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Chern—Ricci Invariance Along G-Geodesics
NEFTON PALI

ABSTRACT. Over a compact oriented manifold, the space of Riemann-
ian metrics and normalized positive volume forms admits a natural
pseudo-Riemannian metric G, which is useful for the study of Perel-
man’s WV functional. We show that if the initial speed of a G-geodesic
is G-orthogonal to the tangent space to the orbit of the initial point
under the action of the diffeomorphism group, then this property is
preserved along all points of the G-geodesic. We show also that this
property implies preservation of the Chern—Ricci form along such G-
geodesics under the extra assumption of complex antiinvariant initial
metric variation and vanishing of the Nijenhuis tensor along the G-
geodesic.

1. Statement of the Invariance Result

We consider the space M of smooth Riemannian metrics over a compact ori-
ented manifold X of dimension m. We denote by V) the space of positive smooth
volume forms with integral one. Notice that the tangent space of M x V) is

Tavixy, = C¥(X, S°T) & C*(X, A" T5)o,
where C®(X, A"T§) := {V € C®(X,A"Ty) | [y V = 0}. We denote by
End, (Tx) the bundle of g-symmetric endomorphisms of Tx and by C?ZO(X ,R)o
the space of smooth functions with zero integral with respect to 2. We will use

the fact that, for any (g, ) € M x V|, the tangent space Tr(x ), (g, ) identifies
with C*°(X, Endy(Tx)) ® CZ (X, R)g via the isomorphism

0, V) — 0}, V) = (g v, V/Q).

In [ ], we consider the pseudo-Riemannian metric G over M x Vi, defined
over any point (g, 2) € M x V; by the formula

Geo,Usv, V) =f [(u, v)g —2USVSIQ
X

for all (u, U), (v, V) € Taqxy,. The gradient flow of Perelman’s WW-functional
[Per] with respect to the structure G is a modification of the Ricci flow with
relevant properties (see [ ; 1). The G-geodesics exists only for short time
intervals (—e¢, €). This is because the G-geodesics are uniquely determined by
the evolution of the volume forms and the latter degenerate in finite time (see
Section 2). In [Pal4], we show that the space G-orthogonal to the tangent of the
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orbit of a point (g, 2) € M x V; under the action of the identity component of
the diffeomorphism group is
Fe.o=1{(v.V) € Ty, | Vi2VS + Vg Vi =0},

where V;Q denotes the adjoint of the Levi—Civita connection with respect to the
volume form 2. In this paper, we show the following conservative property.

PROPOSITION 1. Let (g, 2)re(—e,e) C M X Vi be a G-geodesic such that
(80, Q0) € Fgy . Then (g, %) €Fy, q, forallt € (—¢, &).

We consider now a compact symplectic manifold (X, w), and we denote by J3°
the space of smooth almost complex structures compatible with the symplectic

form w. We notice that the variations inside the space of metrics M := —w -
J5 C M, atapoint g = —wJ, are J-antiinvariant. Thus, in this setup, it is natural

to consider the subspace
Flo={W V) eFyqlv=—J*J}.

With these notations, we state the following result.

THEOREM 1 (Main result. The invariance of the Chern—Ricci form). Let (X, Jy,
80) be a compact almost-Kdhler manifold with symplectic form w := goJy. Then,
for any G-geodesic (g;, 2 )ie(—s,e) C M x Vi with initial speed (go, Qo) €
IF;&QO, we have that J; := —w~ g, € JE and (g, Q) € F;;Qt Moreover, if
the Nijenhuis tensor vanishes identically along the G-geodesic, then Ricj, (£2;) =
Ricy, () forallt € (—¢, ).

Our unique interest in this result concerns the Fano case w = Ric ,(£2¢). In this
case the space of w-compatible complex (integrable) structures .7, embeds nat-
urally inside M x V; via the Chern—Ricci form. (This is possible thanks to the
d0-lemma). The image of this embedding is

Su=1{(8, Q) € My x V1 |@=Ric;(Q),J = -0 'g}

with M, := —w - J, C M. Itis well known that the J-antilinear endomorphism
sections associated with the metric-variations in M, at a point g = —wJ are
d7, ,-closed. Thus, in the integrable setup, it is natural to consider the subspace

F ol0]:={(v, V) € F] |97, ,vs =0},

It has been showed in [ ] that this is the space G-orthogonal to the tangent to
the orbit of the point (g, 2) € S, under the action of the identity component of the
w-symplectomorphism group. (See the identity 1.14 in [Pal4].) Furthermore, the
product G4 g is positive over IE‘;’Q[O] thanks to a result in [ ]. We conjecture
the following slice-type result.

