . If G is a compact family of p.s.h. functions on
Br and H is a locally uniformly bounded family of p.s.h. functions on Br , then the
masses of the measures ddcϕ ∧ (ddcu)p ∧ S, ϕ ∈ G, u ∈ H, are locally bounded
in Br uniformly in ϕ and u.

Proof. Fix a compact subset K of Br and let L0 = K , L1, . . . ,Lp be compact
subsets of Br such that Li is contained in the interior of Li+1. Let χi , i = 1, . . . , p,
be smooth cut-off functions such that 0 ≤ χi ≤ 1, χi ≡ 1 in Li−1, and χi is sup-
ported in Li . Then, for ϕ ∈ G and u ∈ H, the mass of ddcϕ ∧ (ddcu)p ∧ S over K

is bounded by∫
L1

χ1ddcϕ ∧ (ddcu)p ∧ S

=
∫

L1

u(ddcχ1) ∧ ddcϕ ∧ (ddcu)p−1 ∧ S

≤ ‖χ1‖C2‖u‖L∞(L1)

∫
L1

ddcϕ ∧ (ddcu)p−1 ∧ S ∧ ω

≤ ‖χ1‖C2‖u‖L∞(L1)

∫
L2

χ2ddcϕ ∧ (ddcu)p−1 ∧ S ∧ ω

= ‖χ1‖C2‖u‖L∞(L1)

∫
L2

uddcχ2 ∧ ddcϕ ∧ (ddcu)p−2 ∧ S ∧ ω

≤ ‖χ1‖C2‖χ2‖C2‖u‖L∞(L1)‖u‖L∞(L2)

∫
L2

ddcϕ ∧ (ddcu)p−2 ∧ S ∧ ω2

≤ · · ·
≤ ‖χ1‖C2 · · · ‖χp‖C2‖u‖L∞(L1) · · · ‖u‖L∞(Lp)

∫
Lp

ddcϕ ∧ S ∧ ωp,

where ω = ddc‖z‖2 is the standard fundamental form on C
n. The result now

follows from Lemma 3.1 and the fact that ‖u‖L∞(Li) is bounded independently
of u. �

Proof of Theorem 1.1. There is no loss of generality in assuming that z = 0. Since
ϕ is locally bounded from above, we may also assume that ϕ is negative. As
before, ω = ddc‖z‖2.
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The proof is inspired by the methods in [DNS10, Theorem 1.1]. It consists
of successive applications of integration-by-parts formulas (Lemma 3.2) together
with a regularization procedure.

For N > 0, define ϕN = max{ϕ,−N} and ψN = ϕN−1 − ϕN . Notice that 0 ≤
ψN ≤ 1, ψN is supported in {ϕ < −N + 1}, and ψN ≡ 1 in {ϕ < −N}.

Observe that∫
e−ϕ(ddcu)n =

∞∑
N=0

∫
{−N≤ϕ<−N+1}

e−ϕ(ddcu)n

≤
∞∑

N=0

eN

∫
{−N≤ϕ<−N+1}

(ddcu)n

≤
∞∑

N=0

eN

∫
ψN−1(ddcu)n. (3.1)

By the hypothesis that ν(ϕ;0) < 2α
α+n(2−α)

and the upper semicontinuity of the

function z 
→ ν(ϕ; z) there is r > 0 such that supz∈B2r
ν(ϕ, z) ≤ 2α

α+n(2−α)
−σ for

a small constant σ > 0. From Lemma 3.3 we get that

λ2n(B2r ∩ {ϕ ≤ −N + 1}) � e−((α+n(2−α))/α+δ)N = e−(1+δ)Ne−(n(2−α)/α)N ,

(3.2)
where δ > 0 is a small constant (depending on ϕ). Here and in what follows, the
symbol � means that the left-hand side is smaller than or equal to a constant times
the right-hand side, the constant being independent from N .

