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Jet Schemes and Generating Sequences of Divisorial
Valuations in Dimension Two

Hussein Mourtada

Abstract. Using the theory of jet schemes, we give a new approach
to the description of a minimal generating sequence of a divisorial
valuations on A2. For this purpose, we show how to recover the ap-
proximate roots of an analytically irreducible plane curve from the
equations of its jet schemes. As an application, for a given divisorial
valuation v centered at the origin of A2, we construct an algebraic
embedding A2 ↪→ AN , N ≥ 2, such that v is the trace of a mono-
mial valuation on AN . We explain how results in this direction give
a constructive approach to a conjecture of Teissier on resolution of
singularities by one toric morphism.

1. Introduction

Let X = Ad = SpecR, where R = K[x1, . . . , xd ] is a polynomial ring over an
algebraically closed field K. The arc space of X, which we denote by X∞, is the
scheme whose K-rational points are

X∞(K) = HomK(Spec K[[t]],X).

We have a natural truncation morphism X∞ −→ X, which we denote by �0. For
p ∈ N and the subvariety Y = V (I) ⊂ X defined by an ideal I , we consider the
subset of arcs in X∞ that have an order of contact p with Y , that is,

Contp(Y ) = {γ ∈ X∞ | ordt γ
∗(I ) = p},

where γ ∗ : R −→ K[[t]] is the K-algebra homomorphism associated with γ , and

ordt γ
∗(I ) = min

h∈I
{ordt γ

∗(h)}.
With an irreducible component W of Contp(Y ), which is contained in the fiber

�−1
0 (0) above the origin, we associate a valuation vW : R −→ N as follows:

vW(h) = min
γ∈W{ordt γ

∗(h)} for h ∈ R.

It follows from [ELM] (see also [dFEI; Re], Prop. 3.7(vii)) that vW is a divisorial
valuation centered at the origin 0 ∈ X and that all divisorial valuations centered at
0 ∈ X can be obtained in this way.
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We are interested in determining a generating sequence of such a valuation that
is a sequence of elements of R determining the valuation completely. It is defined
as follows. For α ∈ N, let

Pα = {h ∈ R | vW(h) ≥ α}.
Following [T3], we define the K-graded algebra

grvWR =
⊕
α∈N

Pα

Pα+1
.

We denote by invW the natural map

invW : R −→ grvWR, h �→ h mod PvW(h)+1.

Definition 1.1 ([S]). A generating sequence of vW is a set of elements of R such
that their image by invW generates grvWR as a K-algebra.

In this article, we give a new way to determine a generating sequence of vW in
dimension 2, that is, when d = 2. Traditionally, there are three approaches to
determine such a generating sequence:

(1) By studying the relations in the semigroup vW(R) [T3]. The new develop-
ments of this theory in higher dimensions treat only valuations with maximal
rational rank [T1; T2], which do not include divisorial valuations.

(2) By considering curvettes [S]. Let π be the composition of the minimal se-
quence of blow ups that produces the divisor defining vW. Let G be its dual
graph. Then a curvette is a curve that is an image of a transversal arc to a
rupture divisor of G. If we choose the equation of a curvette for every rupture
divisor, plus the variables of R, then we obtain a generating sequence of vW.
This approach has not been generalized to higher dimensions, and this seems
to be a difficult mission.

(3) Maclane’s method [Mc] (see also [AM; FJ]). A generating sequence is ob-
tained by induction using Euclidean division. The generalizations of this
method to higher dimensions [V1; HOS; Ma] do not produce elements in R,
which is essential for our applications. See also [CV] for a comparable ap-
proach.

Our approach is based on the definition of a divisorial valuation that we gave
before in terms of arcs (and jet schemes). It will enable us to build a generating
sequence from the equations of the subset W of the arc space that defines the
divisorial valuation. The construction of a generating sequence passes through
the extraction of the approximate roots of a plane branch from its jet schemes.

One motivating application that we present and that remains true for a partic-
ular type of divisorial valuations in higher dimensions [Mo4] is the following.
Given a divisorial valuation v centered at 0 ∈ A2, we will determine an embed-
ding e : A2 ↪→ An (where n depends on v) and a toric proper birational morphism
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μ : X� −→ An such that:

Ã2 X�

μ

A2 e An

• X� is a smooth toric variety (i.e., � is a fan obtained by a regular subdivision of
the positive quadrant Rn+, which is the cone that defines An as a toric variety),

• the strict transform Ã2 of A2 by μ is smooth,
• a toric divisor E′ (associated with one of the edges of � and determined by

the values of the elements in a generating sequence) intersects Ã2 transversally
along a divisor E; note that the valuation associated with E′ is monomial and
is given by the weight vector corresponding to E′,

• the valuation defined by the divisor E is v.

Our goal is to use such a construction to answer constructively the following
conjecture of Teissier [T2]:

For a subvariety Y ⊂ An, there exists an embedding An ↪→ AN , N ≥ n,
such that the singularities of Y can be resolved by a birational proper toric map
Z −→ AN .

A solution of this problem in the case of quasi-ordinary singularities is given
in [GP]. A related result was proved in [Te2], but the author starts with a given
resolution of singularities.

For a given singular subvariety Y ⊂ An, our idea is to extract a finite number
of significant divisorial valuations v1, . . . , vr on An from the jet schemes of Y

(this is to compare with the Nash map [I; ELM]), then to embed as before An in a
larger affine space AN in such a way that all the valuations v1, . . . , vr can be seen
as the traces of monomial valuations on AN . If v1, . . . , vr are well chosen, then
this should guarantee Newton nondegeneracy [AGS; Te1] of Y ⊂ AN and hence
would give the desired embedding. There remains the subtle matter of detect-
ing the valuations v1, . . . , vr (see [Mo3; LMR] for simple examples) and finding
the embedding described before for general divisorial valuations. In [Mo4], we
present a progress in this last problem.

