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Chern–Ricci Invariance Along G-Geodesics

Nefton Pali

Abstract. Over a compact oriented manifold, the space of Riemann-
ian metrics and normalized positive volume forms admits a natural
pseudo-Riemannian metric G, which is useful for the study of Perel-
man’s W functional. We show that if the initial speed of a G-geodesic
is G-orthogonal to the tangent space to the orbit of the initial point
under the action of the diffeomorphism group, then this property is
preserved along all points of the G-geodesic. We show also that this
property implies preservation of the Chern–Ricci form along such G-
geodesics under the extra assumption of complex antiinvariant initial
metric variation and vanishing of the Nijenhuis tensor along the G-
geodesic.

1. Statement of the Invariance Result

We consider the space M of smooth Riemannian metrics over a compact ori-
ented manifold X of dimension m. We denote by V1 the space of positive smooth
volume forms with integral one. Notice that the tangent space of M× V1 is

TM×V1 = C∞(X,S2T ∗
X) ⊕ C∞(X,�mT ∗

X)0,

where C∞(X,�mT ∗
X)0 := {V ∈ C∞(X,�mT ∗

X) | ∫
X

V = 0}. We denote by
Endg(TX) the bundle of g-symmetric endomorphisms of TX and by C∞

� (X,R)0
the space of smooth functions with zero integral with respect to �. We will use
the fact that, for any (g,�) ∈ M × V1, the tangent space TM×V1,(g,�) identifies
with C∞(X,Endg(TX)) ⊕ C∞

� (X,R)0 via the isomorphism

(v,V ) �−→ (v∗
g,V ∗

�) := (g−1v,V/�).

In [Pal4], we consider the pseudo-Riemannian metric G over M × V1, defined
over any point (g,�) ∈M× V1 by the formula

Gg,�(u,U ;v,V ) =
∫

X

[〈u,v〉g − 2U∗
�V ∗

�]�
for all (u,U), (v,V ) ∈ TM×V1 . The gradient flow of Perelman’s W-functional
[Per] with respect to the structure G is a modification of the Ricci flow with
relevant properties (see [Pal4; Pal5]). The G-geodesics exists only for short time
intervals (−ε, ε). This is because the G-geodesics are uniquely determined by
the evolution of the volume forms and the latter degenerate in finite time (see
Section 2). In [Pal4], we show that the space G-orthogonal to the tangent of the
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orbit of a point (g,�) ∈ M × V1 under the action of the identity component of
the diffeomorphism group is

Fg,� := {(v,V ) ∈ TM×V1 | ∇∗�
g v∗

g + ∇gV
∗
� = 0},

where ∇∗�
g denotes the adjoint of the Levi–Civita connection with respect to the

volume form �. In this paper, we show the following conservative property.

Proposition 1. Let (gt ,�t )t∈(−ε,ε) ⊂ M × V1 be a G-geodesic such that
(ġ0, �̇0) ∈ Fg0,�0 . Then (ġt , �̇t ) ∈ Fgt ,�t for all t ∈ (−ε, ε).

We consider now a compact symplectic manifold (X,ω), and we denote by J ac
ω

the space of smooth almost complex structures compatible with the symplectic
form ω. We notice that the variations inside the space of metrics Mac

ω := −ω ·
J ac

ω ⊂ M, at a point g = −ωJ , are J -antiinvariant. Thus, in this setup, it is natural
to consider the subspace

F
J
g,� := {(v,V ) ∈ Fg,� | v = −J ∗vJ }.

With these notations, we state the following result.

Theorem 1 (Main result. The invariance of the Chern–Ricci form). Let (X,J0,

g0) be a compact almost-Kähler manifold with symplectic form ω := g0J0. Then,
for any G-geodesic (gt ,�t )t∈(−ε,ε) ⊂ M × V1 with initial speed (ġ0, �̇0) ∈
F

J0
g0,�0

, we have that Jt := −ω−1gt ∈ J ac
ω and (ġt , �̇t ) ∈ F

Jt

gt ,�t
. Moreover, if

the Nijenhuis tensor vanishes identically along the G-geodesic, then RicJt (�t ) =
RicJ0(�0) for all t ∈ (−ε, ε).