CONJECTURE 1. Let (X, J) be a Fano manifold, and let w € 2mc1(X) be a Kdih-
ler form. Then the distribution (g, Q) € S, —> IF;’Q[O] with J = —a)’lg is
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integrable over the space S,,, with leave at the point (g, Q) given locally, in a
neighborhood of this point, by Zg q = {(y, n) € Expg (]F ) | Vyo=0}L

We invite the reader to compare with [FF-S] for other approaches concerning slice-
type problems in the space of compatible complex structures. In view of the results
in Section 9 of [ ], the solution of this conjecture is crucial for the proof of the
dynamical stability of the Soliton—K&hler—Ricci flow [ ].

An important ingredient for the proof of the main Theorem | is the general
variation formula (4. 1). Particular cases of this variation formula have been inten-
sively studied. See [Fu; Do; ; Ga; ]. These formulas allow us to establish
an important moment map picture in Kéhler-geometry. See [Fu] for the integrable
case and [Do] for the almost complex case. In the last section, we provide a for-
mula relating the Bakry—Emery—Ricci tensor with the Chern—Ricci form.

2. Pure Evolving Volume Nature of the G-Geodesic Equation

We recall that the equation of a G-geodesic (g, 2;)re(—e,¢) (se€ [ 1) rewrites
in the form

{d,g, + QFgx =0,
Q + 31812, — 2627 = [yll&?, — 2(QHH1u )2 =0.

The invariance of the scalar product of the speed of geodesics implies
Gr 1= G0, (81, Q3 &1, ) = Ggy.0 (80 Q203 0. Qo).

Therefore a solution of system (§) also satisfies

d .
(s {Egt*"' 78 =0,
Q + 511812, —2(QH% — GolR =0

The first equation in system (S7) rewrites as

which provides the expression

t QO
8t = 80 €Xp go Q. ds ).
0 s

We set u; := Q;/ Qo and observe the trivial identities

813, = Trr(&)” = u; 80l
Q;k = L’l[/l/l[.
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We deduce that system (S7) is equivalent to the system

g = goexp(gl [y uy ' ds),
Qf =u; 2,

Aii, + gO|g0 2ii?
uo=1,
Jx 11020 =0.
The solution « is given by the explicit formula

Go/2* a1 L (Go/2* !
we= 1t Z(2k+1)v 4—Z Qor

M[G() :0,

No := No — Go,
= |g0l3, — 2(2)".
Thus the solution (g;, £2/)e(—s,¢) Of system (S7) satisfies fX Q; = 1. This implies

G; = Go. We infer that system (S7) is equivalent to system (S).
In the case G > 0, the previous formula for u, reduces to the expression

up =1+ Qyy ' sinh(yr) — No(2y0) 2[cosh(yor) — 1]
with yo := (Go/2)'/2.

3. Conservative Properties Along G-Geodesics
In this section, we show Proposition 1.
Proof of Proposition 1. We first recall the fundamental variation formula
1
2[(Dg,@Ve*) (v, V)]vg = EVg|v|§ —2v, - (V% + Vg V), (3.1)

obtained in [ ] (see the formula (19) in [ 1). Using (3.1), we develop the
derivative

_ 1
_(v*ﬂr & + Vo Q) = =287 (Ve &+ Ve ) + 5 Ve

+2V*“’d x4V d
d t gd [

Writing the equations defining the G-geodesic (g;, 2;)e(—e.¢) in the form

— 2%V, QF.

d -
Eg;k"}‘ 18 =0,
2%9;‘4_(9?)2 2|gl| gl Q,(gtyQt, gl’ t)=01

we infer
—(v*“' 85 Vg Q) = =287 - (Vg &F + Vo, )

— 2V (48T — Vg (D — 287 - Vg, 21,
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and thus
d . . . . . .
2E(v;‘,‘f“ 85+ Vg, Q) = =287 + QD) - (Vo g7 + Ve, 20).
Then the conclusion follows by Cauchy’s uniqueness. O

Let J C C*(X,Endr(Tx)) be the set of smooth almost complex structures
over X. For any nondegenerate closed 2-form » over a symplectic manifold, we
define the space J35¢ of w-compatible almost complex structures as

T ={JeJ|-wl M)

With these notations, we have the following result.