Taking a smaller r if necessary, we may assume that u is defined on B2r .
Subtracting a constant, we may assume that u ≤ −1. Consider the function
v(z) = max(u(z),A log‖z‖). Choosing A > 0 sufficiently small, we see that v

coincides with u near the origin and that v(z) = A log‖z‖ near the boundary of
Br . This allows us to assume that u(z) = A log‖z‖ on Br \ Br−4ρ for some fixed
ρ < r/4. Notice that, in particular, u is smooth on Br \ Br−4ρ .

Fix a smooth cut-off function χ with compact support in Br−ρ , 0 ≤ χ ≤ 1, and
χ ≡ 1 on Br−2ρ . Applying Lemma 3.2 to ψN−1 and (ddcu)n−1 and noticing that
(ddcu)n = ddc(u(ddcu)n−1), we get∫

Br

χψN−1(ddcu)n = −
∫

Br\Br−3ρ

ddcχ ∧ ψN−1u(ddcu)n−1

−
∫

Br\B1−3ρ

dχ ∧ ψN−1dcu ∧ (ddcu)n−1

+
∫

Br\Br−3ρ

dcχ ∧ ψN−1du ∧ (ddcu)n−1

+
∫

Br−ρ

χuddcψN−1 ∧ (ddcu)n−1. (3.3)

Observing that u is smooth in Br \ Br−3ρ and that the support of ψN−1
is contained in {ϕ ≤ −N + 1} and using the volume estimate (3.2), we get
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that the absolute values of the first three integrals on the right-hand side are
≤ c1e

−(1+δ)Ne−(n(2−α)/α)N , where c1 > 0 does not depend on N .
For N ≥ 1, set ε = ε(N) = e−(1/α+c)N , where 0 < c < δ

n(2−α)
. Using

Lemma 2.3, we can find, for N large, a regularization uε of u defined on Br−ρ

such that

‖u − uε‖∞ � εα = e−(1+cα)N and ‖uε‖C2 := ‖uε‖C2(Br−ρ) � εα−2.

Writing u = uε + (u − uε), the last integral in (3.3) is equal to∫
Br−ρ

χuεddcψN−1 ∧ (ddcu)n−1 +
∫

Br−ρ

χ(u − uε)ddcψN−1 ∧ (ddcu)n−1.

Since {ϕN }N≥0 is a compact family of p.s.h. functions and since the current
(ddcu)n−1 is locally moderate (Theorem 2.5), we see from Lemma 3.1 that the
absolute value of the second integral is less than c2‖u − uε‖∞ ≤ c′

2e
−(1+cα)N ,

where c′
2 > 0 does not depend on N .

To deal with the remaining integral, we apply Lemma 3.2 for uε instead of u.
Noticing that ddc(uε ∧ (ddcu)n−1) = ddcuε ∧ (ddcu)n−1, we get∫

Br−ρ

χuεddcψN−1 ∧ (ddcu)n−1 =
∫

Br\Br−3ρ

ddcχ ∧ ψN−1uε(ddcu)n−1

+
∫

Br\Br−3ρ

dχ ∧ ψN−1dcuε ∧ (ddcu)n−1

−
∫

Br\Br−3ρ

dcχ ∧ ψN−1duε ∧ (ddcu)n−1

+
∫

Br

χψN−1ddcuε ∧ (ddcu)n−1.

Since u(z) = A log‖z‖ on Br \ Br−4ρ , the C2 norm of uε on Br \ Br−3ρ does
not depend on ε = ε(N). Together with the volume estimate (3.2), this implies
that the first three integrals in the right-hand side have absolute values less than
c3e

−(1+δ)Ne−(n(2−α)/α)N , where c3 > 0 does not depend on N .
For the last integral, we write ddcuε ∧ (ddcu)n−1 = ddc(u(ddcuε ∧ (ddcu)n−2)

and apply Lemma 3.2 for S = ddcuε ∧ (ddcu)n−2. This gives us four integrals.
Three of them are integrals over Br \Br−3ρ involving u, uε , ψN−1, and its deriva-
tives. As before, the absolute values of all them are � e−(1+δ)Ne−(n(2−α)/α)N . The
remaining integral is∫