Our unique interest in this result concerns the Fano case ω = RicJ0(�0). In this
case the space of ω-compatible complex (integrable) structures Jω embeds nat-
urally inside M × V1 via the Chern–Ricci form. (This is possible thanks to the
∂∂̄-lemma). The image of this embedding is

Sω := {(g,�) ∈ Mω × V1 | ω = RicJ (�), J = −ω−1g}
with Mω := −ω ·Jω ⊂ M. It is well known that the J -antilinear endomorphism
sections associated with the metric-variations in Mω at a point g = −ωJ are
∂TX,J

-closed. Thus, in the integrable setup, it is natural to consider the subspace

F
J
g,�[0] := {(v,V ) ∈ F

J
g,� | ∂TX,J

v∗
g = 0}.

It has been showed in [Pal4] that this is the space G-orthogonal to the tangent to
the orbit of the point (g,�) ∈ Sω under the action of the identity component of the
ω-symplectomorphism group. (See the identity 1.14 in [Pal4].) Furthermore, the
product Gg,� is positive over FJ

g,�[0] thanks to a result in [Pal4]. We conjecture
the following slice-type result.

Conjecture 1. Let (X,J ) be a Fano manifold, and let ω ∈ 2πc1(X) be a Käh-
ler form. Then the distribution (g,�) ∈ Sω �−→ F

J
g,�[0] with J := −ω−1g is
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integrable over the space Sω, with leave at the point (g,�) given locally, in a
neighborhood of this point, by �ω

g,� := {(γ,μ) ∈ ExpG(FJ
g,�) | ∇γ ω = 0}.

We invite the reader to compare with [F-S] for other approaches concerning slice-
type problems in the space of compatible complex structures. In view of the results
in Section 9 of [Pal4], the solution of this conjecture is crucial for the proof of the
dynamical stability of the Soliton–Kähler–Ricci flow [Pal7].

An important ingredient for the proof of the main Theorem 1 is the general
variation formula (4.1). Particular cases of this variation formula have been inten-
sively studied. See [Fu; Do; Mo; Ga; Pal3]. These formulas allow us to establish
an important moment map picture in Kähler-geometry. See [Fu] for the integrable
case and [Do] for the almost complex case. In the last section, we provide a for-
mula relating the Bakry–Emery–Ricci tensor with the Chern–Ricci form.

2. Pure Evolving Volume Nature of the G-Geodesic Equation

We recall that the equation of a G-geodesic (gt ,�t )t∈(−ε,ε) (see [Pal4]) rewrites
in the form

(S)

{
d
dt

ġ∗
t + �̇∗

t ġ
∗
t = 0,

�̈t + 1
4 {|ġt |2gt

− 2(�̇∗
t )

2 − ∫
X
[|ġt |2gt

− 2(�̇∗
t )

2]�t }�t = 0.

The invariance of the scalar product of the speed of geodesics implies

Gt := Ggt ,�t (ġt , �̇t ; ġt , �̇t ) ≡ Gg0,�0(ġ0, �̇0; ġ0, �̇0).

Therefore a solution of system (S) also satisfies

(S1)

{
d
dt

ġ∗
t + �̇∗

t ġ
∗
t = 0,

�̈t + 1
4 [|ġt |2gt

− 2(�̇∗
t )

2 − G0]�t = 0.

The first equation in system (S1) rewrites as

ġ∗
t = �0

�t

ġ∗
0 ,

which provides the expression

gt = g0 exp

(
ġ∗

0

∫ t

0

�0

�s

ds

)
.

We set ut := �t/�0 and observe the trivial identities

|ġt |2gt
= TrR(ġ∗

t )2 = u−2
t |ġ0|2g0

,

�̇∗
t = u̇t /ut .
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We deduce that system (S1) is equivalent to the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gt = g0 exp(ġ∗
0

∫ t

0 u−1
s ds),

�t = ut�0,

4üt + |ġ0|2g0
−2u̇2

t

ut
− utG0 = 0,

u0 = 1,∫
X

u̇0�0 = 0.

The solution u is given by the explicit formula

ut = 1 + u̇0

∑
k≥0

(G0/2)k

(2k + 1)! t
2k+1 − 1

4
N0

∑
k≥1

(G0/2)k−1

(2k)! t2k,

N0 := N0 − G0,

N0 := |ġ0|2g0
− 2(�̇∗

0)
2.

Thus the solution (gt ,�t )t∈(−ε,ε) of system (S1) satisfies
∫
X

�t ≡ 1. This implies
Gt ≡ G0. We infer that system (S1) is equivalent to system (S).