LEmMMA 1. Let Jo € J3°, and let (g;, 2)te(—s,e) C M x Vi be a G-geodesic
such that go = —wJo and g5Jo = —Jogy- Then J; := —wlg € JE for all t €
(—e&,¢).

Proof. Using the identity J; = J; g/ and the G-geodesic equation
d . .

S+ =o,

we obtain the variation formula

d .. . . e
E(J;g,* + &5 = (e + &) - (& — QD).

This implies g/ J; = —J;&F for all € (—¢, ¢), by Cauchy’s uniqueness. We de-
duce in particular the evolution identity 2J; = [J;, g/]. Then 1,2 = —I7, thanks
to Lemma 4 in [ ]. We infer the required conclusion. O

4. The First Variation of the 2-Chern—Ricci Form

Let (X, J) be an almost complex manifold. Any volume form 2 > 0 induces a
Hermitian metric hg over the canonical bundle Kx ; := A'}’OT;, which is given
by the formula
2 j—
nli"a A B
ha(a, B) = ———
ela, B) )

We define the 2-Chern—Ricci form
Ric;(2) := —iChq (Kx,J),
where Cj,(F) denotes the Chern curvature of a Hermitian vector bundle (F, 8, h)

equipped with a (0, 1)-type connection. Consider also a J-invariant Hermitian
metric w over X. We recall that the w-Chern-=Ricci form is defined by the formula

Ricj(w) :=Trc[JCw(Tx, 1)]-
The fact that the metric A, over Kx j is induced by the metric w over Tx, s
implies, by natural functorial properties, the identity Ric;(w) = Ricj(w™). Let

now
KS:={(J,8)e T x M|g=J"gJ,VyJ =0}
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be the space of Kéhler structures over a compact manifold X. We recall thatif A €
Endg(Tx), then its transposed A7 with respect to g is given by AT = g~'A*g.
We observe that the compatibility condition g = J*gJ is equivalent to the condi-
tion J, gT = —J. We define also the space of almost Kihler structures as

AKS :={(J,e) e T x M | g=J"gJ,d(gJ)=0}.
With these notations, we have the following first variation formula for the Q-

Chern—Ricci form. (Compare with [Fu; Do; Mo; Ga; 1)

PROPOSITION 2. Let (Jr, g1)r C AKS and (2;); CV be two smooth paths such
that J, = (J,)gt. Then we have the first variation formula

d
2 Ric () =L w; 4.1

TV =,
with Wy = g[.lt.

Proof. Step I. Local expressions. We first consider the case of constant volume
form 2. We recall a general basic identity. Let (L, dr,h) be a Hermitian line
bundle equipped with a (0, 1)-type connection over an almost complex manifold
(X,J), and let Dy, , = 91, + 01 be the induced Chern connection. In explicit

terms, dr ; = hl. 07+ - h. We observe that, for any local nonvanishing section
o € C®(U, L \0) over an open set U C X, we have the identity

o~ Luo () = o, *h(@L.po (1), 0)
= o1,y lo 1} — h(c. 3,0 ()]
=y . loglol} — o190 (M)
for all n € Tx ®gr C. We infer the formula
ioc”'Dp o =id;log|o|? +2Re(io'9,0).
In the case L = K., := A’y "T5; and h = hg, for all
Bi=B) A AB €C®(WU, Ky j N 0)

with ,Brl”,o = ,3,1,’2, Br e C®WU, T @r C), r =1,...,n, we get the formula for
the 1-form «;:

i B A B
o =B Diy ) noBr = i0y, log # +2%e (B Dy, Br)-
We also notice the local expression Ricy, (2) = —iCpo(Kx,7,) = —do;. To ex-
pand the time derivative of the expression
2 -
, "B AB
o () = in}".log #

n
o 1,0 01_7 1,0 1,0
+2me[zﬁ, PN B A Ay =0,y )/\"'Algiz,ti|,

r=1
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we first observe the formula
2%(51,/&};0) = JJi=1(d —23,)8;"1—ild(B - Jn1; . (4.2)
We notice indeed that, for bidegree reasons, we have the identity
20,0 =2ap; ") =dpy° + 17 dpy .