Br−ρ

χuddcψN−1 ∧ ddcuε ∧ (ddcu)n−2,

which we write again as∫
Br−ρ

χuεddcψN−1 ∧ ddcuε ∧ (ddcu)n−2

+
∫

Br−ρ

χ(u − uε)ddcψN−1 ∧ ddcuε ∧ (ddcu)n−2. (3.4)
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Since uε converges to u in L∞, Lemma 3.4 implies that the masses of
ddcψN−1 ∧ ddcuε ∧ (ddcu)n−2 are bounded independently of N and ε. There-
fore, the modulus of the second integral is less than c4‖u− uε‖∞ ≤ c′

4e
−(1+cα)N ,

where c′
4 > 0 does not depend on N .

To deal with the the first integral in (3.4), we apply Lemma 3.2, obtaining three
integrals over Br \ Br−3ρ with absolute values � e−(1+δ)Ne−(n(2−α)/α)N and the
integral ∫

Br−ρ

χψN−1(ddcuε)
2 ∧ (ddcu)n−2.

We can repeat the procedure in order “move” the ddc’s from u to uε . At
each step, we get integrals with absolute values � e−(1+δ)Ne−(n(2−α)/α)N or
� e−(1+cα)N (where the constants involved do not depend on N ), and, at the final
step, we get the integral ∫

Br−ρ

χψN−1(ddcuε)
n

of absolute value less than

c5‖uε‖n
C2 · λ2n(Br ∩ {ϕ ≤ −N + 1}) ≤ c′

5ε
n(α−2)e−(1+δ)Ne−(n(2−α)/α)N

= c′
5e

(cn(2−α)−(1+δ))N

with c′
5 independent from N .

Altogether these estimates yield∫
Br−ρ

χψN−1(ddcu)n � e−(1+δ)Ne−(n(2−α)/α)N +e−(1+cα)N +e(cn(2−α)−(1+δ))N .

Inserting these estimates into (3.1), we finally get∫
Br

e−ϕ(ddcu)n

�
∞∑

N=0

eN [e−(1+δ)Ne−(n(2−α)/α)N + e−(1+cα)N + e(cn(2−α)−(1+δ))N ]

=
∞∑

N=0

[e−δN−(n(2−α)/α)N + e−cαN + e(cn(2−α)−δ)N ].

By the choice of c all the factors of N in the exponentials are negative, so the
series converges, and hence the integral

∫
e−ϕ(ddcu)n is finite. �

Remark 3.5. Using the same kind of computation as in the proof, we can ob-
tain an analogous result for mixed Monge–Ampère masses of the type ddcu1 ∧
· · · ∧ ddcun. We can show that if all uj are αj -Hölder-continuous p.s.h. functions
(0 < αj ≤ 1), then the integral∫

e−ϕddcu1 ∧ · · · ∧ ddcun

is locally finite in the set of points z ∈ � satisfying ν(ϕ; z) < 2
1−n+2(1/α1+···+1/αn)

.
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4. Related Results and Examples

We now give some results related to Theorem 1.1 and study some concrete exam-
ples.

A theorem of Zeriahi [Zer01] improves Kiselman’s result (Lemma 3.3) by
making the volume estimates of the sets K ∩ {ϕ ≤ −M} uniform in ϕ when these
vary in a compact family of p.s.h. functions. Using this fact we can prove a uni-
form version of Theorem 1.1. The proof follows from Zeriahi’s result and the fact
that for a compact family of p.s.h. functions F , the family {ϕN : ϕ ∈ F ,N ∈ N}
is again compact, where ϕN = max{ϕ,−N}. I would like to thank A. Zerahi for
bringing [Zer01] to my attention and for raising the question of the uniform bound
provided by the following extension of Theorem 1.1.

Theorem 4.1. Let �, 0 < α ≤ 1, and u be as in Theorem 1.1. Let F be a compact
family of p.s.h. functions in �, and K ⊂ � a compact subset. Set ν

.= sup{ν(ϕ; z) :
z ∈ K,ϕ ∈ F}. If ν < 2α

α+n(2−α)
, then there are a neighborhood E of K and a

constant C > 0 such that ∫
E

e−ϕ(ddcu)n ≤ C

for every ϕ ∈F .