In the case G0 > 0, the previous formula for ut reduces to the expression

ut = 1 + �̇∗
0γ

−1
0 sinh(γ0t) − N0(2γ0)

−2[cosh(γ0t) − 1]
with γ0 := (G0/2)1/2.

3. Conservative Properties Along G-Geodesics

In this section, we show Proposition 1.

Proof of Proposition 1. We first recall the fundamental variation formula

2[(Dg,�∇∗•• )(v,V )]v∗
g = 1

2
∇g|v|2g − 2v∗

g · (∇∗�
g v∗

g + ∇gV
∗
�), (3.1)

obtained in [Pal6] (see the formula (19) in [Pal6]). Using (3.1), we develop the
derivative

2
d

dt
(∇∗�t

gt
ġ∗

t + ∇gt �̇
∗
t ) = −2ġ∗

t · (∇∗�t
gt

ġ∗
t + ∇gt �̇

∗
t ) + 1

2
∇gt |ġt |2gt

+ 2∇∗�t
gt

d

dt
ġ∗

t + 2∇gt

d

dt
�̇∗

t − 2ġ∗
t · ∇gt �̇

∗
t .

Writing the equations defining the G-geodesic (gt ,�t )t∈(−ε,ε) in the form{
d
dt

ġ∗
t + �̇∗

t ġ
∗
t = 0,

2 d
dt

�̇∗
t + (�̇∗

t )
2 + 1

2 |ġt |2gt
− 1

2Ggt ,�t (ġt , �̇t ; ġt , �̇t ) = 0,

we infer

2
d

dt
(∇∗�t

gt
ġ∗

t + ∇gt �̇
∗
t ) = −2ġ∗

t · (∇∗�t
gt

ġ∗
t + ∇gt �̇

∗
t )

− 2∇∗�t
gt

(�̇∗
t ġ

∗
t ) − ∇gt (�̇

∗
t )

2 − 2ġ∗
t · ∇gt �̇

∗
t ,
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and thus

2
d

dt
(∇∗�t

gt
ġ∗

t + ∇gt �̇
∗
t ) = −2(ġ∗

t + �̇∗
t I) · (∇∗�t

gt
ġ∗

t + ∇gt �̇
∗
t ).

Then the conclusion follows by Cauchy’s uniqueness. �

Let J ⊂ C∞(X,EndR(TX)) be the set of smooth almost complex structures
over X. For any nondegenerate closed 2-form ω over a symplectic manifold, we
define the space J ac

ω of ω-compatible almost complex structures as

J ac
ω := {J ∈ J | −ωJ ∈ M}.

With these notations, we have the following result.

Lemma 1. Let J0 ∈ J ac
ω , and let (gt ,�t )t∈(−ε,ε) ⊂ M × V1 be a G-geodesic

such that g0 = −ωJ0 and ġ∗
0J0 = −J0ġ

∗
0 . Then Jt := −ω−1gt ∈ J ac

ω for all t ∈
(−ε, ε).

Proof. Using the identity J̇t = Jt ġ
∗
t and the G-geodesic equation

d

dt
ġ∗

t + �̇∗
t ġ

∗
t = 0,

we obtain the variation formula
d

dt
(Jt ġ

∗
t + ġ∗

t Jt ) = (Jt ġ
∗
t + ġ∗

t Jt ) · (ġ∗
t − �̇∗

t I).

This implies ġ∗
t Jt = −Jt ġ

∗
t for all t ∈ (−ε, ε), by Cauchy’s uniqueness. We de-

duce in particular the evolution identity 2J̇t = [Jt , ġ
∗
t ]. Then J 2

t = −ITX
, thanks

to Lemma 4 in [Pal2]. We infer the required conclusion. �

4. The First Variation of the �-Chern–Ricci Form

Let (X,J ) be an almost complex manifold. Any volume form � > 0 induces a
Hermitian metric h� over the canonical bundle KX,J := �

n,0
J T ∗

X , which is given
by the formula

h�(α,β) := n!in2
α ∧ β

�
.