This idea corresponds to an approach of resolution of singularities by one toric
morphism, which is different from that suggested in [GT], where this resolution of
an irreducible plane curve C is constructed by considering the curve valuation νC ,
whereas the approach suggested by this article is to study the divisorial valuations
associated with special components of the jet schemes. The two approaches lead
to the same result for plane branches but bifurcate in higher dimensions.

One application of the result of this article would be a resolution of singu-
larities of a reducible plane curve with one toric morphism. This will be treated
elsewhere.

I have found inspiration for this article in [T2], and I am thankful to Bernard
Teissier for all explanations he gave me about it and for several corrections and
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suggestions for an earlier version of this article. I would also like to thank Pe-
dro González Pérez, Monique Lejeune-Jalabert, Mohammad Moghaddam, Patrick
Popescu-Pampu, and Matteo Ruggiero for several discussions on this subject. Fi-
nally, I would like to thank the referee for his numerous corrections and remarks.

The article assumes some knowledge of valuations and toric geometry. This
can be found respectively in [V2] and [AGS].

2. Jet Schemes

Let K be an algebraically closed field of arbitrary characteristic. Let X be a K-
algebraic variety, and let m ∈ N. The functor Fm : K − Schemes −→ Sets associ-
ating with an affine scheme defined by a K-algebra A

Fm(Spec(A)) = HomK(SpecA[t]/(tm+1),X)

is representable by a K-scheme Xm [EM; I]. Xm is the mth jet scheme of X, and
Fm is isomorphic to its functor of points. So we have the bijection

HomK(SpecA,Xm) 
 HomK(SpecA[t]/(tm+1),X). (1)

If X = SpecR is affine, then Xm = SpecRm is also affine, and by taking A = Rm

in bijection (1) we obtain a universal morphism 	∗ : R −→ Rm[t]/(tm+1), which
is the morphism associated with the image of the identity id ∈ HomK(Xm,Xm)

by bijection (1). For example, if X = Spec K[x0, x1] and f ∈ K[x0, x1], then

Xm = Spec K[x(0)
0 , x

(0)
1 , . . . , x

(m)
0 , x

(m)
1 ] = SpecRm

and
	∗(f ) = F (0) + F (1)t + · · · + F (m)tm, (2)

where F (i) is the coefficient of t i in the expansion of

f (x
(0)
0 + x

(1)
0 t + · · · + x

(m)
0 tm, x

(0)
1 + x

(1)
1 t + · · · + x

(m)
1 tm). (3)

Note that since we are interested in the ideal generated by the F (i), in char-
acteristic 0, we can reconstruct them in such a way that they are obtained by a
derivation process; see Proposition 2.3 in [Mo1].

For m,p ∈ N, m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/
(tp+1) induces a canonical projection πm,p : Xm −→ Xp . These morphisms
clearly satisfy πm,p ◦ πq,m = πq,p for p < m < q , and they are affine morphisms,
so that they define a projective system whose limit is a scheme that we denote X∞;
it is the arc space of X.

Note that X0 = X. We denote by πm the canonical projection πm,0 : Xm −→
X0 and by �m the canonical morphisms X∞ −→ Xm.

3. Minimal Generating Sequences of a Curve Valuation from the
Equations of Jet Schemes

In [Mo1] and [LMR], we have used the approximate roots to study the geometry
of the jet schemes of plane branches and to obtain toric resolutions of singularities
of these curves. In this section, we show how to obtain a minimal generating
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sequence of the valuation defined by a plane branch, thats is, a curve valuation,
from the jet schemes of the branch. Note that the graph that we have introduced
in [Mo1] is not sufficient to determine this generating sequence. The invariants of
the jet schemes that we consider further are finer and are not determined by the
topological type of the curve singularity.

Let C be a plane branch defined by an irreducible power series f ∈ K[[x0, x1]],
where K is an algebraically closed field. We assume that x0 = 0 (resp. x1 = 0) is
transversal (resp. tangent) to C, which can always be achieved by a linear change
of variables. Let β̄0, . . . , β̄g be the minimal system of generators of the semi-
group �(C) of C. Let e0 = β̄0 (this is also the multiplicity of C at the origin) and
ei = gcd(ei−1, β̄i ), i ≥ 1 (where gcd is the greatest common divisor). Since the
sequence of positive integers

e0 > e1 > · · · > ei > · · ·
is strictly decreasing, there exists g ∈N such that eg = 1. We set

ni := ei−1

ei

, mi := βi

ei

, i = 1, . . . , g,

and by convention we set βg+1 = +∞ and ng+1 = 1. We have:

1. ei = gcd(β̄0, . . . , β̄i), 0 ≤ i ≤ g.
2. For 1 ≤ i ≤ g, there exists a unique system of nonnegative integers bij , 0 ≤

j < i, such that bij < nj for 1 ≤ j < i and niβ̄i = ∑
0≤j<i bij β̄j .

With such a plane branch C = {f = 0}, we associate a (curve) valuation

νC : K[[x0, x1]] −→ N∪ ∞,

which is positive on the maximal ideal (x0, x1), by using local intersection multi-
plicity:

νC(h) = dim
K[[x0, x1]]

(f,h)

for every h ∈ K[[x0, x1]]. Note that tr.deg(νC) = 0 and rank(νC) = 2 (see [FJ],
p. 17).

For an irreducible h ∈ K[[x0, x1]], we have that h is, up to multiplication by a
constant, of the form

h = (x
nh

1 − αhx
mh

0 )δh +
∑
(a,b)

cabx
a
0 xb

1 , (4)

where mh and nh are coprime, αh ∈ K∗, cab ∈ K, and the points (a, b) are strictly
above the Newton polygon of h [CA].