Remark 4.2. Let �, u, F , and K be as before and set μ = (ddcu)n. Since μ is
locally moderate (Theorem 2.5), there are constants β > 0 and C > 0 such that∫
K

e−βψ dμ ≤ C for every ψ ∈ F . The theorem allows us to estimate the value
of the constant β in terms of α and the Lelong numbers of the functions of F
over K .

From Theorem 1.1 and a computation analogous to that the proof of Lemma 3.3
there follows an estimate of the mass of the sublevel sets of p.s.h. functions with
respect to Monge–Ampère measures with Hölder-continuous potential. Informa-
tion about the size of sublevel sets of p.s.h. functions in terms of measures and
capacities is useful in many applications (see [Koł98; Kis00; FG01; FJ03; Taf11]).
As before, this estimate can be made uniform in ϕ as long as these vary in a com-
pact family.

Corollary 4.3. Let ϕ be a p.s.h. function on an open set � ⊂ C
n, and

μ = (ddcu)n a Monge–Ampère mass on � with u an α-Hölder continuous p.s.h.
function. If K ⊂ � is a compact subset, then for every γ < 2α

α+n(2−α)
1

supz∈K ν(ϕ;z) ,
there is a constant Cγ = Cγ (ϕ,�,K) such that

μ(K ∩ {ϕ ≤ −M}) ≤ Cγ e−γM, M ∈R.

Another theorem of Skoda concerns the nonintegrability of a p.s.h. function
with large Lelong number: if ν(ϕ;0) > 2n, then e−ϕ is not integrable in any
neighborhood of the origin with respect to the Lebesgue measure (see [Hör07,
Lemma 4.3.1]). We cannot hope for a similar result with respect to every
Monge–Ampère measure with Hölder-continuous potential because the measure
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μ = (ddcu)n can be arbitrarily small near 0 (and even zero), making the integral∫
e−ϕ dμ finite. We may note however the following fact.

Proposition 4.4. Fix 0 < α ≤ 1. There exists a Monge–Ampère mass μ =
(ddcu)n where u is an α-Hölderian p.s.h. function such that, for every p.s.h. func-
tion ϕ defined near 0 with ν(ϕ;0) > nα, we have

∫
K

e−ϕ dμ = +∞ for every
neighborhood K of the origin.

Proof. Let γ = ν(ϕ;0) > nα. Since ϕ(z) ≤ γ log‖z‖ + O(1) near 0 (see
Introduction), we have that e−ϕ(z) ≥ C 1

‖z‖γ ≥ C 1
‖z‖nα . If we take u(z) = ‖z‖α ,

then a direct computation shows that (ddcu)n = Cst‖z‖n(α−2) ·λ2n in the sense of
currents. We thus have∫

e−ϕ(ddcu)n ≥ Cst

∫
1

‖z‖nα

1

‖z‖n(2−α)
dλ2n = Cst

∫
1

‖z‖2n
dλ2n,

and the last integral diverges in any neighborhood of the origin. �

Remark 4.5. For n = 1, the condition on the Lelong number of ϕ in the hypoth-
esis of Theorem 1.1 is ν(ϕ; z) < α. This bound is sharp as Proposition 4.4 shows.

Remark 4.6. For n ≥ 2, the condition ν(ϕ; z) < 2α
α+n(2−α)

in Theorem 1.1 is
probably no longer optimal, as the following example suggests.

Let 0 < α ≤ 1 and c > 0. Consider the potential u(z) = |z1|α + · · · + |zn|α and
the p.s.h. function ϕ(z) = c log |z1| defined on Cn. We then have that

(ddcu)n = n!
(

α

2

)2n

|z1|α−2 · · · |zn|α−2 · λ2n

as measures on C
n. Notice that this expression makes sense since

|z1|α−2 · · · |zn|α−2 ∈ L1
loc(C

n) for α > 0.
We thus have∫

B1

e−ϕ(ddcu)n = n!
(

α

2

)2n ∫
B1

1

|z1|c |z1|α−2 · · · |zn|α−2 dλ2n

= n!
(

α

2

)2n ∫
B1

1

|z1|c−α+2
|z2|α−2 · · · |zn|α−2 dλ2n,

which is finite if and only if ν(ϕ;0) = c < α.