We define the �-Chern–Ricci form

RicJ (�) := −iCh�(KX,J ),

where Ch(F ) denotes the Chern curvature of a Hermitian vector bundle (F, ∂F ,h)

equipped with a (0,1)-type connection. Consider also a J -invariant Hermitian
metric ω over X. We recall that the ω-Chern-=Ricci form is defined by the formula

RicJ (ω) := TrC[JCω(TX,J )].
The fact that the metric hωn over KX,J is induced by the metric ω over TX,J

implies, by natural functorial properties, the identity RicJ (ω) = RicJ (ωn). Let
now

KS := {(J, g) ∈ J ×M | g = J ∗gJ,∇gJ = 0}
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be the space of Kähler structures over a compact manifold X. We recall that if A ∈
EndR(TX), then its transposed AT

g with respect to g is given by AT
g = g−1A∗g.

We observe that the compatibility condition g = J ∗gJ is equivalent to the condi-
tion J T

g = −J . We define also the space of almost Kähler structures as

AKS := {(J, g) ∈ J ×M | g = J ∗gJ, d(gJ ) = 0}.
With these notations, we have the following first variation formula for the �-
Chern–Ricci form. (Compare with [Fu; Do; Mo; Ga; Pal3].)

Proposition 2. Let (Jt , gt )t ⊂ AKS and (�t )t ⊂ V be two smooth paths such
that J̇t = (J̇t )

T
gt

. Then we have the first variation formula

2
d

dt
RicJt (�t ) = L

Jt∇∗�t
gt J̇t−∇gt �̇

∗
t

ωt (4.1)

with ωt = gtJt .

Proof. Step I. Local expressions. We first consider the case of constant volume
form �. We recall a general basic identity. Let (L, ∂L,h) be a Hermitian line
bundle equipped with a (0,1)-type connection over an almost complex manifold
(X,J ), and let DL,h = ∂L,h + ∂L be the induced Chern connection. In explicit
terms, ∂L,h := h−1 · ∂L∗ · h. We observe that, for any local nonvanishing section
σ ∈ C∞(U,L� 0) over an open set U ⊂ X, we have the identity

σ−1∂L,hσ (η) = |σ |−2
h h(∂L,hσ (η), σ )

= |σ |−2
h [η1,0

J .|σ |2h − h(σ, ∂Lσ(η))]
= η

1,0
J . log |σ |2h − σ−1∂Lσ(η)

for all η ∈ TX ⊗R C. We infer the formula

iσ−1DL,hσ = i∂J log |σ |2h + 2�e(iσ−1∂Lσ).

In the case L = KX,Jt := �
n,0
Jt

T ∗
X and h ≡ h�, for all

βt = β
1,0
1,t ∧ · · · ∧ β

1,0
n,t ∈ C∞(U,KX,Jt � 0)

with β
1,0
r,t := β

1,0
r,Jt

, βr ∈ C∞(U,T ∗
X ⊗R C), r = 1, . . . , n, we get the formula for

the 1-form αt :

αt := iβ−1
t DKX,Jt ,h�βt = i∂Jt log

in
2
βt ∧ β̄t

�
+ 2�e(iβ−1

t ∂KX,Jt
βt ).

We also notice the local expression RicJt (�) = −iCh�(KX,Jt ) = −dαt . To ex-
pand the time derivative of the expression

αt (η) = iη
1,0
Jt

. log
in

2
βt ∧ β̄t

�

+ 2�e

[
iβ−1

t

n∑
r=1

β
1,0
1,t ∧ · · · ∧ (η

0,1
Jt

¬∂Jt β
1,0
r,t ) ∧ · · · ∧ β

1,0
n,t

]
,
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we first observe the formula

2
d

dt
(∂Jt β

1,0
Jt

) = Jt J̇t¬[(d − 2∂Jt )β
1,0
Jt

] − i[d(β · J̇t )]1,1
Jt

. (4.2)

We notice indeed that, for bidegree reasons, we have the identity

2∂Jt β
1,0
Jt

= 2(dβ
1,0
Jt

)
1,1
Jt

= dβ
1,0
Jt

+ J ∗
t dβ

1,0
Jt

Jt .