Lemma 3.1. Given f , h in the form (4), we have x
nf

1 − αf x
mf

0 �= x
nh

1 − αhx
mh

0 if
and only if

νC(h) = min(β̄0mhδh, β̄1nhδh).

Moreover, we have that{
inνCh = x

mhδh

0 or x
nhδh

1 if (mf ,nf ) �= (mh,nh),

inνCh = (x
nh

1 − αhx
mh

0 )δh if (mf ,nf ) = (mh,nh) and αf �= αh.
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Proof. This follows from the the classical formula of the local intersection multi-
plicity:

νC(h) = ordt h(x(t), y(t)),

where (x(t), y(t)) is a special parameterization of C obtained by the Newton–
Puiseux theorem [CA]. �

Following [Mo1], we describe the irreducible components of the schemes of jets
centered at 0, that is, C0

m := π−1
m (0), where πm : Cm −→ C is the canonical mor-

phism. We set

Conte(x0)m(resp. Cont>e(x0)m) := {γ ∈ Cm | ordt x0 ◦ γ = e(resp. > e)}.
Then we can state the following:

Theorem 3.2 (Thm. 4.9, [Mo1]). Let C be a plane branch with g Puiseux expo-
nents. Let m ∈ N. For 1 ≤ m < n1β̄1 + e1, C0

m = Cont>0(x0)m is irreducible. For
q = [m−e1

n1β̄1
] ≥ 1, the irreducible components of C0

m are

CmκI = Contκβ̄0(x0)m

for 1 ≤ κ and κβ̄0β̄1 + e1 ≤ m,

C
j
mκv = Cont

κβ̄0
nj ···ng (x0)m

for j = 2, . . . , g and 1 ≤ κ , and κ �≡ 0 mod nj such that κn1 · · ·nj−1β̄1 + e1 ≤
m < κβ̄j , and

Bm = Cont>n1q(x0)m.

We are interested in the following inverse system of irreducible components:

· · · −→ C(β̄0β̄1+e1+2)1I −→ C(β̄0β̄1+e1+1)1I −→ C(β̄0β̄1+e1)1I

−→ Bβ̄0β̄1+e1−1 −→ Bβ̄0β̄1
. (�)

Let Cm := Contβ̄0(x0)m (the notation Cm will be used all over the paper). Let
γm be the generic point of Cm. From Corollary 4.2 in [Mo1] we can see that, for
m large enough,

ordt x1 ◦ γm(t) = β̄1.

Note that the only data we need to detect the inverse system (�) is the multiplicity
β̄0 of the curve. Indeed, the components in system (�) are given by the closure of
Contβ̄0(x0)m, for m ≥ β̄0β̄1 − 1.

In the following lemma, we compute the intersection multiplicity of two curves
in terms of ideals of jet schemes. Our first goal is to give a new way to determine
the initial part of an element h ∈ K[[x, y]] with respect to the valuation νC . This
is achieved in Corollary 3.6.
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Let Dm(x
(β̄0)

0 ) be the open subscheme of A2
m defined by x

(β̄0)

0 �= 0. Let Im

be the ideal defining Contβ̄0(x0)m in Dm(x
(β̄0)

0 ), and let I r
m be its radical. Let

h ∈ K[[x, y]] be irreducible, and H(i) be the coefficient of t i in 	∗(h) (see equa-
tion (2)).

Remark 3.3. In what follows, unless stated otherwise, when we use the sym-
bol ≡, we just want to replace elements that are congruent to zero by zero.

Lemma 3.4. νC(h) = l if and only if for m � 0, we have H(i) ≡ 0 mod I r
m, if

i < l and H(l) �≡ 0 mod I r
m.

Proof. If νC(h) = l, then we have νC(h) = ordt h(x0(t), x1(t)) for any good pa-
rameterization (i.e., a general point of the curve corresponds to just one value
of the parameter) (x0(t), x1(t)) of C. Let x

(0)
0 , . . . , x

(im)
0 , x

(0)
1 , . . . , x

(jm)

1 be the
variables that intervene in the generators of I r

m. Note that im, jm < m. By the

definition of I r
m, for any closed point (a

(0)
0 , . . . , a

(im)
0 , a

(0)
1 , . . . , a

(jm)

1 ) ∈ V (I r
m) ⊂

Spec K[x(0)
0 , . . . , x

(im)
0 , x

(0)
1 , . . . , x

(jm)

1 ], there is a good parameterization of C of
the form

(a
(0)
0 + a

(1)
0 t + · · · + a

(im)
0 t im + · · · , a

(0)
1 + a

(1)
1 t + · · · + a

(jm)

1 tjm + · · · ).
It follows that

ordt h(a
(0)
0 + a

(1)
0 t + · · · + a

(im)
0 t im + · · · , a

(0)
1 + a

(1)
1 t + · · · + a

(jm)

1 tjm + · · · ) = l,

and so H(i)(a
(0)
0 , . . . , a

(im)
0 , a

(0)
1 , . . . , a

(jm)

1 ) = 0 for every i < l, and

H(l)(a
(0)
0 , . . . , a

(im)
0 , a

(0)
1 , . . . , a

(jm)

1 ) �= 0.

Hence, H(i) ≡ 0 mod I r
m for every i < l, and H(l) �≡ 0 mod I r

m.
The converse is straightforward. �

Remark 3.5. 1. In the proof of Lemma 3.4, the fact that, for a closed point of
V (I r

m) ⊂ Spec K[x(0)
0 , . . . , x

(im)
0 , x

(0)
1 , . . . , x

(jm)

1 ], we find an arc that “lifts” this
point is not equivalent to saying that any m-jet in the irreducible component de-
fined by I r

m is liftable (which is not true). The reason is that we need more co-

ordinates to define an m-jet, namely there remains to specify x
(im+1)
0 , . . . , x

(m)
0 ,

x
(jm+1)

1 , . . . , x
(m)
1 , which can be chosen freely, but for such a jet to be liftable,

these coordinates should satisfy more equations.
2. We can estimate the minimum m satisfying the conclusion of Lemma 3.4 by

determining the variables that appear in the equations of jet schemes. We find

m = κh :=
[
l
mult(f )

mult(h)

]
,

where mult denotes the multiplicity, l = νC(h), and the brackets [ ] denote the
integral part.
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We continue with the settings of Lemma 3.4. Since H(l) �≡ 0 modI r
κh

, let P ∈
K[[x0, x1]] be the minimal part of h such that

(h − P)(i) ≡ 0 mod I r
κh

for i ≤ l.