Let us finish with some other examples where the critical integrability exponents
can be explicitly computed.

Example 4.7 (Haar measure on the real torus). Consider the function u(z) =
log+ |z1| + · · · + log+ |zn| in C

n. It is a Lipschitz p.s.h. function, and (ddcu)n =
μHaar is the Haar measure on the n-dimensional torus T

n = {|z1| = · · · =
|zn| = 1} = {(eθ1, . . . , eθn) : θj ∈ [−π,π]}. Theorem 1.1 states that the integral∫

e−ϕ dμHaar near a point a is finite as long as ν(ϕ;a) < 2
1+n

.
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Let p = (1, . . . ,1) and consider the p.s.h. function ψ(z) = c log |z1 − 1|. Its
restriction to T

n is given by ψ(θ1, . . . , θn) = c log |eiθ1 − 1|, so that
∫

e−ψ dμHaar =
∫

dθ1 · · ·dθn

|eiθ1 − 1|c =
∫

dθ1 · · ·dθn

2c sin(θ1/2)c
,

which is finite if and only if ν(ϕ;p) = c < 1.

Example 4.8. Consider the function u(z,w) = |z|(1 + |w|2) in C
2. It is a Lip-

schitz continuous p.s.h. function, and the associated Monge–Ampère measure
μ = (ddcu)2 is a multiple of the Lebesgue measure in C

2, so the critical exponents
in this case are given by Skoda’s theorem. In other words, the integral

∫
e−ϕ dμ

converges around a if ν(ϕ;a) < 2 and diverges if ν(ϕ;a) > 4.

Example 4.9. There are even less regular p.s.h. functions whose associated
Monge–Ampère measures are smooth. A particular case of the following example
can be found in [BD11]. In Cn, write z = (z′, z′′) with z′ ∈ Cn−k and z′′ ∈ Ck for
some 1 ≤ k ≤ n − 1. Consider the function

uk(z) = ‖z′‖2−2(k/n)(1 + ‖z′′‖2).

Then uk is a continuous p.s.h. function in C
n (because logu is p.s.h.), and

(ddcuk)
n = cn,k(1 + ‖z′′‖2)n−k−1λ2n,

where cn,k is some positive constant. Since μk = (ddcuk)
n is absolutely continu-

ous with respect to λ2n with a smooth density function, the critical exponents for
μk are the same as those for λ2n, that is, the integral

∫
e−ϕ dμk converges around

a if ν(ϕ;a) < 2, and it diverges if ν(ϕ;a) > 2n. Notice that, for k > n
2 , the func-

tion uk is Hölder continuous with an exponent strictly smaller than 1. I would like
to thank S. Dinew for bringing this example to my attention.

Example 4.10 (Lebesgue measure on the unit sphere). Consider the function
u(z) = log+ ‖z‖ in C

n. It is a Lipschitz p.s.h. function whose associated Monge–
Ampère measure μ = (ddcu)n is the Lebesgue measure on the unit sphere
S2n−1 = {‖z‖ = 1}.

Consider the function ψ(z) = c log |z1| = c log dist(z,H), where H =
{z1 = 0}. We claim that e−ψ is integrable in a neighborhood of q = (0, . . . ,0,1) if
and only if ν(ψ;q) = c < 2. Notice that � = H ∩ S2n−1 is a sphere of dimension
2n − 3 passing through q . The restriction of the function dist(·,H) to a neigh-
borhood of q in S2n−1 is comparable to dist(·,�), where the later is the distance
with respect to the standard Riemannian metric on S2n−1. Choosing local (real)
coordinates in S2n−1 around q , we reduce the problem to study the integrability
of the function ρ = 1/dist(·,V )c in a neighborhood of the origin in R

2n−1, where
V is a linear subspace of dimension 2n − 3. It is not hard to check that such a ρ

is integrable if and only if c < 2. This proves the claim.
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