Then, time deriving the latter, we infer the required formula (4.2).
Step II. Local choices. We fix an arbitrary time τ . We want to compute the

time derivative α̇τ (η). We take a relatively compact open set U ⊂ X. Then, for a
sufficiently small ε > 0, the bundle map

ϕt := det
C

π
1,0
Jt

: �n,0
Jτ

T ∗
U −→ �

n,0
Jt

T ∗
U ,

β1 ∧ · · · ∧ βn �−→ βt := β
1,0
1,t ∧ · · · ∧ β

1,0
n,t

is an isomorphism for all t ∈ (τ − ε, τ + ε). For notational simplicity, we set
Dt := DKX,Jt ,h� . We also consider the connection Dϕt := ϕ∗

t Dt over the bundle

�
n,0
Jτ

T ∗
U . Explicitly, Dϕt β = ϕ−1

t Dtβt . Then the expression Dtβt = αt ⊗ βt im-
plies Dϕt β = αt ⊗ β . We deduce that

α̇t = d

dt
Dϕt

is independent of the choice of β . We want to compute α̇τ at an arbitrary point
p ∈ U .

Step IIa. The Kähler case. (We consider this case first since it is drastically sim-
pler.) Let ∇gτ be the Levi–Civita connection of gτ . Using parallel transport and
the Kähler assumption ∇gτ Jτ = 0, we can construct (up to shrinking U around p),
a frame (βr)

n
r=1 ⊂ C∞(U,�

1,0
Jτ

T ∗
U) satisfying ∇gτ βr (p) = 0 for all r = 1, . . . , n,

and the identity

ωτ = i

2

n∑
r=1

βr ∧ β̄r

over U . Then dVgτ = 2−nin
2
βτ ∧ β̄τ . We now set fτ := log dVgτ

�
. The identity

dβr = Alt∇gτ βr implies dβr(p) = 0. Then formula (4.2) implies the following
identity at the point p:

2
d

dt |t=τ
(∂Jt β

1,0
r,t ) = −iβr (∇TX,gτ J̇τ )

1,1
Jτ

= −iβr Alt(∇1,0
gτ ,Jτ

J̇τ ).

(The last equality follows from the Kähler assumption.) We deduce

η
0,1
Jτ

¬2
d

dt |t=τ
(∂Jt β

1,0
r,t ) = iβr∇1,0

gτ ,Jτ
J̇τ · η0,1

Jτ
= iβr∇1,0

gτ ,Jτ
J̇τ · η
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at the point p. (The last equality follows also from the Kähler assumption.) Using
this last identity, we obtain the following expression at the point p:

α̇τ (η) = 1

2
J̇τ η.fτ + η

1,0
Jτ

.�e

(
β−1

τ

n∑
r=1

β1 ∧ · · · ∧ (βr J̇τ )
1,0
Jτ

∧ · · · ∧ βn

)

− �e

(
β−1

τ

n∑
r=1

β1 ∧ · · · ∧ βr∇1,0
gτ ,Jτ

J̇τ · η ∧ · · · ∧ βn

)

= −1

2
(TrR ∇gτ J̇τ − dfτ · J̇τ )(η),

thanks to the elementary identities (βr J̇τ )
1,0
Jτ

= 0, TrC A = TrC A∗, and TrR B =
2�e(TrC B

1,0
J ) for all B ∈ EndR(TX). Using now the symmetry identities J̇τ =

(J̇τ )
T
gτ

and ∇gτ ,ξ J̇τ = (∇gτ ,ξ J̇τ )
T
gτ

, we obtain

2α̇τ = ∇∗�
gτ

J̇τ¬gτ

over U . We conclude, thanks to the Kähler condition and Cartan’s identity, the
required formula for arbitrary time t in the case of constant volume form.

Step IIb. The almost Kähler case. We first recall that, in this case, we have the
classical identity

g(∇g,ξ J · η,μ) = −2g(J ξ,NJ (η,μ)), (4.3)

where NJ is the Nijenhuis tensor defined by the formula

4NJ (ξ, η) := [ξ, η] + J [ξ, Jη] + J [Jξ, η] − [Jξ, Jη].
Identity (4.3), combined with the identity NJ (Jη,μ) = −JNJ (η,μ), implies

∇g,J ξ J = −J∇g,ξ J. (4.4)

We also consider the Chern connection Dω

�
1,0
J T ∗

X

of the complex vector bundle

�
1,0
J T ∗

X with respect to the Hermitian product

〈α,β〉ω := 1

2
Trω(iα ∧ β̄).

This connection is obviously the dual of the Chern connection D
ωτ

T
1,0
X,J

of the Her-

mitian vector bundle (T
1,0
X,J ,ω). We denote by Dω

TX,J
the Chern connection of

(TX,J ,ω). By abuse of notation, we denote with the same symbol its complex
linear extension over TX ⊗R C. The latter satisfies the formula

Dω
TX,J

ξ = Dω

T
1,0
X,J

ξ
1,0
J + Dω

T
1,0
X,J

ξ
0,1
J , ∀ξ ∈ C∞(X,TX ⊗R C).