This means that the terms (a term is a constant times a monomial in x0 and
x1) of P are terms of h, and P has the least number of terms with the previous
property. We thus obtain the following important corollary of Lemma 3.4.

Corollary 3.6. We have

inνCP = inνCh.

Moreover, P is the minimal part of h achieving this equality.

Proof. It follows from the definition of P and from Lemma 3.4 that νC(h− P) >

νC(h), and the assertion follows. �

Remark 3.7.

Example 1. We assume that the characteristic of K is zero, which makes the
computation easier.

1. Let C = {f = (x2
1 − x3

0)2 − x6
0x1 = 0}, and let h = (x2

1 − x3
0)2 − 4x5

0x1 − x7
0 .

We have that νC(h) = 26. We can see this by applying Lemma 3.4; indeed:

I r
26 = (x

(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 , x

(6)
1

2 − x
(4)
0

3
,2x

(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 )

⊂ (Rm)
x

(4)
0

,

where (Rm)
x

(4)
0

is the ring Rm localized by x
(4)
0 . Note that since in this example

f and h have the same multiplicity, we have κh = νC(h). We observe that, for
every i < 26, Hi ≡ 0 modulo I r

26, and

H(26) ≡ −4x
(4)
0

5
x

(6)
1 �≡ 0 mod I r

26.

From Corollary 3.6 we deduce that inνCh = −4x5
0x1.

2. Let C = {f = (x2
1 − x3

0)2 − x6
0x1}, and let h = x2

1 − x3
0 . We have νC(h) = 15,

and therefore κh = 30. We have that

I r
30 = (x

(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 ,H (12),H (13),H (14),H (15)2 − x

(4)
0

6
x

(6)
1 )

⊂ (Rm)
x

(4)
0

,

where H(12) = x
(6)
1

2 − x
(4)
0

3
and H(13) = 2x

(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 . We observe

that, for every i < 15, H(i) ≡ 0 modulo I r
30, and

H(15) �≡ 0 mod I r
30.

From Corollary 3.6 we deduce that inνCh = h.
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Let us have a look at the equations of jet schemes. It follows from Corollary 4.2
in [Mo1] that

Iβ̄0β̄1−1 = (x
(0)
0 , . . . , x

(β̄0−1)

0 , x
(0)
1 , . . . , x

(β̄1−1)

1 ). (5)

We get from the same corollary that

F (β̄0β̄1) ≡ (x
(β̄1)

1

n1 − cx
(β̄0)

0

m1
)e1 mod Iβ̄0β̄1−1 (6)

for some c ∈ K, c �= 0.

Remark 3.8. Note that equations (5) and (6) are conditional on the hypothesis we
have made on the variables x0 and x1. These variables permit the best approxima-
tion of the valuation νC by a monomial valuation, namely the monomial valuation
ν1 determined by ν1(x) = νC(x) and ν1(y) = νC(y). Note that if we begin with
any choice of variables, then we can use jet schemes to detect variables having
this property.

We now give the steps of an algorithm that determine the minimal generating
sequence. This will be guided by the fact that we can detect the initial part of
a function with respect to νC from the equations of the jet schemes of C; this
follows from Lemma 3.4 and Corollary 3.6. So we will determine algorithmi-
cally elements in K[x, y] whose images by the universal morphism 	∗ (see equa-
tion (2)) generate the equations of the families of jets that define the valuations νC .
The idea is to observe the defining equations of the irreducible set Contβ̄0(x0)m,
m ≥ β̄0β̄1, and how these equations behave when m varies. For m = β̄0β̄1, the
scheme S2,0 = {(xn1

1 − x
m1
0 )e1 =: x

e1
2,0 = 0} has the property that the equations

defining Contβ̄0(x0, S
2,0)m = {γ ∈ S

2,0
m ,ordt γ

∗(x0) = β̄0} in A2
m are those defin-

ing Contβ̄0(x0)m ⊂ A2
m. The algorithm will detect the first m ≥ β̄0β̄1 (it will be

called μ2,0 + 1) for which this property is not anymore true for S2,0 and produces
the equation x

e1
2,1 = 0 (resp. xl

3,0 = 0, l < e1) of a new scheme S1,1 (resp. S2,0)

satisfying this property for m = μ2,0 + 1. These schemes approximate our curve
C from the viewpoint of jet schemes. Moreover, the shape of the equations x2,1 or
x3,0 is governed by the structure of the equations of jet schemes that can be ob-
tained by derivation. We then continue this construction of these “approximating
schemes” following the same idea. The fact that the multiplicity e1 of S2,1 does
not drop (resp. the multiplicity l of S3,0 drops) has an effect on the behavior of
the function m �→ codim(Cm), whose behavior is known (see Prop. 4.7 of [Mo1])
and which implies that the multiplicity sequence (e1, l2, . . .) of the approximating
schemes will drop until it attains 1, and the algorithm stops. We start now the
algorithm.

If e1 = 1, then a minimal generating sequence of νC is given by x0, x1, and f

itself. We assume that e1 > 1.