Then, time deriving the latter, we infer the required formula (4.2).

Step II. Local choices. We fix an arbitrary time t. We want to compute the
time derivative & (17). We take a relatively compact open set U C X. Then, for a
sufficiently small & > 0, the bundle map

e 1,0 . n,0 % 1,0 %
O '_d(gt”J, SN Ty — ATy,
1,0 1,0
/31/\---/\,8,,;—>/3,::ﬁu NN By

is an isomorphism for all ¢ € (r — &, T + ¢). For notational simplicity, we set
D, := Dky , .hg- We also consider the connection Dy, := ¢/ D; over the bundle
A'}’TOTL";. Explicitly, Dy, B = ¢, 'D, B:. Then the expression D;f; = oy ® B; im-
plies Dy, B = a; ® 8. We deduce that

. d D

o = E (2
is independent of the choice of §. We want to compute ¢, at an arbitrary point
pel.

Step Ila. The Kdhler case. (We consider this case first since it is drastically sim-
pler.) Let V,_ be the Levi—Civita connection of g;. Using parallel transport and
the Kéhler assumption V,_J; = 0, we can construct (up to shrinking U around p),
a frame (B,)_; C C*(U, AIJ’IOTU*) satisfying V, B,.(p) =0forallr =1,...,n,
and the identity

. n

i _

wTZEEI,Br/\,Br
r=

over U. Then dV, = 2‘"1’”2/3, A Br. We now set f; :=log dv%. The identity
dp, = AltV,, B, implies dB.(p) = 0. Then formula (4.2) implies the following
identity at the point p:

d - . .
2 @b =iy (V1 g o))
tt=t
= —if, Alt(vg};f’ 1 d0).
(The last equality follows from the Kéhler assumption.) We deduce

01_~d = 10\ ipol0 i 01 .pol0
ny —2— (CRA ):lﬁrvg 7y zlﬁrvg 7 Jeen
T d[|t:‘[ T:Jt T Jt
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at the point p. (The last equality follows also from the Kéhler assumption.) Using
this last identity, we obtain the following expression at the point p:

1. " .
Qe () = > Jen. ff+n,°%e( Y B A-~-A(ﬂ,1t)};°A--.Aﬂn>
r=1

n
—ERe(,B;IZﬁl A-'~AﬂrV;;?]ro 'T)/\"'/\:Bn>
r=1

1 . .
= _E(TrR Vg,Jr —df: - Jo)(),

thanks to the elementary identities (S, j,)lj’ro =0, Trc A =Trc A*, and Trg B =

2N e(Tre B1 0) for all B € Endr(TY). Using now the symmetry identities Jr =
(JT) and VgI £ = (Vg gj,)gr, we obtain

26 = Vi Jmge

over U. We conclude, thanks to the Kihler condition and Cartan’s identity, the
required formula for arbitrary time ¢ in the case of constant volume form.

Step IIb. The almost Kdhler case. We first recall that, in this case, we have the
classical identity

8Vged -n, ) =—=2g(J&, Ny, n)), 4.3)

where N is the Nijenhuis tensor defined by the formula
4Ny, m) =& 0]+ JIE, In]+ J[JE, n] —[JE, Inl.
Identity (4.3), combined with the identity N;(Jn, ) = —JNj(n, n), implies
Ve ged =—=JVgel. 4.4

We also consider the Chern connection DT\]‘OT* of the complex vector bundle
J X

AIJ’OT;g with respect to the Hermitian product

(a, By = %Trw(ia A B).

This connection is obviously the dual of the Chern connection DT1 o of the Her-
X.J

mitian vector bundle (T; 3, ). We denote by D“’ the Chern connection of
(Tx,j, w). By abuse of notation, we denote with the same symbol its complex
linear extension over Ty ®g C. The latter satisfies the formula

§=D} os} 0402 €5, VECT (X, Tx @R C).