In the almost Kähler case, Dω
TX,J

is related to the Levi–Civita connection ∇g (see
[Pal1] and use identity (4.3)) via the formula

Dω
TX,J ,ξ η = ∇g,ξ η − 1

2
J∇g,ξ J · η (4.5)
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for all ξ, η ∈ C∞(X,TX ⊗R C). Thus

Dω

T
1,0
X,J

ξ
1,0
J = ∇gξ

1,0
J − 1

2
J∇gJ · ξ1,0

J

and

Dω

�
1,0
J T ∗

X

β
1,0
J · ξ1,0

J = ∇gβ
1,0
J · ξ1,0

J + 1

2
iβ

1,0
J · ∇gJ · ξ1,0

J

= ∇gβ
1,0
J · ξ1,0

J

since ∇gJ ·J = −J∇gJ . We now apply these considerations to the almost Kähler
structure (Jτ , gτ ). Using parallel transport, we can construct a complex frame
(βr)

n
r=1 ⊂ C∞(U,�

1,0
Jτ

T ∗
U) satisfying D

ωτ

�
1,0
Jτ

T ∗
X

βr(p) = 0 for all r = 1, . . . , n and

the identity

ωτ = i

2

n∑
r=1

βr ∧ β̄r

over U . Then, as before, we have the identity dVgτ = 2−nin
2
βτ ∧ β̄τ . We infer

∂Jτ βr(p) = 0, (4.6)

(∇gτ βr · ξ1,0
Jτ

)(p) = 0, (4.7)

∂Jτ βr(p) = 0 (4.8)

for all r = 1, . . . , n. The last equality follows from the elementary identities

∂Jτ βr(ξ, η) = dβr(ξ, η) = ∇gτ ,ξ βr · η − ∇gτ ,ηβr · ξ
for all ξ, η ∈ C∞(X,T

1,0
X,Jτ

). We observe now that formula (4.2) writes as

2
d

dt
(∂Jt β

1,0
Jt

) = Jt J̇t¬[(∂Jt − ∂Jt )β
1,0
Jt

− β
1,0
Jt

· NJt ] − i[d(β · J̇t )]1,1
Jt

.

Thus, at the point p, we have the identity

2
d

dt |t=τ
(∂Jt β

1,0
r,t )(η

0,1
Jτ

,μ) = −βr · NJτ (η
0,1
Jτ

, Jτ J̇τμ)

− i[d(βr · J̇τ )]1,1
Jτ

(η
0,1
Jτ

,μ)

= iβr · NJτ (η, J̇τμ)

− i d(βr · J̇τ )(η
0,1
Jτ

,μ
1,0
Jτ

).

For notational simplicity, we set η0,1
τ := η

0,1
Jτ

, μ1,0
τ := μ

1,0
Jτ

, and we observe the
expansion

d(βr · J̇τ )(η
0,1
τ ,μ1,0

τ ) = ∇
gτ ,η

0,1
τ

βr · J̇τμ
1,0
τ + βr · ∇

gτ ,η
0,1
τ

J̇τ · μ1,0
τ

− ∇
gτ ,μ

1,0
τ

βr · J̇τ η
0,1
τ − βr · ∇

gτ ,μ
1,0
τ

J̇τ · η0,1
τ .

We also notice the trivial identity βr · J̇τμ
1,0
τ = βr · (J̇τμ)

0,1
Jτ

= 0 over U . Taking
a covariant derivative of this, we infer

0 = ∇
gτ ,η

0,1
τ

βr · J̇τμ
1,0
τ + βr · ∇

gτ ,η
0,1
τ

J̇τ · μ1,0
τ + βr · J̇τ∇gτ ,η

0,1
τ

μ1,0
τ .
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Identity (4.4) implies

∇
gτ ,η

0,1
τ

μ1,0
τ =

(
∇

gτ ,η
0,1
τ

μ − i

2
∇gτ ,ηJ · μ

)1,0

Jτ

.