We set x2,0 = x
n1
1 − x

m1
0 , and to every Cm := Contβ̄0(x0)m in (�), we assign a

vector v
3,0
m = v3,0(Cm) ∈ N

3 as follows:

v3,0
m = (ordt x0 ◦ γm(t),ordt x1 ◦ γm(t),ordt x2,0 ◦ γm(t)),
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where γm is the generic point of Cm. Let

μ2,0 = min{m ≥ β̄0β̄1 | codim(Cm+1) > codim(Cm) and v3,0
m = v

3,0
m+1}.

Let
F (μ2,0+1) ≡ H mod I r

μ2,0
.

Since Cμ2,0+1 is irreducible, H = x
(β̄0)

0

a1
x

(β̄1)

1

a2
Ql , where Q is an irreducible

polynomial (recall that x
(β̄0)

0 �= 0 and hence x
(β̄1)

1 �= 0 because of equation (6)).
But if a1 �= 0 or a2 �= 0, then this contradicts the form of equation (6), and the
geometry of the jet schemes of the irreducible curve C described in Theorem 3.2
(in particular, this would mean that B(β̄0)(β̄1)

is irreducible). Hence, we can write

F (μ2,0+1) ≡ Ql mod I r
μ2,0

,

for some irreducible polynomial Q and positive integer l; moreover, Q is a
nonzero polynomial because the equation F (μ2,0+1) = 0 forces the inequality
codim(Cμ2,0+1) > codim(Cμ2,0).

We then have two cases:

Case 1. If l = e1, then we have the following:
Claim 1.1: If l = e1, then we have

Q − x
(

μ2,0+1
e1

)

2,0 ≡ Q′ mod I r
μ2,0

,

where Q′(x(β̄0)

0 , x
(β̄1)

1 ) is a polynomial in the variables x
(β̄0)

0 and x
(β̄1)

1 .
We then define

x2,1 = x2,0 + Q′(x0, x1)

and
v3,1
m = (ordt x0 ◦ γm(t),ordt x1 ◦ γm(t),ordt x2,1 ◦ γm(t)).

Case 2. If l = l2 < e1 and l2 = 1, then we stop.
Claim 2.1. If 1 < l2 < e1, then we have

Q − x
(

μ2,0+1
e1

)

2,0

e1
l2

≡ Q′ mod I r
μ2,0

,

where Q′(x(β̄0)

0 , x
(β̄1)

1 ) is a polynomial in the variables x
(β̄0)

0 and x
(β̄1)

1 .

We then set x2 := x2,0, μ2 := μ2,0 and define

x3,0 = x

e1
l2

2 + Q′(x0, x1)

and

v4,0
m = (ordt x0 ◦ γm(t),ordt x1 ◦ γm(t),ordt x2 ◦ γm(t),ordt x3,0 ◦ γm(t)).

We assume that we have recursively determined (x2, . . . , xi−1, xi,j ), (e1, l2, . . . ,

li−1), and (μ2, . . . ,μi−1,μi,j−1) (if j = 0, then we set μi,j−1 = μi−1). We define

v
i,j
m = (ordt x0 ◦ γm(t),ordt x1 ◦ γm(t), . . . ,ordt xi,j ◦ γm(t)),

μi,j = min{m ≥ μi,j−1 + 1 | codim(Cm+1) > codim(Cm), and v
i,j
m = v

i,j

m+1}.
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Let

F (μi,j +1) ≡ Ql mod I r
μi,j

for some reduced polynomial Q and positive integer l; note as before that Q is an
irreducible; it is a nonzero polynomial because the equation F (μi,j +1) = 0 forces
the inequality codim(Cμi,j +1) > codim(Cμi,j

).
We then have two cases.

Case 1. If l = li−1, then we have the following:
Claim 1.2: We have

Q − x
(

μi,j +1
li−1

)

i,j ≡ Q′ mod I r
μi,j

,

where Q′ is a polynomial in x
(β̄0)

0 , x
(β̄1)

1 , x2
(

μ2+1
e1

)
, . . . , xi−1

(
μi−1+1

li−2
)
. We then de-

fine

xi,j+1 = xi,j + Q′(x0, x1, . . . , xi−1)

and

v
i,j+1
m = (ordt x0 ◦ γm(t), . . . ,ordt xi,j+1 ◦ γm(t)).

Case 2. If l = li < li−1 and li = 1, then we stop. If 1 < li < li−1, then we have
the following:

Claim 2.2: We have that

Q − x
(

μi,j +1
e1

)

i,j

li−1
li

≡ Q′ mod I r
μi,j

,

where Q′ is a polynomial in x
(β̄0)

0 , x
(β̄1)

1 , x2
(

μ2+1
e1

)
, . . . , xi−1

(
μi−1+1

li−2
)
.

We then set xi := xi,j , μi := μi,j and define

xi+1,0 = x

li−1
li

i + Q′(x0, x1, . . . , xi−1).

Remark 3.9. If we want the elements of a generating sequence to be polynomials
(which is more consistent with the terminology key polynomials), then we might
need an infinite number of elements to form a generating sequence [FJ]. These
polynomials can be found by continuing the same algorithm, without stopping if
we reach lg = 1, but only if we reach f , a case that occurs after finitely many
steps if and only if f is a polynomial. Here, we permit, as in [T1], elements in
the ring K[[x0, x1]]. Hence, even if f is a power series and not a polynomial, we
will take f as an element of a “minimal” generating sequence. In that case, we
can view f as a limit key polynomial.

Proof of Claim 1. By the definition of F (μ2,0+1) the term Q′ comes from a poly-
nomial P such that the terms of P e1 appear in f . More precisely,

Q′ ≡ P
(

μ2,0+1
e1

)
mod I r

μ2,0
.
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By construction we have

x
(

μ2,0+1
e1

)

2,0 ≡ P
(

μ2,0+1
e1

)
mod I r

μ2,0
,

and both members are not congruent to 0 modulo I r
μ2,0+1 (because the codimen-

sion of the irreducible component of the (μ2,0 + 1)-jet scheme we consider in-
creases). We deduce from Lemma 3.4 that

νC(x2,0 − P) > νC(x2,0) = νC(P ) = μ2,0 + 1

e1
,

which implies that inνCx2,0 = x2,0 = inνCP . Indeed, any polynomial whose terms
are also terms of x2,0, namely x

n1
1 and x

m1
0 , has values less than νC(x2,0).