XJ

Tx J

In the almost Kihler case, D‘”X is related to the Levi—Civita connection V, (see
[ ] and use identity (4.3)) via the formula

1
DF, 0= Veen = 5JVgel 1 (4.5)
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forall £,n € C®°(X, Ty ®r C). Thus
1
AT
Ty 2
and
1
1,0 £1,0 L0 21,0 . 21,0 1,0
D‘/‘\’;OT;IBJ T =V A+ 5,/3] Vol &,
_ Vg,B}’O ] le,o
since Vg J - J = —J Vg J. We now apply these considerations to the almost Kihler

structure (J;, gz). Using parallel transport, we can construct a complex frame
(B, C C®(WU, ASTy) satisfying D5 Br(p) =0 forallr=1,....n and
Jr

Ty
the identity

. n

i _

wr=§ Elﬁr/\ﬂr
r=

over U. Then, as before, we have the identity dV,, = 2-nin’ B: A Br. We infer

a7 Br(p) =0, (4.6)
(Ve Br £ (p) =0, 4.7
978 (p) =0 (4.8)
forall r =1, ..., n. The last equality follows from the elementary identities

8J113r($a n) =dp-(&,n) = Vgr,élgr n— Vgr,nﬂr -

forall &, n € C°(X, T;’gr). We observe now that formula (4.2) writes as

d — . _ , .
2 @085 = T i=1@, = 05085 = B3 Nyl = ild (B - In]j

Thus, at the point p, we have the identity

d £ .
20 e QuBEOGG 10 = =By No G e o)
=T

—ild(B, - J1; )
=if - NJr (n, -]t,u)
. ; 0,1 1,0
—id (B J) Yt ).

For notational simplicity, we set n?’l = n(};], ,u%*o = /,LIJ;O, and we observe the
expansion

dBr - J)O* 1Y =V B Fept O+ BV ook
N ng,ul'o’g’ Jengt = By Vgr,ul’ojf .

We also notice the trivial identity 8, - Jr ,ul*o =B, - (J; M)(};l =0 over U. Taking
a covariant derivative of this, we infer

0= Vgr’n(r),l,Br . J.f,ui’o + B - Vgr,n(r)‘l j, . Mi’o + B - jtvgr,n(r)'l'ui,o'
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Identity (4.4) implies

1,0
0 __

Vg O P —< geo !t H 2Vg’nJ M)J

Thus
. ‘ ; 0,1
ﬁr . Jrvgpﬂ?’lﬂt =/3r ' |:JT <Vgrﬂ'7(r)'l'u - Evghr]] M>:|J =0

and

(B J @ 1 =—p, -V node 2! (49)
at the point p since

Vghﬂ;oﬁr'jfn(f)’l_ o MIO,Br (J‘L’n)] _O

at p thanks to (4.7). Taking a covariant derivative of the identity

JoJr + J. J; =0,

we obtain
Ve JodJo + Ve Jo + Vo JoJr + It Ve Jr =0,
and thus
2B; -V, aode et =28V, rodem)?

—iB - (JT ghﬂl.o./f + Vgr,u-l’o']rjr)n
=28 - Vgr,M:’OJT ‘n—1iBy - Jrvgr,;u]r N
thanks to (4.4) and the fact that B, is of type (1, 0) with respect to J,;. We deduce

1

—id(B - Jr)(nr ’/’L‘EO)_lﬂr ( Py ”j Ejrjrvg,,u-]r)n

thanks to (4.9), and thus

d . .
n(}rl_ad_ (ajt 131‘1,}0) =if - N.lf (n, Jre)
t|t=t

. A
-Hm.G@%L—Ehh%JJn (4.10)
Using (4.6) and ( ), we obtain

26:(n) = jfn-fr

n
. d =
+mwhmﬂ§:mA“.AP%haaﬁ @LﬁfﬁA.“Am}
=T

=dfy - jrrl
. 1 .
_MwR%NMmLQ+<IOL—Ehh%JJﬂ

. . . 1 .
=df - Jen— TrR|:NJT(777 Jre) + <Vgr-]r - EJ‘L'J‘L'VgT Jr)n]-
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We now show the identity
ZTYR[NJI(T),J.-[.)] =TrR(JrJ}VgI Jr ). “4.11)