Thus

βr · J̇τ∇gτ ,η
0,1
τ

μτ = βr ·
[
J̇τ

(
∇

gτ ,η
0,1
τ

μ − i

2
∇gτ ,ηJ · μ

)]0,1

Jτ

= 0

and
d(βr · J̇τ )(η

0,1
τ ,μ1,0

τ ) = −βr · ∇
gτ ,μ

1,0
τ

J̇τ · η0,1
τ (4.9)

at the point p since

∇
gτ ,μ

1,0
τ

βr · J̇τ η
0,1
τ = ∇

gτ ,μ
1,0
τ

βr · (J̇τ η)
1,0
Jτ

= 0

at p thanks to (4.7). Taking a covariant derivative of the identity

J̇τ Jτ + Jτ J̇τ = 0,

we obtain
∇gτ J̇τ Jτ + J̇τ∇gτ Jτ + ∇gτ Jτ J̇τ + Jτ∇gτ J̇τ = 0,

and thus

2βr · ∇
gτ ,μ

1,0
τ

J̇τ · η0,1
τ = 2βr · (∇

gτ ,μ
1,0
τ

J̇τ · η)
1,0
Jτ

− iβr · (J̇τ∇gτ ,μ
1,0
τ

Jτ + ∇
gτ ,μ

1,0
τ

Jτ J̇τ )η

= 2βr · ∇
gτ ,μ

1,0
τ

J̇τ · η − iβr · J̇τ∇gτ ,μJτ · η
thanks to (4.4) and the fact that βr is of type (1,0) with respect to Jτ . We deduce

−i d(βr · J̇τ )(η
0,1
τ ,μ1,0

τ ) = iβr ·
(

∇1,0
gτ ,Jτ ,μJ̇τ − 1

2
Jτ J̇τ∇gτ ,μJτ

)
η

thanks to (4.9), and thus

η
0,1
Jτ

¬2
d

dt |t=τ
(∂Jt β

1,0
r,t ) = iβr · NJτ (η, J̇τ•)

+ iβr ·
(

∇1,0
gτ ,Jτ

J̇τ − 1

2
Jτ J̇τ∇gτ Jτ

)
η. (4.10)

Using (4.6) and (4.10), we obtain

2α̇τ (η) = J̇τ η.fτ

+ 2�e

{
iβ−1

τ

n∑
l=1

β1 ∧ · · · ∧
[
η

0,1
Jτ

¬2
d

dt |t=τ
(∂Jt β

1,0
l,t )

]
∧ · · · ∧ βn

}

= dfτ · J̇τ η

− 2�e TrC

[
NJτ (η, J̇τ•) +

(
∇1,0

gτ ,Jτ
J̇τ − 1

2
Jτ J̇τ∇gτ Jτ

)
η

]

= dfτ · J̇τ η − TrR

[
NJτ (η, J̇τ•) +

(
∇gτ J̇τ − 1

2
Jτ J̇τ∇gτ Jτ

)
η

]
.
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We now show the identity

2 TrR[NJτ (η, J̇τ•)] = TrR(Jτ J̇τ∇gτ Jτ · η). (4.11)

Indeed, let (ek)
2n
k=1 ⊂ TX,p be a gτ (p)-orthonormal basis. Using (4.3), (4.4), and

the symmetry assumption J̇τ = (J̇τ )
T
gτ

, we obtain

2g(ek,NJτ (η, J̇τ ek)) = g(∇gτ ,Jτ ek
Jτ · η, J̇τ ek)

= −g(J̇τ Jτ∇gτ ,ek
Jτ · η, ek)

= g(Jτ J̇τ∇gτ ,ek
Jτ · η, ek)

and thus the required identity (4.11). We infer the formula

2α̇τ (η) = −TrR(∇gτ J̇τ · η) + dfτ · J̇τ η

over U . Using the symmetry identities J̇τ = (J̇τ )
T
gτ

and ∇gτ ,ξ J̇τ = (∇gτ ,ξ J̇τ )
T
gτ

,
we infer

2α̇τ = ∇∗�
gτ

J̇τ¬gτ

= −Jτ∇∗�
gτ

J̇τ¬ωτ

over U . We conclude the required variation formula for arbitrary time t in the case
of constant volume form. In the case of variable volume forms, we fix an arbitrary
time τ , and we differentiate with respect to time at t = τ the decomposition

RicJt (�t ) = RicJt (�τ ) − ddc
Jt

log
�t

�τ

.