We have that P is of the form

P = P
a1
1 · · ·P as

s ,

where Pi, i = 1, . . . , s, are irreducible. This follows from the fact that the residue
field of νC is K since tr.deg(νC) = 0 and K is algebraically closed. We want to
prove that the inνCPj are sums of monomials in x0 and x1 for every j . If not, then
by Lemma 3.1 we have that

Pj = (x
n1
1 − αf x

m1
0 )

δPj +
∑

cabx
a
0 xb

1 ,

where (a, b) is above the Newton polygon of Pj . If (x
n1
1 − αf x

m1
0 )

δPj is a part of
inνCPj , then this implies that νC(Pj ) ≥ νC(x2,0), and the equality follows from
inνCx2,0 = inνCP . We deduce that δPj

= 1. Then inνCP = inνCPj contains x2,0,

which contradicts the form of equation (4) for f . It follows that (x
n1
1 − cx

m1
0 )

δPj

is not a part of inνCPj , and we deduce by Lemma 3.1 that inνCPj is a sum of
monomials in x0 and x1.

Let us prove the remaining part of Claim 1. The proof is by induction on i. As-
sume that the claim is true till i − 1. Again, the term Q′ (in “Claim 1 continues”)
comes from a polynomial P such that the terms of P l appear in f . We have that
P is of the form

P = P
a1
1 · · ·P as

s ,

where Pr are irreducible for r = 1, . . . , s. This again follows from the fact that
tr.deg(νC) = 0. Note that, as before,

νC(P ) = μi,j + 1

l
,

and we have νC(Pr) ≤ μi−1
li−1

. It follows from Corollary 3.6 and from the hypothesis

of induction that inνCPr is a polynomial in x
(β̄0)

0 , x
(β̄1)

1 , x2
(

μ2+1
e1

)
, . . . , xi−1

(
μi−1+1

li−2
)
.

The proof of Claim 2 is similar to the proof of Claim 1. �

Theorem 3.10. We have that:

1. For i = 2, . . . , g, μi = ei−1β̄i − 1 and li = ei . Therefore, lg = 1, and the algo-
rithm stops at μg = eg−1β̄g .

2. x0, x1, . . . , xg, f is a minimal generating sequence of νC .
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Proof. The first part follows from the formula for the codimension of Cm in
Proposition 4.7 of [Mo1] and the construction of the μi . We also recover that
νC(xi) = β̄i , i = 0, . . . , g. The second part follows from Corollary 3.6 and the de-
scription of the equations defining Cm in terms of the equations of the jet schemes
of the curves defined by xi, i = 1, . . . , g. Note that according to Claim 1, inνCxi,j

is generated by x0, . . . , xi . �

Example 2. Let f = ((x2
1 − x3

0 − x4
0)2 − x8

0x1)
2 − x3

0x1(x
2
1 − x3

0 − x4
0), and let C

be the curve defined by f . We have that e1 = 4, x2,0 = x2
1 − x3

0 , and μ2,0 = 127.
Let

F (μ2,0+1) ≡ Ql mod I r
μ2,0

,

then Q = x2,0
(32) − x0

(8)4
and l = 4 = e1, and hence we define

x2,1 = x2,0 − x4
0 = x2

1 − x3
0 − x4

0 .

We have that μ2,1 = 151. Let

F (μ2,1+1) ≡ Ql mod I r
μ2,1

.

Then Q = x2,1
(38)2 − x0

(8)8
x1

(12) and l = l2 = 2 < e1. Since l2 = 2 < e1, we set
μ2 := μ2,1, x2,1 = x2, and we define

x3,0 = x2
2 − x8

0x1 = (x2
1 − x3

0 − x4
0)2 − x8

0x1.

We have that μ3,0 = 153, and we find that l3 = 1 < l2; hence, we set μ3 :=
μ3,0, x3 = x3,0, and we stop. A minimal system of generators is then given by x0,
x1, x2, x3, and f .

4. Generating Sequences of Divisorial Valuations

We now apply the results of the previous section to determine from the jet schemes
a minimal generating sequence for a divisorial valuation centered at the origin
of A2. The key point is that in dimension 2, a divisorial valuation νE determined
by a divisor E is defined by an irreducible component of Contp(C), where p ∈ N,
and C is an analytically irreducible plane curve. More precisely, the valuation is
given by an irreducible component of Cp−1, which is of type Cp−1 (see the defi-
nition of Cm after Theorem 3.2) for p ≥ ngβ̄g , where β̄0, . . . , β̄g give a minimal
system of generators of the semigroup �(C). Note that these numbers β̄i are also
extracted from the jet schemes, and this is the first part of Theorem 3.10.

The existence of C follows, for instance, from Theorem 2.7 in [LMR]: C is
chosen to be a curvette of E. Recall that C is a curvette of E if there exists
π : X −→ A2, a composition of point blow ups above the origin, where E is
an irreducible component of the exceptional divisor of π , and the strict trans-
form of C by π is smooth and transversal to E at a point that is not an intersec-
tion of E with another component of the exceptional divisor, that is, a free point
[GB; FJ].
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We will obtain a generating sequence of νE from the equations of the jet
schemes of the curvette C, more precisely, from the irreducible component Cp−1.
There are two cases.

If p = ngβ̄g , then let x2, . . . , xg be constructed by the algorithm of the previ-
ous section. Then a minimal generating sequence of the valuation νE is given by
x0, . . . , xg . This follows from the definition of νE in terms of jet schemes. Indeed,
Cp−1 gives rise to an irreducible component W of Contp(C) (see the discussion
after Theorem 3.2 in [Mo2]), and we have

vW(h) = min
γ∈W{ordt γ

∗(h)}
for h ∈ R = K[x0, x1].