Indeed, let (ek)%”: | C Tx,p be a g¢(p)-orthonormal basis. Using (4.3), (4.4), and

the symmetry assumption J; = (jr)gT,T , we obtain

2g(ex, Ny, (1, Jre)) = §(Ve, ey Jo - 1, Jrer)

= —g(JeJe Vg, e e - i)

= 8§+ Jr Vg I -1, €x)
and thus the required identity ( ). We infer the formula

262 (1) = = Tre(Vg, Jr - 1) +dfe - Jon
over U. Using the symmetry identities Jo = (J}); and ng,gj, = (Vgr,éjr)gr’
we infer
20, = V2 S g,
=—J; V;? Jr—w;

over U. We conclude the required variation formula for arbitrary time ¢ in the case

of constant volume form. In the case of variable volume forms, we fix an arbitrary
time 7, and we differentiate with respect to time at = t the decomposition

oQ
Ricy, () = Ricy, (Qr) — dd{ log Q—’
T

We obtain

d d .
— Ri Q) =— Ri Q) —ddS QF,
dt lt=1 lcjt( 2 dt lt=1 ICJt( 2 Je

and thus
d _. . .
2 Ricy, () = dL(J Vg Jy — Vg, 2=
thanks to the variation formula for the fixed volume form case. The conclusion
follows from Cartan’s identity for the Lie derivative of differential forms. O

We infer the following corollary.

COROLLARY 1. Let w be a symplectic form, and let (J;, 2;); C J5° x V be an
arbitrary smooth family. Then we have the variation formulas

d
2 Ric, () = ~L ®—2dTrg [w(e=N;)gk]  (4.12)

*Qy . .
Ve ' &V
and

d . = .
25 Ricy, (§2;) = —L o+ dTrg [w(e—dTy , ghHl  (4.13)

*Q, .
Ve ' &1 +Ve, 2

with g; == —wJ;.
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Proof. We have g} = —J; J; and thus the property J, = (j,)Tl, which allows us to
apply (4.1). We notice now the equality

Vi (i) ==V o Ji - Jrex + IV,
with respect to a g;-orthonormal local frame (ek),%’; | of Tx. We deduce
2 = —[Vi2 (i) + V.o 0 - Jrer]-o.
Identity (4.3) implies
o (Vg, ot - Jrex, &) = 2w(ex, Ny, (Jrex, Ji§))
=20 (e, Ny, (JiJrex, §))
= —2Trg, [w(E—Ny,)E/ 1.

We infer the variation formula ( ). To show ( ), we first notice the identity
w(ek, Ny, (g,_le}:, £)) = 0 for arbitrary real local frame (ex); of Tx. Time differ-
entiating this, we obtain

w(ex, Ny, (&Fex, £)) = w(ex, Ny, (ex, &))

with respect to our g;-orthonormal local frame. Then the general formula

d — . . .
ZENJ, =071y, (JtJ) + JtJy Ny, — (J1 J) =Ny,

(see the proof of Lemma 7 in [Pal2]) implies
2w(ex, Ny, (& ex, §)) = @ (e, Ny, (87 ex. &) + Ny, (ex, &/6) — &/ Ny, (ex, §))
- w(ek,grx,,,gf(ek,é))
= w(ek, Ny, (& e, §)) — o (& ex, Ny, (ex, §))
— w1y, 8 €, ex), ep).

Assuming for simplicity that the g;-orthonormal local frame (ek)%’; | diagonalizes
g/, we deduce the identity

2Trg [w(e=Ny) g/ 1= — Trg [w(e=d1y , &),
which implies the variation formula (4.13). (]

Combining Lemma 1, Proposition |, and Corollary |, we deduce the following
result.

THEOREM 2. Let (X, Jo, g0) be a compact almost-Kdhler manifold with symplec-
tic form w := goJo. Then, for any G-geodesic (g;, 2 )re(—s,e) C M x Vi with
Jo

) 80,0°
(&,2) € Fé{f Q and the variation formulas

initial speed (g9, Q) € F we have the properties J, .= —w " 'g, € JE and

d _. .
77 Rics, (§) = —d Trg, [w(e—Ny)&; 1,

d _. - .
ZE Ricy, (Q) = d Trg [w(e—0Ty gD
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The main Theorem | follows directly from the above statement since we assume
vanishing of the Nijenhuis tensor along the G-geodesic.
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