We obtain
d

dt |t=τ
RicJt (�t ) = d

dt |t=τ
RicJt (�τ ) − ddc

Jτ
�̇∗

τ ,

and thus

2
d

dt
RicJt (�t ) = d[(Jt∇∗�t

gt
J̇t − ∇gt �̇

∗
t )¬ωt ]

thanks to the variation formula for the fixed volume form case. The conclusion
follows from Cartan’s identity for the Lie derivative of differential forms. �

We infer the following corollary.

Corollary 1. Let ω be a symplectic form, and let (Jt ,�t )t ⊂ J ac
ω × V be an

arbitrary smooth family. Then we have the variation formulas

2
d

dt
RicJt (�t ) = −L∇∗�t

gt ġ∗
t +∇gt �̇

∗
t

ω − 2d Trgt [ω(•¬NJt )ġ
∗
t ] (4.12)

and

2
d

dt
RicJt (�t ) = −L∇∗�t

gt ġ∗
t +∇gt �̇

∗
t

ω + d Trgt [ω(•¬∂TX,Jt
ġ∗

t )] (4.13)

with gt := −ωJt .
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Proof. We have ġ∗
t = −Jt J̇t and thus the property J̇t = (J̇t )

T
gt

, which allows us to
apply (4.1). We notice now the equality

∇∗�
gt

(Jt J̇t ) = −∇gt ,ek
Jt · J̇t ek + Jt∇∗�

gt
J̇t

with respect to a gt -orthonormal local frame (ek)
2n
k=1 of TX . We deduce

2α̇t = −[∇∗�
gt

(Jt J̇t ) + ∇gt ,ek
Jt · J̇t ek]¬ω.

Identity (4.3) implies

ω(∇gt ,ek
Jt · J̇t ek, ξ) = 2ω(ek,NJt (J̇t ek, Jt ξ))

= 2ω(ek,NJt (Jt J̇t ek, ξ))

= −2 Trgt [ω(ξ¬NJt )ġ
∗
t ].

We infer the variation formula (4.12). To show (4.13), we first notice the identity
ω(ek,NJt (g

−1
t e∗

k , ξ)) ≡ 0 for arbitrary real local frame (ek)k of TX . Time differ-
entiating this, we obtain

ω(ek,NJt (ġ
∗
t ek, ξ)) = ω(ek, ṄJt (ek, ξ))

with respect to our gt -orthonormal local frame. Then the general formula

2
d

dt
NJt = ∂TX,Jt

(Jt J̇t ) + Jt J̇tNJt − (Jt J̇t )¬NJt

(see the proof of Lemma 7 in [Pal2]) implies

2ω(ek,NJt (ġ
∗
t ek, ξ)) = ω(ek,NJt (ġ

∗
t ek, ξ) + NJt (ek, ġ

∗
t ξ ) − ġ∗

t NJt (ek, ξ))

− ω(ek, ∂TX,Jt
ġ∗

t (ek, ξ))

= ω(ek,NJt (ġ
∗
t ek, ξ)) − ω(ġ∗

t ek,NJt (ek, ξ))

− ω(∂TX,Jt
ġ∗

t (ξ, ek), ek).

Assuming for simplicity that the gt -orthonormal local frame (ek)
2n
k=1 diagonalizes

ġ∗
t , we deduce the identity

2 Trgt [ω(•¬NJt )ġ
∗
t ] = −Trgt [ω(•¬∂TX,Jt

ġ∗
t )],

which implies the variation formula (4.13). �

Combining Lemma 1, Proposition 1, and Corollary 1, we deduce the following
result.

Theorem 2. Let (X,J0, g0) be a compact almost-Kähler manifold with symplec-
tic form ω := g0J0. Then, for any G-geodesic (gt ,�t )t∈(−ε,ε) ⊂ M × V1 with

initial speed (ġ0, �̇0) ∈ F
J0
g0,�0

, we have the properties Jt := −ω−1gt ∈ J ac
ω and

(ġt , �̇t ) ∈ F
Jt

gt ,�t
and the variation formulas

d

dt
RicJt (�t ) = −d Trgt [ω(•¬NJt )ġ

∗
t ],

2
d

dt
RicJt (�t ) = d Trgt [ω(•¬∂TX,Jt

ġ∗
t )].



Chern–Ricci Invariance Along G-Geodesics 623

The main Theorem 1 follows directly from the above statement since we assume
vanishing of the Nijenhuis tensor along the G-geodesic.

Acknowledgment. I warmly thank the referee for pointing out a few inaccu-
racies in the original version of this manuscript.
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