If p > ngβ̄g , then we need to continue the algorithm in the previous section.
Assume that we have constructed x0, . . . , xg−1, and hence we have

F (ngβ̄g) ≡ Q mod I r
ngβ̄g−1

for some reduced polynomial Q. Note that we do not have a power of Q because
we have reached the step where l = 1 in the previous section. This is governed by
the behavior of the codimension of Cm, which grows of 1 whenever m ≥ ngβ̄g

grows of 1 (Prop. 4.7 in [Mo1]). If the power of Q is l > 1, then the codimension
of of Cm grows only when m is a multiple of l. We have

Q − x
(β̄g)
g

ng ≡ Q′ mod I r
ngβ̄g−1

,

where Q′ is a polynomial in x
(β̄0)

0 , x
(β̄1)

1 , x2
(β̄2), . . . , x

(β̄g−1)

g−1 . We then define

xg+1,0 = x
ng
g + Q′,

v
g+2,0
m = (ordt x0 ◦ γm(t),ordt x1 ◦ γm(t), . . . ,ordt xg+1,0 ◦ γm(t)),

and
μg+1,0 = min{ngβ̄g ≤ m < p | and v

g+2,0
m = v

g+2,0
m+1 }.

We have not imposed any conditions on the codimension in the definition of
μg+1,0 because, as we said before, for m ≥ ngβ̄g , the codimension of Cm grows
by 1 when m grows by 1.

If μg+1,0 = p − 1, then a minimal generating sequence of νE is given by

x0, . . . , xg+1 := xg+1,0.

If not, let
F (μg+2,0+1) ≡ Q mod I r

μg+2,0

for some reduced polynomial Q. We have that

Q − x
(μg+1,0+1)

g+1,0 ≡ Q′ mod I r
μg+1,0

,

where Q′ is a polynomial in x
(β̄0)

0 , x
(β̄1)

1 , x2
(β̄2), . . . , x

(β̄g−1)
g . We then define

xg+1,1 = xg+1,0 + Q′.
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Again, we define as before v
g+2,1
m ,μg+1,1, xg+1,2, . . . , v

g+2,j
m ,μg+1,j , until we

have μg+1,j = p − 1 (note that μg+1,i+1 > μg+1,i , i ≥ 0). Then a minimal gen-
erating sequence of νE is given by

x0, . . . , xg+1 := xg+1,j .

Note that νE(xg) = β̄g , νE(xg+1) = p, and all the xi are polynomials in K[x0, x1].
In fact, if we let D = {xg+1 = 0}, then it follows from the definitions of νE and D
that, for an irreducible h ∈ K[[x, y]], we have

νE(h) = νD(h),

and the initial part inνE
(h) = inνD (h) is a polynomial in x0, . . . , xg, xg+1,j−1,

unless inνE
(h) = xr

g+1 is a power of xg+1, in which case, we have that νE(h) = rp.
Note that xg+1,j−1 is a polynomial in the variables x0, . . . , xg+1.

We now assume that, for a divisorial valuation νE , defined by the irreducible
component Cp−1 of the (p − 1)th jet scheme of an irreducible curve C, we have
determined a minimal generating sequence x0, . . . , xg as before. Then, by con-
struction we have that, for i = 2, . . . , g, there exist polynomials fi such that

xi = fi(x0, . . . , xi−1).

We will use this to prove the following proposition, which is the goal of this
article.

Proposition 4.1. There exist an embedding e : A2 ↪→ Ag+1 and a toric proper
birational morphism μ : X� −→ Ag+1 such that:

Ã2

η

X�

μ

A2 e Ag+1

1. X� is smooth, that is, the fan � is a regular subdivision of Rg+1
+ , and the

vector
vνE

:= (νE(x0), . . . , νE(xg))

is an edge of a cone that belongs to �;
2. The strict transform Ã2 of A2 by μ : X� −→ Ag+1 is smooth;
3. The divisor E′ ⊂ X� that corresponds to the vector vνE

intersects Ã2 transver-
sally along a divisor E;

4. The valuation defined by the divisor E is v.

Proof. The functions fi provide an embedding A2 ↪→ Ag+1, which is the geo-
metric counterpart of the morphism

K[x0, x1, y1, . . . , yg] −→ K[x0, x1, y2 . . . , yg]
(y2 − f2(x0, x1), . . . , yg − fg(x0, x1, y2, . . . , yg−1))


 K[x0, x1].
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Let �′ be a regular subdivision of Rg+1
+ , which is compatible with the Newton

dual fan of yi − fi , i = 2, . . . , g (see Sect. 5 of [GT] for the construction of
�′), and let �′′ be the Stellar subdivision of �′ associated with the vector vνE

.
Finally, let � be a regular subdivision of �′′. Then the first three properties of
the proposition follow from Theorem 5.2 in [GT]. Now by construction of the
embedding e we have that if W is the irreducible component of Contp(C) that
defines νE , then

e∞(W) = e∞(A2∞) ∩ ContνE(x0)(x0) ∩ ContνE(x1)(x1)

∩ ContνE(x2)(y2) ∩ · · · ∩ ContνE(xg)(yg),

where e∞ : A2∞ ↪→ Ag+1∞ is the canonical morphism. But the divisorial valuation
associated with

U = ContνE(x0)(x0) ∩ ContνE(x1)(x1) ∩ ContνE(x2)(y2) ∩ · · · ∩ ContνE(xg)(yg)

⊂ Ag+1∞
is νE′ , which in terms of arcs means that μ∞(Cont1(E′)) dominates U, and hence
we have that η∞(Cont1(E)) dominates W where η is the restriction of μ to Ã2.
Property 4 in the proposition follows from the description of the valuation asso-
ciated with W. �

Remark 4.2. Note that that we can use the equations fi to define an overweight
deformation in the sense of [T2], and hence νE can be obtained from the mono-
mial valuation νE′ as in Proposition 3.3 in [T2].

Example 3. Let C be the irreducible curve defined by the equation x2
1 − x3

0 = 0.
Let ν be the valuation defined by C6 ⊂ C6 or, equivalently, by the corresponding
irreducible component of Cont7(x2

1 − x3
0). Note that the ideal of C6 is generated

by

(x
(0)
0 , x

(1)
0 , x

(0)
1 , . . . , x

(2)
1 , x

(3)
1

2 − x
(2)
0

3
).

Then by the discussion at the beginning of this section we have that x0, x1,
and x2 = x2

1 − x3
0 give a minimal generating sequence of ν. We embed A2 =

Spec K[x0, x1] ↪→ A3 = Spec K[x0, x1, y2] by the equation y2 − (x2
1 −x3

0) = 0. A
subdivision of R3+ as in Proposition 4.1 is given by a fan � whose edge vectors
are the vectors

(1,1,1), (1,2,3), (2,3,5), (2,3,6), (2,3,7),

where the last vector is the vν = (ν(x0), ν(x1), ν(x2)). We are interested in a chart
of X� , where we can see the divisor E′ associated with the vector vν . We consider
the chart Xσ = A3 = Spec K[u,v,w] generated by the vectors (1,2,3), (2,3,6),
(2,3,7). The restriction of μ to this chart is given by

x0 = uv2w2,

x1 = u2v3w3,

y2 = u3v6w7.
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The strict transform of A2 = {y2 − (x2
1 − x3

0) = 0} ⊂ A3 is given by

Ã2 = {w − u + 1 = 0} 
 Spec K[u,v] ⊂ A3 = Spec K[u,v,w],
and E′ is defined by w = 0. Thus the divisor E is defined in Ã2 by the equation
u − 1 = 0. The restriction η of μ to Ã2 is obtained from the description of μ by
substituting w by u − 1. Hence, η is given by

x0 = uv2(u − 1)2,

x1 = u2v3(u − 1)3.

We can directly verify that η is obtained as follows: First, we consider the minimal
embedded resolution of the curve C = {x2

1 − x3
0 = 0} (which is obtained by three

consecutive point blowing ups), then we blow up the intersection of the strict
transform of C with the exceptional divisor. The divisor obtained from this last
blowing up satisfies ν = νE . We see that the total transform of C by η is given by
the equation u3v6(u − 1)7 and hence that νE(x2

1 − x3
0) = 7.

This result shows a different approach from the one of [GT] to the resolution of
singularities of an irreducible plane curve C by one toric morphism. Indeed, in
loc. cit., the embedding e is constructed from the study of the curve valuation νC ,
whereas the approach suggested by this article is to study the divisorial valua-
tion associated with the irreducible component Cp−1 of Cp−1 (where p = ngβ̄g

is detected via invariants of jet schemes). The two approaches lead to the same
embedding in this case; in higher dimensions, they may differ.

Let us explain a little bit more the point of view suggested in this article
about the embedding e. Let ν = να be the monomial valuation defined on An =
Spec K[x1, . . . , xn] by a vector α = (α1, . . . , αn), where αi ∈ N, i = 1, . . . , n. Let
I ⊂ K[x1, . . . , xn] be an ideal and assume that the origin O belongs to the variety
V (I) ⊂ An = Spec K[x1, . . . , xn] defined by this ideal. We will say that I or V (I)

is nondegenerate with respect to ν at O if the singular locus of the variety defined
by the initial ideal inν(I ) of I does not intersect the torus (K∗)n. Note that in this
context, the initial ideal of I is defined by

inν(I ) = {inν(f ), f ∈ I },
where for f = ∑

ai1,...,inx
i1
1 · · ·xin

n ∈ K[x1, . . . , xn],

inν(f ) =
∑

ai1,...,in �=0,i1α1+···+inαn=ν(f )

ai1,...,inx
i1
1 · · ·xin

n .

It follows from [AGS; Te1] (see also [Va] for the hypersurface case) that if
for every α = (α1, . . . , αn), αi ∈ N, i = 1, . . . , n, I is nondegenerate with respect
to να at O , then we can construct a proper toric birational morphism Z −→ An

that resolves the singularities of V (I) in a neighborhood of O . Note that I can be
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degenerate with respect to a valuation defined by a vector α if there exists an irre-
ducible family of jets (having a large contact with V (I)) or arcs on V (I) such that,
for a generic γ = (γ1(t), . . . , γn(t)) in this family, (ordt γ1(t), . . . ,ordt γn(t)) = α;
indeed, by the Newton–Puiseux type theorem, if this were not satisfied, inνα (f )

would contain monomials, and hence by definition I would be nondegenerate
with respect to να . By studying irreducible components of jet schemes of a plane
branch C, as we have done, we are also looking for the degeneracy with respect
to the first Newton polygon. The embedding we have constructed by applying
Proposition 4.1 to the divisorial valuation associated with the irreducible compo-
nent Cngβ̄g−1 of Cngβ̄g−1 has the following property. Let I be the defining ideal

of the curve C in Ag+1, and let α = (β̄0, . . . , β̄g); then the initial ideal inνα (I) is

the defining ideal of the monomial curve defined by {(t β̄0 , . . . , t β̄g ), t ∈ K}, which
has an isolated singularity at O , and hence I is nondegenerate with respect to να .
Moreover, this is the only relevant vector α with respect to which we should check
degeneracy, the reason being that the initial ideal with respect to any other vector
will contain monomials. One crucial thing is that in the curve case, the initial ideal
we found is binomial, and thus it defines a toric variety. In higher dimensions, it
will not be the case, and more technology will be needed.
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